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1 Abstract— In this paper, we consider a scenario where a
source node wishes to broadcast two confidential messages for
two respective receivers via a Gaussian MIMO broadcast channel.
A wire-tapper also receives the transmitted signal via another
MIMO channel. It is assumed that the channels are degraded and
the wire-tapper has the worst channel. We establish the capacity
region of this scenario. Our achievability scheme is a combination
of the superposition of Gaussian codes and randomization within
the layers which we will refer to as Secret Superposition Coding.
For the outerbound, we use the notion of enhanced channel to
show that the secret superposition of Gaussian codes is optimal.
It is shown that we only need to enhance the channels of the
legitimate receivers, and the channel of the eavesdropper remains
unchanged.

I. I NTRODUCTION

Recently there has been significant research conducted in
both theoretical and practical aspects of wireless communi-
cation systems with Multiple-Input Multiple-Output (MIMO)
antennas. Most works have focused on the role of MIMO
in enhancing the throughput and robustness. In this work,
however, we focus on the role of such multiple antennas in
enhancing wireless security.

The information-theoretic single user secure communication
problem was first characterized by Wyner in [1]. Wyner
considered a scenario in which a wire-tapper receives the
transmitted signal over a degraded channel with respect to
the legitimate receiver’s channel. He measured the level
of ignorance at the eavesdropper by its equivocation and
characterized the capacity-equivocation region. Wyner’swork
was then extended to the general broadcast channel with
confidential messages by Csiszar et al. [2]. They considered
transmitting confidential information to the legitimate receiver
while transmitting common information to both the legitimate
receiver and the wire-tapper. They established a capacity-
equivocation region of this channel. The secrecy capacity for
the Gaussian wire-tap channel was characterized by Leung-
Yan-Cheong in [3].

The Gaussian MIMO wire-tap channel has recently been
considered by Khisti et al. in [4], [5]. Finding the optimal
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distribution, which maximizes the secrecy capacity for this
channel is a nonconvex problem. Khisti et al., however,
followed an indirect approach to evaluate the secrecy capacity
of Csiszar et al. They used a genie-aided upper bound and
characterized the secrecy capacity as the saddle-value of
a min-max problem to show that Gaussian distribution is
optimal. Motivated by the broadcast nature of the wireless
communication systems, we considered the secure broadcast
channel in [6]. In this work, we characterized the secrecy
capacity region of the degraded broadcast channel and showed
that the secret superposition coding is optimal.

The capacity region of the conventional Gaussian MIMO
broadcast channel is studied in [7] by Weingarten et al. The
notion of an enhanced broadcast channel is introduced in this
work and is used jointly with entropy power inequality to
characterize the capacity region of the degraded vector Gaus-
sian broadcast channel. They showed that the superpositionof
Gaussian codes is optimal for the degraded vector Gaussian
broadcast channel and that dirty-paper coding is optimal for
the nondegraded case.

In this paper, we aim to characterize the secrecy capacity
region of a secure degraded vector Gaussian MIMO broadcast
channel. Our achievability scheme is a combination of the
superposition of Gaussian codes and randomization within the
layers. To prove the converse, we use the notion of enhanced
channel and show that the secret superposition of Gaussian
codes is optimal. We have extended the results of this paper
to the general Gaussian MIMO broadcast channel in [8] and
showed that secret dirty paper coding of Gaussian codes is
optimal.

We acknowledge two other independent and concurrent
works of [9], [10] where the authors considered the secrecy
capacity region of the Gaussian MIMO broadcast channel.

The rest of the paper is organized as follows. In section II
we introduce some preliminaries. In section III, we establish
the secrecy capacity region of the Gaussian vector broadcast
channel. In Section V, we conclude the paper.

