Lower Bounds on the Graphical Complexity of
Finite-Length LDPC Codes

Igal Sason

Department of Electrical Engineering
Technion, Haifa 32000, Israel
sason@ee.technion.ac.il

Abstract—This paper considers information-theoretic lower representation of finite-length codes by bipartite grajBs.
bounds on the graphical complexity of finite-length LDPC codes. referring to the total number of edges, the graphical coxityle
It is assumed that the transmission of the codes takes place is strongly related to the decoding complexity per iteratio

over a memoryless binary-input output-symmetric (MBIOS) S . L
channel, and the bounds are expressed as a function of theThls differs from the graphical complexity in [2], [4], [8d

code performance and their achievable gap to capacity (either [9] which measures the number of edges per information bit
under ML decoding or any sub-optimal decoding algorithm). The in the asymptotic case where we let the block length tend

lower bounds on the graphical complexity are compared to some to infinity. Although it may appear at first glance that the
explicit LDPC codes (or code ensembles), showing that theseasqrementioned distinction is just a matter of normalizagi

bounds are informative for considering the fundamental tradedf this i t th “Th is that ai the t t block
which exists between the performance and graphical complexity 1S 1S not the case. The reason Is that given the target bloc

of finite-length LDPC codes. This work relies on the full paper €rror probability and the required gap to capacity for adhig
version [15]. this target with any finite-length block code, one needs fost
Index Terms—Bipartite graphs, complexity, low-density parity- calculate the minimal block length which potentially allow
check (LDPC) codes, memoryless binary-input output-symmetric to fulfill these requirements. It is done in this work via the
(MBIOS) channels. calculation of classical and recent sphere-packing bo(sets
[16], [17], [19] and [21)).
I. INTRODUCTION Proofs and further discussions are omitted due to space
During the last decade, there have been many excitilr%gitaﬂons’ and we refer the interested reader to the fafiqy
: . ; Version [15].
developments in the construction of low-complexity error-
correction codes which closely approach the capacity ofyman
standard communication channels with feasible complexity Il. PRELIMINARIES

These codes are understood to be codes defined on graphsSphere-Packing Lower Bounds

together with the associated iterative decoding algosthiy Sphere-packing bounds are commonly used for the study

now, there is a large collection of these codes that approggfthe performance limitations of finite-length error-asting

the channel capacity quite closely with moderate comptexitcoges over memoryless symmetric channels. For a tutorial on
Khandekar and McEliece suggested to measure the encggxssical sphere-packing bounds, the reader is referrgtBio

ing and decoding complexity of codes defined on graphs ¢hapter 5). This analysis in this paper relies on the foltgyi
terms of the achievable gap (in rate) to capacity, and th&y akphere-packing bounds:

had some conjecture_s rega_rdlng the behavpr of th_e contplexi o TheSP59 boundThe 1959 sphere-packing (SP59) bound
as the gap to capacity vanishes [6]. Following their apgrpac .
A of Shannon [16] serves for the evaluation of the perfor-
the tradeoff between the performance and complexity is an- o .
: . mance limits of block codes whose transmission takes
alyzed in the literature for LDPC code ensembles and some .
place over an AWGN channel. This lower bound on the

other variants of codes defined on graphs (see, e.g. [4] [5] decoding error probability is expressed in terms of the
[8], [9], [12], [14], [20] and references therein). . block length and the rate of the code; however, it does not

The fundamental tradeoff betv_veen the graphlcql complexny take into account the modulation used, but only assumes
and pgrformance of cer_s defined on graphs is of interest, that the modulated signals have equal energy. It is often
especially for codes of finite-length. In this paper, we addr used as a reference for quantifying the sub-optimality

the following question: of error-correcting codes under some practical decoding
Question Consider the representation of a finite-length  ajgorithms (see [13, Chapter 5] and references therein).

binary linear block code by an arbitrary bipartite graphwHo  An efficient algorithm for the calculation of the SP59

simple can such a graphical representation be as a function pound is introduced in [21, Section IV.C].

of the channel model, target block error probability, andeco , The ISP bound This sphere-packing bound was recently

rate (which is below capacity) ? derived in [21, Section Ill]. The ISP bound applies to all
We note that the graphical complexity referred to in this memoryless symmetric channels. For codes of finite block

paper measures the total number of edges used for the length, it improves the classical sphere-packing bound of



Shannon, Gallager and Berlekamp [17] and the sphete-the log-likelihood ratio at the channel output, givent ttee
packing bound of Valembois and Fossorier [19] whenreinary input symbol to the channel is zero), and

this improvement is especially pronounced for short to { ha(P)

Ps + =22 for a block error probabilityPs

n

moderate block lengths. We note that the ISP bound &
9 = ha(Fp) for a bit error probabilityF,

[21] is not uniformly tighter than the SP59 bound for
equi-energy signals transmitted over an AWGN channdturthermore, among all the MBIOS channels which exhibit a

Comparisons between the sphere-packing bounds in [16], [£ven capacityC’ and for which a target block error probability

and [21, Section Ill] are shown in [21, Section V]. (Pg) or a bit error probability(5,) is obtained under some
decoding algorithm, a universal lower bound @# holds by

replacingg; on the RHS of (1) withC.

