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Abstract—This paper considers information-theoretic lower
bounds on the graphical complexity of finite-length LDPC codes.
It is assumed that the transmission of the codes takes place
over a memoryless binary-input output-symmetric (MBIOS)
channel, and the bounds are expressed as a function of the
code performance and their achievable gap to capacity (either
under ML decoding or any sub-optimal decoding algorithm). The
lower bounds on the graphical complexity are compared to some
explicit LDPC codes (or code ensembles), showing that these
bounds are informative for considering the fundamental tradeoff
which exists between the performance and graphical complexity
of finite-length LDPC codes. This work relies on the full paper
version [15].

Index Terms—Bipartite graphs, complexity, low-density parity-
check (LDPC) codes, memoryless binary-input output-symmetric
(MBIOS) channels.

I. I NTRODUCTION

During the last decade, there have been many exciting
developments in the construction of low-complexity error-
correction codes which closely approach the capacity of many
standard communication channels with feasible complexity.
These codes are understood to be codes defined on graphs,
together with the associated iterative decoding algorithms. By
now, there is a large collection of these codes that approach
the channel capacity quite closely with moderate complexity.

Khandekar and McEliece suggested to measure the encod-
ing and decoding complexity of codes defined on graphs in
terms of the achievable gap (in rate) to capacity, and they also
had some conjectures regarding the behavior of the complexity
as the gap to capacity vanishes [6]. Following their approach,
the tradeoff between the performance and complexity is an-
alyzed in the literature for LDPC code ensembles and some
other variants of codes defined on graphs (see, e.g., [4], [5],
[8], [9], [12], [14], [20] and references therein).

The fundamental tradeoff between the graphical complexity
and performance of codes defined on graphs is of interest,
especially for codes of finite-length. In this paper, we address
the following question:

Question: Consider the representation of a finite-length
binary linear block code by an arbitrary bipartite graph. How
simple can such a graphical representation be as a function
of the channel model, target block error probability, and code
rate (which is below capacity) ?

We note that the graphical complexity referred to in this
paper measures the total number of edges used for the

representation of finite-length codes by bipartite graphs.By
referring to the total number of edges, the graphical complexity
is strongly related to the decoding complexity per iteration.
This differs from the graphical complexity in [2], [4], [8] and
[9] which measures the number of edges per information bit
in the asymptotic case where we let the block length tend
to infinity. Although it may appear at first glance that the
aforementioned distinction is just a matter of normalization,
this is not the case: The reason is that given the target block
error probability and the required gap to capacity for achieving
this target with any finite-length block code, one needs firstto
calculate the minimal block length which potentially allows
to fulfill these requirements. It is done in this work via the
calculation of classical and recent sphere-packing bounds(see
[16], [17], [19] and [21]).

Proofs and further discussions are omitted due to space
limitations, and we refer the interested reader to the full paper
version [15].

II. PRELIMINARIES

A. Sphere-Packing Lower Bounds

Sphere-packing bounds are commonly used for the study
of the performance limitations of finite-length error-correcting
codes over memoryless symmetric channels. For a tutorial on
classical sphere-packing bounds, the reader is referred to[13,
Chapter 5]. This analysis in this paper relies on the following
sphere-packing bounds:

• TheSP59 bound: The 1959 sphere-packing (SP59) bound
of Shannon [16] serves for the evaluation of the perfor-
mance limits of block codes whose transmission takes
place over an AWGN channel. This lower bound on the
decoding error probability is expressed in terms of the
block length and the rate of the code; however, it does not
take into account the modulation used, but only assumes
that the modulated signals have equal energy. It is often
used as a reference for quantifying the sub-optimality
of error-correcting codes under some practical decoding
algorithms (see [13, Chapter 5] and references therein).
An efficient algorithm for the calculation of the SP59
bound is introduced in [21, Section IV.C].

• The ISP bound: This sphere-packing bound was recently
derived in [21, Section III]. The ISP bound applies to all
memoryless symmetric channels. For codes of finite block
length, it improves the classical sphere-packing bound of
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Shannon, Gallager and Berlekamp [17] and the sphere-
packing bound of Valembois and Fossorier [19] where
this improvement is especially pronounced for short to
moderate block lengths. We note that the ISP bound in
[21] is not uniformly tighter than the SP59 bound for
equi-energy signals transmitted over an AWGN channel.