II. PRELIMINARIES

Consider a Secure Gaussian Multiple-Input Multiple-Output
Broadcast Channel (SGMBC) as depicted in Fig. 1. In this
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Fig. 1. Secure Gaussian MIMO Broadcast Channel

confidential setting, the transmitter wishes to send two inde-
pendent messages(W1,W2) to the respective receivers inn
uses of the channel and prevent the eavesdropper from having
any information about the messages. At a specific time, the
signals received by the destinations and the eavesdropper are
given by

y1 = H1x+ n1,

y2 = H2x+ n2, (1)

z = H3x+ n3,

where

• x is a real input vector of sizet × 1 under an input
covariance constraint. We require thatE[xTx] � S for
a positive semi-definite matrixS � 0. Here,≺,�,≻, and
� represent partial ordering between symmetric matrices
whereB � A means that(B − A) is a positive semi-
definite matrix.

• y1, y2, andz are real output vectors which are received
by the destinations and the eavesdropper respectively.
These are vectors of sizer1 × 1, r2 × 1, and r3 × 1,
respectively.

• H1, H2, and H3 are fixed, real gain matrices which
model the channel gains between the transmitter and
the receivers. These are matrices of sizer1 × t, r2 × t,
andr3 × t respectively. The channel state information is
assumed to be known perfectly at the transmitter and at
all receivers.

• n1, n2 and n3 are real Gaussian random vectors with
zero means and covariance matricesN1 = E[n1n1

T ] ≻
0, N2 = E[n2n2

T ] ≻ 0, and N3 = E[n3n3
T ] ≻ 0

respectively.

Let W1 and W2 denote the the message indices of user1

and user2, respectively. Furthermore, letX, Y 1, Y 2, andZ
denote the random channel input and random channel outputs
matrices over a block ofn samples. LetV 1, V 2, and V 3

denote the additive noises of the channels. Thus,

Y 1 = H1X + V 1,

Y 2 = H2X + V 2, (2)

Z = H3X + V 3.

Note that V i is an ri × n random matrix andHi is an
ri × t deterministic matrix wherei = 1, 2, 3. The columns of
V i are independent Gaussian random vectors with covariance
matricesNi for i = 1, 2, 3. In addition V i is independent
of X , W1 andW2. A ((2nR1 , 2nR2), n) code for the above
channel consists of a stochastic encoder

f : ({1, 2, ..., 2nR1} × {1, 2, ..., 2nR2}) → X , (3)

and two decoders,

g1 : Y1 → {1, 2, ..., 2nR1}, (4)

and
g2 : Y2 → {1, 2, ..., 2nR2}. (5)

where a script letter with double overline denotes the finite
alphabet of a random vector. The average probability of error
is defined as the probability that the decoded messages are not
equal to the transmitted messages; that is,

P (n)
e = P (g1(Y 1) 6= W1 ∪ g2(Y 2) 6= W2). (6)

The secrecy levels of confidential messagesW1 andW2 are
measured at the eavesdropper in terms of equivocation rates,
which are defined as follows.

Definition 1 The equivocation ratesRe1, Re2 and Re12 for
the secure broadcast channel are:

Re1 =
1

n
H(W1|Z), (7)

Re2 =
1

n
H(W2|Z),

Re12 =
1

n
H(W1,W2|Z).

The perfect secrecy ratesR1 and R2 are the amount of
information that can be sent to the legitimate receivers both
reliably and confidentially.

Definition 2 A secrecy rate pair(R1, R2) is said to be
achievable if for anyǫ > 0, ǫ1 > 0, ǫ2 > 0, ǫ3 > 0, there
exists a sequence of((2nR1 , 2nR2), n) codes, such that for
sufficiently largen,

P (n)
e ≤ ǫ, (8)

Re1≥ R1 − ǫ1, (9)

Re2≥ R2 − ǫ2, (10)

Re12≥ R1 +R2 − ǫ3. (11)

