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[ Abstract—In this paper, we consider a scenario where a distribution, which maximizes the secrecy capacity forsthi
source node wishes to broadcast two confidential messages fochannel is a nonconvex problem. Khisti et al., however,
two respective receivers via a Gaussian MIMO broadcast charel. followed an indirect approach to evaluate the secrecy dapac

A wire-tapper also receives the transmitted signal via andter . .
MIMO channel. It is assumed that the channels are degraded ah of Csiszar et al. They used a genie-aided upper bound and

the wire-tapper has the worst channel. We establish the capity ~Characterized the secrecy capacity as the saddle-value of
region of this scenario. Our achievability scheme is a combation a min-max problem to show that Gaussian distribution is

of the superposition of Gaussian codes and randomization #iin  optimal. Motivated by the broadcast nature of the wireless
the layers which we will refer to as Secret Superposition Cadg. o mmynication systems, we considered the secure broadcast
For the outerbound, we use the notion of enhanced channel to . . -
show that the secret superposition of Gaussian codes is optal. chann_el In [6]' In this work, we characterized the secrecy
It is shown that we only need to enhance the channels of the capacity region of the degraded broadcast channel and showe
legitimate receivers, and the channel of the eavesdroppeemains that the secret superposition coding is optimal.
unchanged. The capacity region of the conventional Gaussian MIMO
broadcast channel is studied in [7] by Weingarten et al. The
notion of an enhanced broadcast channel is introduced sn thi
Recently there has been significant research conductedaigrk and is used jointly with entropy power inequality to
both theoretical and practical aspects of wireless commugharacterize the capacity region of the degraded vectosGau
cation systems with Multiple-Input Multiple-Output (MIMO ' sian broadcast channel. They showed that the superposition
antennas. Most works have focused on the role of MIM@aussian codes is optimal for the degraded vector Gaussian
in enhancing the throughput and robustness. In this wolgoadcast channel and that dirty-paper coding is optimal fo
however, we focus on the role of such multiple antennas iRe nondegraded case.
enhancing wireless security. In this paper, we aim to characterize the secrecy capacity
The information-theoretic single user secure commurdGatiregion of a secure degraded vector Gaussian MIMO broadcast
problem was first characterized by Wyner in [1]. Wyneghannel. Our achievability scheme is a combination of the
considered a scenario in which a wire-tapper receives tggperposition of Gaussian codes and randomization witten t
transmitted signal over a degraded channel with respect|dgers. To prove the converse, we use the notion of enhanced
the legitimate receiver's channel. He measured the lev@{annel and show that the secret superposition of Gaussian
of ignorance at the eavesdropper by its equivocation aggdes is optimal. We have extended the results of this paper
characterized the capacity-equivocation region. Wyneosk to the general Gaussian MIMO broadcast channel in [8] and
was then extended to the general broadcast channel wgbwed that secret dirty paper coding of Gaussian codes is
confidential messages by Csiszar et al. [2]. They considerggtimal.
transmitting confidential information to the legitimatee&er e acknowledge two other independent and concurrent
while transmitting common information to both the legiti®a \yorks of [9], [10] where the authors considered the secrecy
receiver and the wire-tapper. They established a capaciggpacity region of the Gaussian MIMO broadcast channel.
equivocation region of this channel. The secrecy capaoity f e rest of the paper is organized as follows. In section I
the Gaussian wire-tap channel was characterized by Leuggs introduce some preliminaries. In section Ill, we es&ibli

Yan-Cheong in [3]. _ the secrecy capacity region of the Gaussian vector broadcas
The Gaussian MIMO wire-tap channel has recently be@pannel. In Section V, we conclude the paper.

considered by Khisti et al. in [4], [5]. Finding the optimal

|I. INTRODUCTION
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(NSERC), and Ontario Centers of Excellence (OCE) are griyeficknowl- Consider a Secure Gaussian Multlple-lnput Multlple-Oltltpu

edged. Broadcast Channel (SGMBC) as depicted in . 1. In this
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Fig. 1. Secure Gaussian MIMO Broadcast Channel

confidential setting, the transmitter wishes to send twa4in
pendent messages$l, W,) to the respective receivers i

Note thatV, is an r; x n random matrix andH; is an

r; X t deterministic matrix where = 1,2,3. The columns of

V,; are independent Gaussian random vectors with covariance
matricesIN; for ¢ = 1,2,3. In addition V, is independent

of X, Wy and Wy. A ((2nfir 2nf2) ) code for the above
channel consists of a stochastic encoder

1,2, 20 {12, .2 X, (3)
and two decoders,
g1: 91— {1,2,...,2"F ) (4)
and .
. g2 : Vo — {1,2,...,2"F2}, (5)

where a script letter with double overline denotes the finite

uses of the channel and prevent the eavesdropper from haafghabet of a random vector. The average probability ofrerro

any information about the messages. At a specific time,
signals received by the destinations and the eavesdroppe
given by

y1 = Hix+ny,
y2 = Hox + na, 1)