Comparisons between the sphere-packing bounds in [16], [19]
and [21, Section III] are shown in [21, Section V].

B. Tangential-Sphere Upper Bound

The tangential-sphere bound [10] forms an upper bound
on the ML decoding error probability of binary linear block
codes which are modulated by equi-energy signals (e.g., PSK
signals) and transmitted over an AWGN channel. For a pre-
sentation of the tangential-sphere bound, originally introduced
by Poltyrev [10], we refer the reader to [13, pp. 23–32].

III. I NFORMATION-THEORETICBOUNDS

This section introduces an information-theoretic lower
bound which is related to the average right degree of binary
linear block codes which are represented by an arbitrary
bipartite graph. From the classical sphere-packing bound of
Shannon [16], and the recently introduced ISP bound [21],
which hold for a general memoryless symmetric channel, one
can also obtain a lower bound on the minimal required block
length as a function of the target performance. Consider the
graphical complexity of binary linear block codes which are
represented by an arbitrary bipartite graphs (i.e., the total
number of edges in the graph). The graphical complexity
scales linearly with product of the block length and the average
right degree of the bipartite graph, hence lower bounds on both
quantities yield a lower bound on the ultimate tradeoff which
exists between the graphical complexity and performance of
binary linear block codes which are represented by an arbitrary
bipartite graph.

Theorem 1:[On the average degree of the parity-check
nodes]Let C be a binary linear block code of block lengthn
whose transmission takes place over an MBIOS channel. Let
G be a bipartite graph which corresponds to a full-rank parity-
check matrix ofC. Let C designate the capacity of the channel,
in bits per channel use, anda be theL-density function of
this channel. Assume that the code rate is (at least) a fraction
1−ε of the channel capacity (where0 < ε < 1), and the code
achieves a block error probabilityPB or a bit error probability
Pb under some decoding algorithm. Then, the average right
degree of the bipartite graph (i.e., the average degree of the
parity-check nodes inG) satisfies

aR ≥

2 ln
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where g1 , E[tanh2(L/2)] depends only on the MBIOS
communication channel (L is a random variable which refers

to the log-likelihood ratio at the channel output, given that the
binary input symbol to the channel is zero), and

δ ,

{
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n

for a block error probabilityPB

h2(Pb) for a bit error probabilityPb
. (2)

Furthermore, among all the MBIOS channels which exhibit a
given capacityC and for which a target block error probability
(PB) or a bit error probability(Pb) is obtained under some
decoding algorithm, a universal lower bound onaR holds by
replacingg1 on the RHS of (1) withC.

For the BEC, the following tightened version of (1) holds:
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ln
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wherep is the erasure probability of the channel, andPb is
the bit erasure probability at the decoder.

Proof: Due to space limitations, the reader is referred
to [15, Section-IV.A] for a proof of this theorem. In general,
the proof follows by relying on the Fano inequality, and also
on the following lower bound on the conditional entropy of
the transmitted codeword given the received sequence at the
channel output (see [20]):

H(X|Y)
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dl, p ∈ N. (5)

and whereΓ(x) ,
∑

k Γkxk with Γk designating the fraction
of the parity-checks involvingk variables in a specific repre-
sentation of the code by a full-rank parity-check matrix. The
bound in (4) holds for any representation of the code by a
full-rank parity-check matrix. The validity of (4) is adapted in
[15, Appendix I] to every code from an LDPC code ensemble
(whose parity-check matrix is not necessarily full rank) by
replacing the code rate with the design rate of the ensemble
(where the design rate forms a lower bound on the rate of
the code). Note that the sequence{gp} in (5) forms a non-
increasing and non-negative sequence (upper bounded by 1)
which serves for a fast convergence of the RHS in (4).