In the above definition, the first condition concerns the reli-
ability, while the other conditions guarantee perfect secrecy
for each individual message and both messages as well. The
model presented in (1) is SGMBC. For lack of space, the
SGMBC cannot be discussed within this paper, and we will
only consider a subclass of this channel here. The special
subclass that we will consider is the Secure Aligned Degraded
MIMO Broadcast Channel (SADBC). The MIMO broadcast
channel of (1) is said to be aligned if the number of transmit



antennas is equal to the number of receive antennas at each
of the users and the eavesdropper (t = r1 = r2 = r3) and the
gain matrices are all identity matrices(H1 = H2 = H3 = I).
Furthermore, if the additive noise vectors’ covariance matrices
are ordered such that0 ≺ N1 � N2 � N3, then the channel
is SADBC.

III. T HE CAPACITY REGION OFTHE SADBC

In this section, we characterize the capacity region of the
SADBC. In [6], we considered the degraded broadcast channel
with confidential messages and establish its secrecy capacity
region.

Theorem 1 The capacity region for transmitting independent
secret messages over the degraded broadcast channel is the
convex hull of the closure of all(R1, R2) satisfying

R1≤ I(X ;Y1|U)− I(X ;Z|U), (12)

R2≤ I(U ;Y2)− I(U ;Z). (13)

for some joint distributionP (u)P (x|u)P (y1, y2, z|x).

Proof: Our achievable coding scheme is based on Cover’s
superposition scheme and random binning. We refer to this
scheme as the Secret Superposition Scheme. In this scheme,
randomization in the first layer increases the secrecy rate of the
second layer. Our converse proof is based on a combination
of the converse proof of the conventional degraded broadcast
channel and Csiszar Lemma. Please see [6] for details.
Note that finding optimal distribution which characterizesthe
boundary points of (12) and for the Gaussian channels in-
volves solving a functional, nonconvex optimization problem.
Usually nontrivial techniques and strong inequalities areused
to solve optimization problems of this type. Indeed, for the
single antenna case, we successfully evaluated the capacity
expression of this scheme in [11]. Liu et al. in [12] evaluated
the capacity expression of MIMO wire-tap channel by using
the channel enhancement method. In the following section, we
state and prove our result for the capacity region of SADBC.

First, we define the achievable rate region due to Gaussian
codebook under a covariance matrix constraintS � 0. The
achievability scheme of Theorem 1 is the secret superposition
of Gaussian codes and successive decoding at the first receiver.
According to the above theorem, for any covariance matrix
input constraintS and two semi-definite matricesB1 � 0 and
B2 � 0 such thatB1 +B2 � S, it is possible to achieve the
following rates,

RG
1 (B1,2,N1,2,3) =

1

2
log |N−1

1 (B1 +N1)| −
1

2
log |N−1

3 (B1 +N3)|,

RG
2 (B1,2,N1,2,3) =

1

2
log

|B1 +B2 +N2|

|B1 +N2|
−

1

2
log

|B1 +B2 +N3|

|B1 +N3|
.

Definition 3 Let S be a positive semi-definite matrix. Then,
the Gaussian rate region of SADBC under a covariance matrix
constraintS is given by

RG(S,N1,2,3) ={ (
RG

1 (B1,2,N1,2,3), R
G
2 (B1,2,N1,2,3)

)
|

s.t S− (B1 +B2) � 0, Bk � 0, k = 1, 2

}
. (14)

We will show thatRG(S,N1,2,3) is the capacity region of
the SADBC. Before that, certain preliminaries need to be
addressed.

Definition 4 The rate vectorR∗ = (R1, R2) is said to be an
optimal Gaussian rate vector under the covariance matrixS, if
R∗ ∈ RG(S,N1,2,3) and if there is no other rate vectorR

′∗ =
(R

′

1, R
′

2) ∈ RG(S,N1,2,3) such thatR
′

1 ≥ R1 andR
′

2 ≥ R2

where at least one the inequalities is strict. The set of positive
semi-definite matrices(B∗

1,B
∗
2) such thatB∗

1+B∗
2 � S is said

to be realizing matrices of an optimal Gaussian rate vector if
the rate vector

(
RG

1 (B
∗
1,2,N1,2,3), R

G
2 (B

∗
1,2,N1,2,3)

)
is an

optimal Gaussian rate vector.