7z = H3X+I‘l3,

where

e x is a real input vector of sizeé x 1 under an input
covariance constraint. We require th@fx’x] < S for
a positive semi-definite matri® = 0. Here<, <, >, and

> represent partial ordering between symmetric matrices

whereB = A means tha{B — A) is a positive semi-
definite matrix.

tigedefined as the probability that the decoded messages &are no
refgual to the transmitted messages; that is,

(6)

The secrecy levels of confidential messagésand W, are
measured at the eavesdropper in terms of equivocation rates
which are defined as follows.

pim = P(gl(?l) # Wi ng(?z) # Wa).

Definition 1 The equivocation rate®.;, R.o and R.io for
the secure broadcast channel are:

1 =

Rel = EH(Wllz)a (7)
1

Reo = —H(W5|Z),

1 =
Rei2 = EH(Wl’ Wa|Z).

Y1, Y2, andz are real output vectors which are received
by the destinations and the eavesdropper respectiveljnie perfect secrecy rateR; and R, are the amount of
These are vectors of sizg x 1, r» x 1, andrs x 1, information that can be sent to the legitimate receiverd bot
respectively. reliably and confidentially.

H,, H,, and H; are fixed, real gain matrices which

model the channel gains between the transmitter abefinition 2 A secrecy rate pair(R;, R2) is said to be
the receivers. These are matrices of size< t, ro x t, achievable if for anye > 0,¢; > 0,e2 > 0,e3 > 0, there
andrs x t respectively. The channel state information isxists a sequence df2"f1 2n%2) n) codes, such that for
assumed to be known perfectly at the transmitter and sifficiently largen,
all receivers.

(n)

e ny, ny andns are real Gaussian random vectors with Pel< e (8)
zero means and covariance matri®és = E[nin; 7] - Ra> Ry — e, 9)
0, Ny = E[nznzT] = 0, and N3 = E[H3H3T] = 0 Reo> Ry — €9, (10)
respectively. Ru12> Ry + Ry — 3. (11)

Let W, and W, denote the the message indices of user

and user2, respectively. Furthermore, let, Y, Y,, and Z
denote the random channel input and random channel out
matrices over a block ofi samples. LetV;, V5, and V3

In the above definition, the first condition concerns the-reli
p%@ity, while the other conditions guarantee perfect segr
for each individual message and both messages as well. The

model presented i (1) is SGMBC. For lack of space, the
SGMBC cannot be discussed within this paper, and we will
only consider a subclass of this channel here. The special

denote the additive noises of the channels. Thus,

?1 = Hl? + ?1, . . . .

= = = subclass that we will consider is the Secure Aligned Degtade
X2 = H2_X +_V2’ (2)  MIMO Broadcast Channel (SADBC). The MIMO broadcast
Z =H3X + V3. channel of [() is said to be aligned if the number of transmit



antennas is equal to the number of receive antennas at eBefinition 3 Let S be a positive semi-definite matrix. Then,

of the users and the eavesdroppets(r; = ro = r3) and the the Gaussian rate region of SADBC under a covariance matrix

gain matrices are all identity matricéll; = H, = H; =I). constraintS is given by

Furthermore, if the additive noise vectors’ covariancerines RE(S. N B

are ordered such thét< N; < N5 < Nj, then the channel (S,Niz23) =

is SADBC. { (BT (B12,N123), RY (B12,N123)) | } (14)
stS—-(B1+B2)=0, By =0, k=1,2 [~

IIl. THE CAPACITY REGION OFTHE SADBC We will show thatR%(S,Nj 2 3) is the capacity region of

In this section, we characterize the capacity region of ttiee SADBC. Before that, certain preliminaries need to be
SADBC. In [6], we considered the degraded broadcast chanagdressed.
with confidential messages and establish its secrecy dgpaci
region. Definition 4 The rate vectoiR* = (R;, R») is said to be an
optimal Gaussian rate vector under the covariance merii

* G H H Tx
Theorem 1 The capacity region for transmitting independen ER (8,N1.2,5) and if there is no other rate vectdt * =

secret messages over the degraded broadcast channel is dfe ff2) € RG(S’N1=2=§”) such thatit, > It and Ity > Ity
convex hull of the closure of allRy, R») satisfying where atlle_ast one the inequalities is strict. The set.oftpx_asl

semi-definite matrice@;, B3) such thaB;+B% < S is said
Ri<I(X;W1|U) — I(X; Z|U), (12) to be realizing matrices of an optimal Gaussian rate vector i
Ro< I(U:Ya) — (U Z). (13) the rate VeCtOr-(R?(B{Q,Nlﬂzﬂg),R?(B{,z,Nl_’z’g)) is an

optimal Gaussian rate vector.

for some joint distributionP (u) P(z|u) P(y1, y2, z| ).