)

B. Tangential-Sphere Upper Bound For the BEC, the following tightened version of (1) holds:
The tangential-sphere bound [10] forms an upper bound In (1+ p—h )

on the ML decoding error probability of binary linear block ag > (A-p)e+h 3)

codes which are modulated by equi-energy signals (e.g., PSK In (ﬁ)

signals) and transmitted over an AWGN channel. For a pre- ) N )
sentation of the tangential-sphere bound, originallyodirced Wherep is the erasure probability of the channel, afglis

by Poltyrev [10], we refer the reader to [13, pp. 23-32].  the bit erasure probability at the decoder. .
Proof: Due to space limitations, the reader is referred

to [15, Section-IV.A] for a proof of this theorem. In general
[Il. I NFORMATION-THEORETICBOUNDS the proof follows by relying on the Fano inequality, and also
the following lower bound on the conditional entropy of
transmitted codeword given the received sequence at the

This section introduces an information-theoretic Ioweij‘ln
annel output (see [20]):

bound which is related to the average right degree of bina
linear block codes which are represented by an arbitraf

bipartite graph. From the classical sphere-packing bound o H(X|Y) 1-R & T'(gp)
Shannon [16], and the recently introduced ISP bound [21], o >R-C+ 2In2 Zp(2p_ 1) (4)
which hold for a general memoryless symmetric channel, one p=1

can also obtain a lower bound on the minimal required bloakhere

length as a function of the target performance. Consider the oo I

graphical complexity of binary linear block codes which are  p é/ a(l)(1+ ") tanh®” (2) d, peN. (5)

represented by an arbitrary bipartite graphs (i.e., thal tot 0

number of edges in the graph). The graphical complexignd wherel'(z) £ Y, T'xz* with I';, designating the fraction

scales linearly with product of the block length and the ager of the parity-checks involving: variables in a specific repre-

right degree of the bipartite graph, hence lower bounds ¢im bgentation of the code by a full-rank parity-check matrixeTh

guantities yield a lower bound on the ultimate tradeoff vahicbound in (4) holds for any representation of the code by a

exists between the graphical complexity and performance fofl-rank parity-check matrix. The validity of (4) is adagut in

binary linear block codes which are represented by an arlitr [15, Appendix I] to every code from an LDPC code ensemble

bipartite graph. (whose parity-check matrix is not necessarily full rank) by
Theorem 1:[On the average degree of the parity-check replacing the code rate with the design rate of the ensemble

nodes]Let C be a binary linear block code of block length (where the design rate forms a lower bound on the rate of

whose transmission takes place over an MBIOS channel. ltee code). Note that the sequengs,} in (5) forms a non-

G be a bipartite graph which corresponds to a full-rank parityncreasing and non-negative sequence (upper bounded by 1)

check matrix ofC. Let C designate the capacity of the channelyhich serves for a fast convergence of the RHS in (4).m

in bits per channel use, and be the L-density function of Remark 1:[The relation of Theorem 1 to the bound in

this channel. Assume that the code rate is (at least) acﬁract'[zo]] In the particular case whet®, vanishes, the bound in (1)

1*8.: of the channel capacity (yyhet)e< €< 1), and the CF’_de forms a tightened version of the bound given in [20, Eq. (77)]
achieves a block error probabilitys or a bit error probability his point is clarified in [15]. In the limit where the gap (in

% under some .decpding aIgorithm. Then, the average i tte) to capacity vanishes (and with vanishiRg, the lower
degree of the blparyte graph (ie., the average degreeeof Hbunds on the average right degree in (1) and [20, Eq. (77)]
parity-check nodes iif) satisfies both grow like the logarithm of the inverse of this gap, and

they therefore possess the same asymptotic behavior where
21n L 1
(12h—1 (ﬂ) ) ar 2 ar(e) =Q(In-). (6)
> 2 I—(1—e)C (1) c
R Z
hl(g%) However, in spite of the similarity in the asymptotic belwavi

of the two lower bounds as— 0, they may differ significantly
where g; £ E[tanh®(L/2)] depends only on the MBIOS even for rather small values efas is shown in the following
communication channell(is a random variable which refersexample:



Example 1:[Comparison of the lower bound on the The graphical complexity of finite-length LDPC codes

average right degree from Theorem 1 with the bound In Section IV, we apply Theorem 1 and sphere-packing
in [20]] In the following, we exemplify the practical use ofj,5 nds on the decoding error probability (see [16], [17],
the lower bound on the average right degree of LDPC cogfy) [21]) to obtain information-theoretic lower bounds o
ensembles, as given in Theorem 1 and its adaptation to LDkfe graphical complexity of finite-length LDPC codes. These
code ensembles in [15, Discussion 2], and compare it with thgngs are expressed as a function of the target block error
previously reported bound in [20, Section IV]. Consider thg,ohapility and the gap between the design rate of the code
case where the communications takes place over a BIAWGNGhg the channel capacity. We note that in this context, the
The LDPC code ensembles in each sequence are specifieyfiphical complexity measures the number of edges used for
the following pairs of degree distributions, followed byeth e representation of finite-length codes by bipartite gsapy
corresponding design rates and thresholds under BP d@OdPéferring to the total number of edges, the graphical coriiyle

Ensemble 1: is strongly related to the decoding complexity per itematio
19 The bounds are compared with capacity-approaching LDPC
AMz) =z, p(x) =2, Rq=0.9000. code ensembles under BP decoding, and they are shown to be
ogp = 0.4156590. informative (see Section 1V).
Ensemble 2: IV. NUMERICAL RESULTS FOR THEGRAPHICAL
A(z) = 0.4012z + 0.598122 + 0.0007z%, p(z) = 2** COMPLEXITY
Rg = 0.9000, ogp = 0.4741840. In various applications, there is a need to design a com-

munication system which fulfills several requirements oa th

These code ensembles are taken from the data base in §lhilable bandwidth, acceptable delay for transmitting) jgio-
From [11, Example 4.38] which expresses the capacity ofssing the data while maintaining a certain fidelity cigtein
the BIAWGNC in terms of the standard deviatienof the reconstructing the data. In this setting, one wishes togdesi
Gaussian noise, the minimum capacity of a BIAWGNC ovesode which satisfies the delay constraint (i.e., the bloogtle
which it is possible to communicate with vanishing bit errois limited) while adhering to the required performance direr
probability under BP decoding iS = 0.9685 and 0.9323 bits given channel. By fixing the communication channel model,
per channel use for Ensembles 1 and 2, respectively. Téwde rate (which is related to the bandwidth expansion chuse
corresponding gap (in rate) to capacity= 1 — % is equal by the error-correcting code), then sphere-packing boanels
to e = 7.07- 1072 and 3.46 - 10~2, respectively. Therefore, transformed into lower bounds on the minimal block length
for the first ensemble which is a (2,20) regular LDPC codequired to achieve a target block error probability at dacer
ensemble, the new lower bound on the average right degtggp to capacity using an arbitrary block code and decoding
which follows from [15, Discussion 2] is equal to 9.94%lgorithm. This issue is studied in [21, Section V].
whereas the lower bound from [20, Section IV] (i.e., the un- In the following, we refer to the graphical complexity of an
numbered equation before [20, Eq. (77)]) is equal to 2.38R. Farbitrary bipartite graph which represents a binary lingack
the second ensemble whose fixed right degree is equal to 25de. The graphical complexity has an operational meaning
the new lower bound on the average right degree is 16.2f6f an iterative message-passing decoder since the nuniber o
whereas the lower bound from [20] is 14.788. This shows thatiges is equal to the number of right-to-left and left-tghti
the improvement obtained in Theorem 1 is of practical usemessages which are delivered in each iteration. As oppased t

We note that the gap which still exists between the low4], [8] and [9], we refer here to the graphical complexity
bounds on the average right degrees and the actual valuesfofinite-length codesIn order to evaluate an information-
ar for the above two ensembles is partially attributed to thteoretic lower bound on the graphical complexity which is
fact that this information-theoretic lower bound holds reveexpressed in terms of the target block error probability and
under ML decoding, although we apply this bound here undtre corresponding achievable gap to capacity, we rely here o
the sub-optimal BP decoding algorithm. The gaps to capacitye following algorithm:
under ML decoding are smaller than those calculated under, Step 1 Sphere-packing bounds are used to calculate a