Definition 5 A SADBC with noise covariance matrices of
(N

′

1,N
′

2,N
′

3) is an enhanced version of another SADBC with
noise covariance matrices(N1,N2,N3) if

N
′

1 � N1, N
′

2 � N2, N
′

3 = N3, N
′

1 � N
′

2. (15)

Obviously, the capacity region of the enhanced version con-
tains the capacity region of the original channel. Note thatin
characterizing the capacity region of the conventional Gaussian
MIMO broadcast channel, all channels must be enhanced
by reducing the noise covariance matrices. In our scheme,
however, we only enhance the channels for the legitimate
receivers and the channel of the eavesdropper remains un-
changed. This is due to the fact that the capacity region of the
enhanced channel must contain the original capacity region.
Reducing the noise covariance matrix of the eavesdropper’s
channel, however, may reduce the secrecy capacity region.
The following theorem connects the definitions of the optimal
Gaussian rate vector and the enhanced channel.

Theorem 2 Consider a SADBC with positive definite noise
covariance matrices(N1,N2,N3). Let B∗

1 and B∗
2 be re-

alizing matrices of an optimal Gaussian rate vector under
a transmit covariance matrix constraintS ≻ 0. There then
exists an enhanced SADBC with noise covariance matrices
(N

′

1,N
′

2,N
′

3) that the following properties hold.

1) Enhancement:
N

′

1 � N1, N
′

2 � N2, N
′

3 = N3, N
′

1 � N
′

2,
2) Proportionality:

There exists anα ≥ 0 and a matrixA such that
(I−A)(B∗

1 +N
′

1) = αA(B∗
1 +N

′

3),
3) Rate and optimality preservation:

RG
k (B

∗
1,2,N1,2,3) = RG

k (B
∗
1,2,N

′

1,2,3) ∀k = 1, 2,
furthermore,B∗

1 and B∗
2 are realizing matrices of an

optimal Gaussian rate vector in the enhanced channel.



Theorem 2 states that if there exists the realizing matricesof
the boundary ofRG(S,N1,2,3), then the secret superposition
coding with Gaussian codebook is the optimal choice for
the capacity region of a SADBC. Note that this Theorem
provides a sufficient condition to evaluate the capacity region
of SADBC.

Proof: The realizing matricesB∗
1 andB∗

2 are the solution
of the following optimization problem:

max
(B1,B2)

RG
1 (B1,2,N1,2,3) + µRG

2 (B1,2,N1,2,3) (16)

s.t B1 � 0, B2 � 0, B1 +B2 � S,

where µ ≥ 1. Using the Lagrange Multiplier method, the
above constraint optimization problem is equivalent to the
following unconditional optimization problem:

max
(B1,B2)

RG
1 (B1,2,N1,2,3) + µRG

2 (B1,2,N1,2,3)

+Tr{B1O1}+ Tr{B2O2}+ Tr{(S−B1 −B2)O3},

where O1, O2, and O3 are positive semi-definitet × t

matrices such thatTr{B∗
1O1} = 0, Tr{B∗

2O2} = 0,
and Tr{(S−B∗

1 −B∗
2)O3} = 0. As all B∗

k, k = 1, 2,
Oi, i = 1, 2, 3, andS−B∗

1 −B∗
2 are positive semi-definite

matrices, then we must haveB∗
kOk = 0, k = 1, 2 and

(S−B∗
1 −B∗

2)O3 = 0. According to the necessary KKT
conditions, and after some manipulations we have:

(B∗
1 +N1)

−1 + (µ− 1)(B∗
1 +N3)

−1 +O1=

µ(B∗
1 +N2)

−1 +O2, (17)

µ(B∗
1 +B∗

2 +N2)
−1 +O2= µ(B∗

1 +B∗
2 +N3)

−1

+O3. (18)

We choose the noise covariance matrices of the enhanced
SADBC as the following:

N
′

1=
(
N1

−1 +O1

)−1
, (19)

N
′

2=

(
(B∗

1 +N2)
−1

+
1

µ
O2

)−1

−B∗
1,

N
′

3= N3.