Definition 5 A SADBC with noise covariance matrices of

Proof: Our achievable coding scheme is based on Covef®1, N3, Nj) is an enhanced version of another SADBC with
superposition scheme and random binning. We refer to tiigise covariance matriceN;, N2, N3) if
scheme as the Secret Superposition Scheme. In this scheme,, .- / / / /
randomization in the first layer increases the secrecy fateeo Ny =N, Ny =Nj, Ny =Ng Ny =N, (15)
second layer. Our converse proof is based on a combinat©Bviously, the capacity region of the enhanced version con-
of the converse proof of the conventional degraded broadcgsgins the capacity region of the original channel. Note that
channel and Csiszar Lemma. Please see [6] for detail® characterizing the capacity region of the conventionalssin
Note that finding optimal distribution which characterizee  MIMO broadcast channel, all channels must be enhanced
boundary points of[(12) and for the Gaussian channels iy reducing the noise covariance matrices. In our scheme,
volves solving a functional, nonconvex optimization perbl however, we only enhance the channels for the legitimate
Usually nontrivial techniques and strong inequalities @sed receivers and the channel of the eavesdropper remains un-
to solve optimization problems of this type. Indeed, for thehanged. This is due to the fact that the capacity regionef th
single antenna case, we successfully evaluated the cppagithanced channel must contain the original capacity region
expression of this scheme in [11]. Liu et al. in [12] evaldateReducing the noise covariance matrix of the eavesdropper’s
the capacity expression of MIMO wire-tap channel by usinghannel, however, may reduce the secrecy capacity region.
the channel enhancement method. In the following sectien, Whe following theorem connects the definitions of the optima
state and prove our result for the capacity region of SADBGaussian rate vector and the enhanced channel.
First, we define the achievable rate region due to Gaussian
codebook under a covariance matrix constréint- 0. The Theorem 2 Consider a SADBC with positive definite noise
achievability scheme of Theorem 1 is the secret superpasiticovariance matrice§N;, N3, N3). Let B and B} be re-
of Gaussian codes and successive decoding at the firsteecemlizing matrices of an optimal Gaussian rate vector under
According to the above theorem, for any covariance matri transmit covariance matrix constrair8 = 0. There then
input constrainS and two semi-definite matricd3; = 0 and exists an enhanced SADBC with noise covariance matrices
B» = 0 such thatB; + B2 < S, it is possible to achieve the (N}, N,, N3) that the following properties hold.
following rates, 1) Enhancement: / / /
N; <N;, N, <N, Nj=N; N, =Nj,

RY(B1.2.N123) = 2) Pré)portionality:2 ’ ' ’

llog INTY(B1 + Ny)| — llog Nz (B + Ng)|, There exists amv > 0 and a matrixA such that
oo 2 2 (I-A)(B; +N}) = aA(B] +Nj),
Ry (B1,2,N123) = 3) Rate and optimality preservation:
Lypg BBz +Na| 1) [Bi1+ By + Ny| R{(Bi2,Ni23) = R{(Bi2,Nyp5) Vk =12
2 |B1 + Na| 2 |B1 + N3] furthermore, B} and B} are realizing matrices of an

optimal Gaussian rate vector in the enhanced channel.



Theoren 2 states that if there exists the realizing matrideswhere (a) and (b) follows from the fact thatB;O; = 0.
the boundary ofR“(S, N 2 3), then the secret superpositiorSimilarly, it can be shown that

coding with Gaussian codebook is the optimal choice for . 1 . '

the capacity region of a SADBC. Note that this Theorem #(B1 +N2)™" + 0z = p(B; + Ny)

provides a sufficient condition to evaluate the capacityoreg Therefore, according td {17) the following property holds f

of SADBC. the enhanced channel.
Proof: The realizing matriceB; andBj are the solution . N . N . o
of the following optimization problem: (Bl +Ny)7 +(p—1)(Bf +N3)~ = u(Bi + Ny)
max RY(Bi12,Nj23)+ uRY(B12,N;j23) (16) Since N1 < Ny < N3 then there exists a matrlA such
(B1,B2) thatN, = (I— A)N; + AN whereA = (N, — Ny )(Nj —

St B1 =0, Bz=0, Bi+Bz=8, N )~!. Therefore, the above equation can be written as.