BP decoding, and smaller valuessprovide improved lower lower bound on the minimal required block length in
bounds orug. terms of the achievable rate with a target block error
Remark 2:[Adaptation of Theorem 1 to LDPC code probability and its gap to capacity. For a memoryless
ensembles]As is proved in [15, Appendix I], Theorem 1 can  symmetric channel, the lower bound on the minimal
be adapted to hold for an arbitrary ensemblgrofi, p) LDPC block length is calculated via the ISP bound (for finite-
codes. In this case, the requirement of a full-rank parftget length codes, this recent sphere-packing bound suggests

matrix of a particular cod€ from this ensemble is relaxed a significant improvement over the bounds in [17] and
by requiring that the design rate of the LDPC code ensemble [19],'see Section I1-A and [21, Section I11]). In addition,
is equal to a fractionl — ¢ of the channel capacity. In this  thjs lower bound is also compared with the 1959 sphere-
case,P, and P stand for the average bit and block error (or packing (SP59) bound of Shannon (see Section II-A
erasure) probabilities of the ensemble under some decoding and [16]) for a binary-input AWGN channel where the
algorithm. transmitted signals are assumed to have equal energy.
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Fig. 1. A comparison between the graphical complexity of uaiefficient LDPC code ensembles and an information-thedi@tier bound. The graphical
complexity is measured by the number of edges which are usedctesent the codes (or code ensembles) by bipartite graphslén t achieve a fixed
target block error probability over a given communicationroiel. It is assumed that the code is BPSK modulated and traeshoier a binary-input AWGN
channel. This figure refers to a target block error probgbdf Ps = 10—, and a design rate of one-half bit per channel use. The infimméheoretic
lower bound is valid under maximume-likelihood (ML) decodingh@a hence, it also holds under any sub-optimal decoding itthgoy. For the comparison
of the lower bound with various LDPC code ensembles, we refdyoth ML and belief-propagation (BP) decoding algorithmke Tircled points refer to
ML decoding, and they are based on the tangential-spherer uppund which is applied to the (6,12) regular LDPC code mides of Gallager for block
lengths of 5040, 10080, 20160 and 40320 bits (these poilytore[18, Table II]). The other three points in this figureeefo LDPC code ensembles which
are decoded by a BP decoder. The point marked-byrefers to a non-punctured protograph LDPC code ensembleock béngth 7360 bits and of rate
one-half (see [3, Fig. 9]). The other two points which are redrky ‘x’ refer to irregular quasi-cyclic LDPC code ensembles (seéifgs. 10 and 11]).

« Step 2 A lower bound on the average right degree i calculate the information-theoretic lower bound on the
calculated via Theorem 1 for an arbitrary bipartite grapgraphical complexity, we calculate here two lower bounds on
which is used to represent a binary linear block codéhe graphical complexity:

Note that for an LDPC code whose parity-check matrix
is not necessarily full-rank, one can apply this lower
bound by replacing the code rate with the design rate
(see Discussion 2 in [15, Section 1V]). The calculation
of this lower bound for a target block error probability
Pg also stays valid if the block length is replaced in
(2) with a lower bound:’ (as calculated in the previous
step).

« Step 3:The total number of edges of a bipartite graph is a
measure of its graphical complexity. For a bipartite graph
which refers to a design rate diq, the total number We note that Steps 2 and 3 in the above algorithm are common
of edges is equal t¢¢| = (1 — Rq)nar. Replacingn  for the calculation of the LB1 and LB2 bounds, and the only
andag by the lower bounds calculated in Steps 1 and 8jfference in the calculation of these two bounds is in Step 1
respectively, gives a lower bound on the number of edgaghere the SP59 and ISP bounds are used for the LB1 and

The resulting lower bound on the total number of edges €32 bounds, respectively. The resulting lower bound (LB) on

general for every representation of a binary linear bloottecothe graphical complexity is the maximal value of the LB1
by a parity-check matrix and its respective bipartite grapAnd LB2 bounds, i.e., LB= max(LB1,LB2). We note that
This bound depends on the code rate (or design rate), the resulting lower bound on the graphical complexity holds
communication channel, the achievable gap to capacity, a#@der ML decoding or any sub-optimal decoding algorithm.
the target block error probability. This lower bound holds f The above algorithm is applied in Figure 1 to obtain a
an arbitrary representation of the code by a bipartite graphlower bound on the graphical complexity of an arbitrary byna

According to the above description of the three steps uskakear block code of rate one-half and with a target blockerr

o LB1: A lower bound which combines a lower bound on
the block length calculated via the SP59 bound [16],
and a lower bound on the average right degree which
is calculated via Theorem 1 for a target block error
probability Ps and a given code rate (or design rate).

o LB2: A lower bound which combines a lower bound
on the block length calculated via the ISP bound [21,
Section 1ll], and the same lower bound on the average
right degree.
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