As O1 � 0 andO2 � 0, then the above choice has the en-
hancement property. The expression

(
(B∗

1 +N1)
−1 +O1

)−1

can be written as:
(
(B∗

1 +N1)
−1 +O1

)−1
=
(
(B∗

1 +N1)
−1

(I+ (B∗
1 +N1)O1)

)−1

(a)
= (I+N1O1)

−1 (B∗
1 +N1)

−B∗
1 +B∗

1

= (I+N1O1)
−1 (

(B∗
1 +N1)

− (I+N1O1)B
∗
1

)
+B∗

1

(b)
= (I+N1O1)

−1
N1 +B∗

1

=
(
N1

(
N−1

1 +O1

))−1
N1 +B∗

1

=
(
N−1

1 +O1

)−1
+B∗

1

= B∗
1 +N

′

1,

where (a) and (b) follows from the fact thatB∗
1O1 = 0.

Similarly, it can be shown that

µ(B∗
1 +N2)

−1 +O2 = µ(B∗
1 +N

′

2)
−1,

Therefore, according to (17) the following property holds for
the enhanced channel.

(B∗
1 +N

′

1)
−1 + (µ− 1)(B∗

1 +N
′

3)
−1 = µ(B∗

1 +N
′

2)
−1.

SinceN
′

1 � N
′

2 � N
′

3 then, there exists a matrixA such
thatN

′

2 = (I−A)N
′

1 +AN
′

3 whereA = (N
′

2−N
′

1)(N
′

3−
N

′

1)
−1. Therefore, the above equation can be written as.

(B∗
1 +N

′

1)
−1 + (µ− 1)(B∗

1 +N
′

3)
−1 =

µ
[
(I−A)(B∗

1 +N
′

1) +A(B∗
1 +N

′

3)
]−1

.

Let (I − A)(B∗
1 + N

′

1) = αA(B∗
1 + N

′

3) then after some
manipulations, the above equation becomes

1

α
I+ (µ− 1−

1

α
)A =

µ

α+ 1
I. (20)

The above equation is satisfied byα = 1
µ−1 which completes

the proportionality property.
We can now prove the rate conservation property. The

expression|B
∗

1
+N

′

1
|

|N
′

1
|

can be written as follow.

|B∗
1 +N

′

1|

|N
′

1|
=

|I|

|N
′

1

(
B∗

1 +N
′

1

)−1
|

(21)

=
|I|

|
(
B∗

1 +N
′

1 −B∗
1

) (
B∗

1 +N
′

1

)−1
|

=
|I|

|I−B∗
1

(
B∗

1 +N
′

1

)−1
|

=
|I|

|I−B∗
1 ((B

∗
1 +N1)−1 +O1) |

(a)
=

|I|

|I−B∗
1 (B

∗
1 +N1)

−1 |

=
|B∗

1 +N1|

|N1|
,

where(a) once again follows from the fact thatB∗
1O1 = 0. To

complete the proof of rate conservation, consider the following
equalities.

|B∗
1 +B∗

2 +N
′

2|

|B∗
1 +N

′

2|
=

|B∗
2

(
B∗

1 +N
′

2

)−1

+ I|

|I|
(22)

=
|B∗

2

(
(B∗

1 +N2)
−1 + 1

µ
O2

)
+ I|

|I|

(a)
=

|B∗
1 +B∗

2 +N2|

|B∗
1 +N2|

,

where (a) follows from the factB∗
2O2 = 0. Therefore,

according to (21), (22), and the fact thatN
′

3 = N3, the rate
preservation property holds for the enhanced channel. To prove
the optimality preservation, we need to show that(B∗