where > 1. Using the Lagrange Multiplier method, the X N1 _ X N1
above constraint optimization problem is equivalent to the (By +Ny)™ (1 = )(By +Ng)™" =

following unconditional optimization problem: W [(I — A)(B% +N)) +A(B} + N;)} B
(é?ali)Rl (B12 Nuzs) + o5 (Brz Nuas) Let (I — A)(B; + N;) = aA(B} + Nj) then after some
+T7r{B10;1} + Tr{B205} + Tr{(S — B; — B2)O0s}, manipulations, the above equation becomes
where Oy, Oz, and O; are positive semi-definite x ¢ l“_ (h—1- l)A _ My (20)
matrices such tha'r{B;0;} = 0, Tr{BEOz} = 0, a a + 1

and Tr{(S —Bi —B3)O3} = 0. As all Bi, k = 1,2, The above equation is satisfied by= L7 which completes
O;, i =1,2,3, andS — B} — Bj are posmve semi- def|n|te the proportionality property.

matrices, then we must haB; KOk =0, k=12and \We can now prove the rate conservation property. The

(S—Bj —B5)0O3 = 0. According to the necessary KKT |BI+N | :
. . . i expression—_—1! can be written as follow.
conditions, and after some manipulations we have: A
(Bi +N1)™' + (1 —1)(B; + N3) ™' + 01= Bi +Ny|_ 1] 21)
p(By +Nz2)™' + 0z, (17) N | N, (B +N;) 7|
_ _ 1]
(B} +Bj + Na) ™! + O2= (B} +Bj + N3)~! = T o N R\ (A ]
+0s3. (18) | (Bf + N|11|_ B;) (Bi +N;) |
We choose the noise covariance matrices of the enhanced = I-B* (B~ N.)
SADBC as the following: 1-Bj (B} +|I| 1) |
! _ —1 -1 —
N;= (N1 +01) 1 (19) I-B;((B; +N1)~1+0,)]
, _ 1 - a
N,— ((B’i PNt _02) B, (@) 1] _
, " T-Bj (Bf +N1) ™|
Nz= Ng. _ |B] + Ny
As O; = 0 and O3 > 0, then the above choice has thﬁe1 en- INa|
hancement property. The expressi@B; + Ny )~! + Oq) where(a) once again follows from the fact thBt; O; = 0. To
can be written as: complete the proof of rate conservation, consider theoiig
* — -1 * — iti
(( F Nyl 01) _ (( f Ny equalities.
* -1 * * AN
(() (Bj +N1)0y)) B B3+ N, B (Bi+N;) +1 2
(I+N101)" " (B] + Ny) [B] + Ny I
Bit+Bi B} ((B{+N2)*1 +502) 4
= (I+N;01)  ((Bj+Ny) = ]
—(I+N10:1)B;) +Bj (@) |Bf + Bj + Ny
© 14+ N,0,)' N, +B: B +N2|

= (Ny (Nl + 01))‘1 N; + Bi  Wwhere (a) follows from the factB30; = 0. Therefore,
. 1 . according to[(211),[{22), and the fact thidt; = N3, the rate

(Nl + 01) + By preservation property holds for the enhanced channel.@eepr

=B} + N}, the optimality preservation, we need to show tB{, B3) are



also realizing matrices of an optimal Gaussian rate vector\hich is a contradiction with the fact that Gaussian disttiimn
the enhanced channel. For that purpose, note that the aegessiaximizesh(x + n2) — h(x + ng) [14]. [ ]
KKT conditions for the enhanced channel coincides with the
KKT conditions of the original channel. [ ]

We can now use Theorel 2 to prove tiaf (S, Ny 2 3) is A scenario where a source node wishes to broadcast
the capacity region of the SADBC. We follow Bergmans’ apiwo confidential messages for two respective receivers via a
proach [13] to prove a contradiction. Note that since thg-oriGaussian MIMO broadcast channel, while a wire-tapper also
inal channel is not proportional, we cannot apply Bergmanieceives the transmitted signal via another MIMO channel

proof on the original channel directly. Here we apply hisqiro is considered. We considered the secure vector Gaussian
on the enhanced channel instead. degraded broadcast channel and established its capaeity re

gion. Our achievability scheme is the secret superposiion

Theorem 3 Consider a SADBC with positive definite noiséaussian codes. Instead of solving a nonconvex problem, we

covariance matrice§N;, N3, N3). Let C(S, Ny 2 3) denote used the notion of an enhanced channel to show that secret

the capacity region of the SADBC under a covariance matrBtperposition of Gaussian codes is optimal. To charaeteriz

constraintS > 0 . Then,C(S, Ny 23) = R%(S,Ny.2.3). the secrecy capacity region of the vector Gaussian degraded

broadcast channel, we only enhanced the channels for the

Proof: The achievability scheme is secret superpositiqggitimate receivers, and the channel of the eavesdropper

coding with Gaussian codebook. For the converse proof, Wemains unchanged.

use a contradiction argument and assume that there exists an
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