Remark 1: [The relation of Theorem 1 to the bound in
[20]] In the particular case wherePb vanishes, the bound in (1)
forms a tightened version of the bound given in [20, Eq. (77)].
This point is clarified in [15]. In the limit where the gap (in
rate) to capacity vanishes (and with vanishingPb), the lower
bounds on the average right degree in (1) and [20, Eq. (77)]
both grow like the logarithm of the inverse of this gap, and
they therefore possess the same asymptotic behavior where

aR , aR(ε) = Ω

(

ln
1

ε

)

. (6)

However, in spite of the similarity in the asymptotic behavior
of the two lower bounds asε → 0, they may differ significantly
even for rather small values ofε as is shown in the following
example:
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Example 1: [Comparison of the lower bound on the
average right degree from Theorem 1 with the bound
in [20]] In the following, we exemplify the practical use of
the lower bound on the average right degree of LDPC code
ensembles, as given in Theorem 1 and its adaptation to LDPC
code ensembles in [15, Discussion 2], and compare it with the
previously reported bound in [20, Section IV]. Consider the
case where the communications takes place over a BIAWGNC.
The LDPC code ensembles in each sequence are specified by
the following pairs of degree distributions, followed by their
corresponding design rates and thresholds under BP decoding:

Ensemble 1:

λ(x) = x, ρ(x) = x19, Rd = 0.9000.

σBP = 0.4156590.

Ensemble 2:

λ(x) = 0.4012x + 0.5981x2 + 0.0007x29, ρ(x) = x24

Rd = 0.9000, σBP = 0.4741840.

These code ensembles are taken from the data base in [1].
From [11, Example 4.38] which expresses the capacity of
the BIAWGNC in terms of the standard deviationσ of the
Gaussian noise, the minimum capacity of a BIAWGNC over
which it is possible to communicate with vanishing bit error
probability under BP decoding isC = 0.9685 and 0.9323 bits
per channel use for Ensembles 1 and 2, respectively. The
corresponding gap (in rate) to capacityε = 1 − Rd

C
is equal

to ε = 7.07 · 10−2 and 3.46 · 10−2, respectively. Therefore,
for the first ensemble which is a (2,20) regular LDPC code
ensemble, the new lower bound on the average right degree
which follows from [15, Discussion 2] is equal to 9.949
whereas the lower bound from [20, Section IV] (i.e., the un-
numbered equation before [20, Eq. (77)]) is equal to 2.392. For
the second ensemble whose fixed right degree is equal to 25,
the new lower bound on the average right degree is 16.269
whereas the lower bound from [20] is 14.788. This shows that
the improvement obtained in Theorem 1 is of practical use.

We note that the gap which still exists between the lower
bounds on the average right degrees and the actual values of
aR for the above two ensembles is partially attributed to the
fact that this information-theoretic lower bound holds even
under ML decoding, although we apply this bound here under
the sub-optimal BP decoding algorithm. The gaps to capacity
under ML decoding are smaller than those calculated under
BP decoding, and smaller values ofε provide improved lower
bounds onaR.

Remark 2: [Adaptation of Theorem 1 to LDPC code
ensembles]As is proved in [15, Appendix I], Theorem 1 can
be adapted to hold for an arbitrary ensemble of(n, λ, ρ) LDPC
codes. In this case, the requirement of a full-rank parity-check
matrix of a particular codeC from this ensemble is relaxed
by requiring that the design rate of the LDPC code ensemble
is equal to a fraction1 − ε of the channel capacity. In this
case,Pb andPB stand for the average bit and block error (or
erasure) probabilities of the ensemble under some decoding
algorithm.

The graphical complexity of finite-length LDPC codes

In Section IV, we apply Theorem 1 and sphere-packing
bounds on the decoding error probability (see [16], [17],
[19], [21]) to obtain information-theoretic lower bounds on
the graphical complexity of finite-length LDPC codes. These
bounds are expressed as a function of the target block error
probability and the gap between the design rate of the code
and the channel capacity. We note that in this context, the
graphical complexity measures the number of edges used for
the representation of finite-length codes by bipartite graphs. By
referring to the total number of edges, the graphical complexity
is strongly related to the decoding complexity per iteration.
The bounds are compared with capacity-approaching LDPC
code ensembles under BP decoding, and they are shown to be
informative (see Section IV).