1,B
∗
2) are



also realizing matrices of an optimal Gaussian rate vector in
the enhanced channel. For that purpose, note that the necessary
KKT conditions for the enhanced channel coincides with the
KKT conditions of the original channel.
We can now use Theorem 2 to prove thatRG(S,N1,2,3) is
the capacity region of the SADBC. We follow Bergmans’ ap-
proach [13] to prove a contradiction. Note that since the orig-
inal channel is not proportional, we cannot apply Bergmans’
proof on the original channel directly. Here we apply his proof
on the enhanced channel instead.

Theorem 3 Consider a SADBC with positive definite noise
covariance matrices(N1,N2,N3). Let C(S,N1,2,3) denote
the capacity region of the SADBC under a covariance matrix
constraintS ≻ 0 . Then,C(S,N1,2,3) = RG(S,N1,2,3).

Proof: The achievability scheme is secret superposition
coding with Gaussian codebook. For the converse proof, we
use a contradiction argument and assume that there exists an
achievable rate vector(R1, R2) which is not in the Gaussian
region. We can apply the steps of Bergmans’ proof of [10]
on the enhanced channel to show that this assumption is
impossible. According to the Theorem 1,R1 is bounded as
follows.

R1≤ h(y1|u)− h(z|u) − (h(y1|x,u)− h(z|x,u))

= h(y1|u)− h(z|u) −
1

2

(
log |N

′

1| − log |N
′

3|)
)

SinceR1 > RG
1 (B1,2,N

′

1,2,3), the above inequality means
that

h(y1|u)− h(z|u) >
1

2

(
log |B∗

1 +N
′

1| − log |B∗
1 +N

′

3|)
)

By the definition of matrixA and sincey1 → y2 → z

forms a Morkov chain, the received signalsz and y2 can
be written asz = y1 + ñ and y2 = y1 + A

1

2 ñ where
ñ is an independent Gaussian noise with covariance matrix
Ñ = N

′

3−N
′

1. According to Costa’s Entropy Power Inequality
and the previous inequality, we have

h(y2|u)−h(z|u)

≥
t

2
log
(
|I−A|

1

t 2
2

t
(h(y1|u)−h(z|u)) + |A|

1

t )
)

>
t

2
log

(
|I−A|

1

t |B∗
1 +N

′

1|
1

t

|B∗
1 +N

′

3|
1

t

+ |A|
1

t )

)

(a)
=

1

2
log(B∗

1 +N
′

2)−
1

2
log(B∗

1 +N
′

3) (23)

where (a) is due to the proportionality property. The rateR2

is bounded as follows

R2≤ h(y2)− h(z)− (h(y2|u)− h(z|u))

Using (23) and the fact thatR2 > RG
2 (B1,2,N

′

1,2,3), the
above inequality means that

h(y2)− h(z) ≥ R2 + h(y2|u)− h(z|u) >
1

2
log(B∗

1 +B∗
2 +N

′

2)−
1

2
log(B∗

1 +B∗
2 +N

′

3)

which is a contradiction with the fact that Gaussian distribution
maximizesh(x+ n2)− h(x+ n3) [14].

IV. CONCLUSION

A scenario where a source node wishes to broadcast
two confidential messages for two respective receivers via a
Gaussian MIMO broadcast channel, while a wire-tapper also
receives the transmitted signal via another MIMO channel
is considered. We considered the secure vector Gaussian
degraded broadcast channel and established its capacity re-
gion. Our achievability scheme is the secret superpositionof
Gaussian codes. Instead of solving a nonconvex problem, we
used the notion of an enhanced channel to show that secret
superposition of Gaussian codes is optimal. To characterize
the secrecy capacity region of the vector Gaussian degraded
broadcast channel, we only enhanced the channels for the
legitimate receivers, and the channel of the eavesdropper
remains unchanged.
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