IV. N UMERICAL RESULTS FOR THEGRAPHICAL

COMPLEXITY

In various applications, there is a need to design a com-
munication system which fulfills several requirements on the
available bandwidth, acceptable delay for transmitting and pro-
cessing the data while maintaining a certain fidelity criterion in
reconstructing the data. In this setting, one wishes to design a
code which satisfies the delay constraint (i.e., the block length
is limited) while adhering to the required performance overthe
given channel. By fixing the communication channel model,
code rate (which is related to the bandwidth expansion caused
by the error-correcting code), then sphere-packing boundsare
transformed into lower bounds on the minimal block length
required to achieve a target block error probability at a certain
gap to capacity using an arbitrary block code and decoding
algorithm. This issue is studied in [21, Section V].

In the following, we refer to the graphical complexity of an
arbitrary bipartite graph which represents a binary linearblock
code. The graphical complexity has an operational meaning
for an iterative message-passing decoder since the number of
edges is equal to the number of right-to-left and left-to-right
messages which are delivered in each iteration. As opposed to
[4], [8] and [9], we refer here to the graphical complexity
of finite-length codes. In order to evaluate an information-
theoretic lower bound on the graphical complexity which is
expressed in terms of the target block error probability and
the corresponding achievable gap to capacity, we rely here on
the following algorithm:

• Step 1: Sphere-packing bounds are used to calculate a
lower bound on the minimal required block length in
terms of the achievable rate with a target block error
probability and its gap to capacity. For a memoryless
symmetric channel, the lower bound on the minimal
block length is calculated via the ISP bound (for finite-
length codes, this recent sphere-packing bound suggests
a significant improvement over the bounds in [17] and
[19], see Section II-A and [21, Section III]). In addition,
this lower bound is also compared with the 1959 sphere-
packing (SP59) bound of Shannon (see Section II-A
and [16]) for a binary-input AWGN channel where the
transmitted signals are assumed to have equal energy.
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Fig. 1. A comparison between the graphical complexity of various efficient LDPC code ensembles and an information-theoreticlower bound. The graphical
complexity is measured by the number of edges which are used to represent the codes (or code ensembles) by bipartite graphs in order to achieve a fixed
target block error probability over a given communication channel. It is assumed that the code is BPSK modulated and transmitted over a binary-input AWGN
channel. This figure refers to a target block error probability of PB = 10−5, and a design rate of one-half bit per channel use. The information-theoretic
lower bound is valid under maximum-likelihood (ML) decoding (and, hence, it also holds under any sub-optimal decoding algorithm). For the comparison
of the lower bound with various LDPC code ensembles, we refer to both ML and belief-propagation (BP) decoding algorithms. The circled points refer to
ML decoding, and they are based on the tangential-sphere upper bound which is applied to the (6,12) regular LDPC code ensembles of Gallager for block
lengths of 5040, 10080, 20160 and 40320 bits (these points rely on [18, Table II]). The other three points in this figure refer to LDPC code ensembles which
are decoded by a BP decoder. The point marked by‘+′ refers to a non-punctured protograph LDPC code ensemble of block length 7360 bits and of rate
one-half (see [3, Fig. 9]). The other two points which are marked by ‘×′ refer to irregular quasi-cyclic LDPC code ensembles (see [7,Figs. 10 and 11]).

• Step 2: A lower bound on the average right degree is
calculated via Theorem 1 for an arbitrary bipartite graph
which is used to represent a binary linear block code.
Note that for an LDPC code whose parity-check matrix
is not necessarily full-rank, one can apply this lower
bound by replacing the code rate with the design rate
(see Discussion 2 in [15, Section IV]). The calculation
of this lower bound for a target block error probability
PB also stays valid if the block lengthn is replaced in
(2) with a lower boundn′ (as calculated in the previous
step).

• Step 3:The total number of edges of a bipartite graph is a
measure of its graphical complexity. For a bipartite graph
which refers to a design rate ofRd, the total number
of edges is equal to|E| = (1 − Rd)naR. Replacingn
andaR by the lower bounds calculated in Steps 1 and 2,
respectively, gives a lower bound on the number of edges.

The resulting lower bound on the total number of edges is
general for every representation of a binary linear block code
by a parity-check matrix and its respective bipartite graph.
This bound depends on the code rate (or design rate), the
communication channel, the achievable gap to capacity, and
the target block error probability. This lower bound holds for
an arbitrary representation of the code by a bipartite graph.

According to the above description of the three steps used

to calculate the information-theoretic lower bound on the
graphical complexity, we calculate here two lower bounds on
the graphical complexity:

• LB1: A lower bound which combines a lower bound on
the block length calculated via the SP59 bound [16],
and a lower bound on the average right degree which
is calculated via Theorem 1 for a target block error
probability PB and a given code rate (or design rate).

• LB2: A lower bound which combines a lower bound
on the block length calculated via the ISP bound [21,
Section III], and the same lower bound on the average
right degree.

We note that Steps 2 and 3 in the above algorithm are common
for the calculation of the LB1 and LB2 bounds, and the only
difference in the calculation of these two bounds is in Step 1
where the SP59 and ISP bounds are used for the LB1 and
LB2 bounds, respectively. The resulting lower bound (LB) on
the graphical complexity is the maximal value of the LB1
and LB2 bounds, i.e., LB= max(LB1, LB2). We note that
the resulting lower bound on the graphical complexity holds
under ML decoding or any sub-optimal decoding algorithm.

The above algorithm is applied in Figure 1 to obtain a
lower bound on the graphical complexity of an arbitrary binary
linear block code of rate one-half and with a target block error
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probability ofPB = 10−5. It is assumed that the code is BPSK
modulated, and the transmission takes place over a binary-
input AWGN channel. The un-bounded complexity in the limit
where the gap to capacity vanishes is due to the infinite block
length which is required to obtain reliable communicationsat
rates which are arbitrarily close to capacity. We note that the
boundedgraphical complexity for the BEC, as demonstrated
in [4], [8] and [9], is obtained by addressing the graphical
complexity per information bit, and by also allowing more
complicated Tanner graphs which include state nodes (e.g.,
punctured bits) in addition to the variable and parity-check
nodes which are used for a representation of these codes by
bipartite graphs.

As shown in Figure 1, the bound LB2 is advantageous over
LB1 for low values ofEb

N0
which are close to the capacity limit;

this phenomenon is even more pronounced for higher code
rates (above one-half bit per channel use). This observation is
partially due to the fact that the ISP bound depends on the
particular type of modulation used, in contrast to the SP59
bound which only assumes that the modulated signals have
equal energy but does not consider the particular modulation
used.

The lower bound on the graphical complexity is compared
here with some efficient LDPC codes (or code ensembles) as
reported in the literature. To this end, we refer to computer
simulations under BP decoding, and also to upper bounds
on the block error probability under ML decoding. Although
the number of edges is relevant for the decoding complexity
per iteration under BP decoding, some comparisons with
ML decoding provide a better assessment of the tightness
of this information-theoretic lower bound. The circled points
in Figure 1 are based on the tangential-sphere upper bound
which is applied to the (6,12) regular LDPC code ensembles
of Gallager for block lengths of 5040, 10080, 20160 and
40320 bits whose block error probability is upper bounded
by 10−5 (see [18, Table II]). The other three points which are
shown in Figure 1 refer to LDPC code ensembles which are
decoded by a BP decoder. The point marked by‘+′ refers to
a non-punctured protograph LDPC code ensemble of block
length of 7360 bits and a design rate of one-half (see [3,
Fig. 9]). The other two points which are marked by‘×′ refer to
irregular quasi-cyclic LDPC code ensembles (see [7, Figs. 10
and 11]) where the graphical complexity is obtained via the
degree distributions which are given in [7, Examples 10 and
11]. To conclude, the information-theoretic lower bound on
the graphical complexity becomes un-bounded as the gap to
capacity vanishes (even under ML decoding). It also behaves
in a similar way to the circled points in Figure 1 (where
these points refer to the performance of a regular LDPC code
ensembles under ML decoding). Moreover, the comparison
of this lower bound in Figure 1 with some efficient LDPC
code ensembles under BP decoding (where the corresponding
points are marked by‘+′ and ‘×′) indicate the gain that can
be potentially obtained by improved designs of efficient LDPC
codes and iterative decoding algorithms defined on graphs.
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