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Abstract— This paper provides new insight into the classical
problem of determining both the capacity of the discrete-time
channel with uniform output quantization and the capacity
achieving input distribution. It builds on earlier work by Gallager
and Witsenhausen to provide a detailed analysis of two particular
quantization schemes. The first is saturation quantization where
overflows are mapped to the nearest quantization bin, and the
second is wrapping quantization where overflows are mapped to
the nearest quantization bin after reduction by some modulus.
Both the capacity of wrapping quantization and the capacity
achieving input distribution are determined. When the additive
noise is gaussian and relatively small, the capacity of saturation
quantization is shown to be bounded below by that of wrapping
quantization. In the limit of arbitrarily many uniform quantiza-
tion levels, it is shown that the difference between the upper and
lower bounds on capacity given by Ihara is only 0.26 bits.

I. INTRODUCTION

Modern communication systems rely on digital processing
of data where the received signals are quantized by analog to
digital converters (ADC). In this paper, we focus on quanti-
zation with a finite number of output levels which is referred
to as finite-level quantization. We also consider the limiting
case where the number of the quantization output levels goes
to infinity and we refer to it as infinite-level quantization.

For finite-level quantization, Witsenhausen [4] used Dubins’
theorem [5] to show that the capacity of a discrete-time
memoryless channel with output cardinality N , under a peak
power constraint is achievable by a discrete input with at
most N nonzero probability mass points. The authors in [6]
considered average power constraint instead and showed that
the capacity is achievable by a discrete input with at most
N + 1 nonzero probability mass points. We note that Gallager
first showed that the number of input nonzero probability mass
points need not exceed the number of quantization output
levels [7] (p. 96, Corollary 3). However, the optimal input
distribution and channel capacity for this system remain open.

In order to better understand the channel with finite-level
quantization, this paper compares saturation quantization and
wrapping quantization which deal with ADC input overflow
differently. When an overflow occurs, a saturation quantizer
simply maps it to its nearest quantization bin while a wrap-
ping quantizer maps it to its nearest quantization bin after a
modulo operation (see Section II-B.1). This paper derives the
exact capacity and capacity achieving input distribution for
a discrete-time channel with uniform wrapping quantization

regardless of the noise distribution. This paper further shows
that when the additive noise is gaussian and relatively small,
the capacity of uniform wrapping quantization is a lower
bound for the capacity of uniform saturation quantization.
We also provide an input distribution which approaches the
capacity of saturation quantization in the limit when the
number of quantization levels is relatively large.

We also analyze the capacity of discrete-time channel under
uniform infinite-level quantization. We observe that the capac-
ity can be nicely approximated by the lower bound and upper
bound derived by Ihara [2].

The rest of this paper is organized as follows. Section II
introduces the system model and different types of quantizers.
Section III analyzes the system capacity under uniform finite-
level output quantization. Section IV discusses the system
capacity under uniform infinite-level output quantization. Con-
clusions are provided in Section V.

II. SYSTEM MODEL

A. Receive Structure
We consider a real single-input single-output discrete-time

system. The received signal after quantization at the receiver
is

ŷ = Q(hx+ n) (1)

where x is the transmitted signal, h is the channel gain known
at the receiver, n is the additive noise, h and n are modeled
as certain distributions with zero means and variances, σ2

h and
σ2
n respectively and Q(·) is the quantization operation.

B. Quantization
We first consider quantization with a finite number of output

levels and we further consider the extreme case when the
number of quantization output levels goes to infinity. For the
sake of simplicity, we refer to these as finite-level quantization
and infinite-level quantization respectively.

1) Finite-level Quantization: For this type of quantization,
the output alphabet O is finite with cardinality N :

O = (Y1, Y2 · · · , YN ). (2)

One approach to finite-level quantization is to map the received
signal y = hx+ n to one point on the alphabet O by modulo
and rounding operation as

ŷ = argmin
Yi∈O

min
k∈Z
|kT + Yi − (hx+ n)| (3)
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where T is the modulo period. This type of quantization
corresponds to the case that once data overflow occurs, the
quantizer keeps its logN least significant bits and ignores the
overflow bits. It is referred to as wrapping in the Matlab fixed-
point toolbox.

For a finite output alphabet, a more common method of
handling overflow, saturation, has the following operation

ŷ = argmin
Yi∈O

|Yi − (hx+ n)|. (4)

In this case, when the overflow occurs, the received signal
y = hx+n is mapped to the largest (or smallest) point on the
alphabet O.

Remark: Tomlinson filtering [9] employs modular arith-
metic to enable symbol by symbol decoding in partial response
signaling. The associated increase in transmitted signal power
(see [10]) is the counterpart of quantization error in this paper.

2) Infinite-level Quantization: We consider that the contin-
uous output (y = hx + n) is rounded by quantization and
the output alphabet is infinitely countable. In this case, the
quantized received signal ŷ can be expressed as

ŷ = y + δy (5)

where δy is the corresponding output quantization error.
Using equation (5), equation (1) can be written as

ŷ = hx+ n+ z (6)

where z = −δy. We consider that z has zero mean and
variance σ2

z and is independent of channel noise. We define
the signal to channel noise ratio as

SCNR =
Exσ

2
h

σ2
n

(7)

and the signal to quantization noise ratio as

SQNR =
Exσ

2
h

σ2
z

. (8)

where Ex is the average constellation power.

III. CAPACITY OF SYSTEMS WITH FINITE-LEVEL
UNIFORM OUTPUT QUANTIZATION

Without loss of generality, we consider the channel gain
h = 1 in this section. We study two types of uniform finite-
level quantization (wrapping and saturation) with N outputs
Yi given by

Yi = (i− 1)p, i = 1, · · · , N

where p is the quantization resolution. For wrapping quanti-
zation, the modulo period is T = Np in equation (3).

The system capacity can be calculated as

C = max
P(x)

I(x; ŷ) (9)

where I(x; ŷ) = H(ŷ) − H(ŷ|x) and H(v) represents the
entropy of variable v.

We note that the capacity associated with saturation quan-
tization remains as an open question [6], and neither the

capacity nor the capacity achieving input is well understood.
However, for wrapping quantization, we are able to derive
both the capacity and capacity achieving input distribution.
This new result provides an approximation to the capacity
of saturation quantization since we are able to show that
this quantity is bounded below by the capacity of wrapping
quantization when the additive noise is gaussian and relatively
small.

A. Review on Related Works

Wrapping quantization has been understudied compared
to general finite-level quantization such as [4], [6]. In [4],
Witsenhausen considered a stationary discrete-time memory-
less channel with a continuous input subject to peak power
constraint and a discrete output ŷ ∈ {Y1, Y2 · · · , YN} of
finite cardinality N and he proved that if channel transition
probability functions fi(X) = Pr(ŷ = Yi|x = X) are
continuous, then the capacity is achievable by a discrete input
distribution with at most N nonzero probability mass points.
In [6], the authors considered the same system model but
with an average power constraint and they showed that the
capacity is achievable by a discrete input with at most N + 1
nonzero probability mass points. However, neither of these
papers characterize the capacity achieving input distribution.
In fact, the optimal input and the capacity for this system
remain as open questions. In contrast, for the case of uniform
wrapping quantization, both capacity and the optimal input can
be established. From Witsenhausen [4], we can derive lemma
1 easily for the case of wrapping quantization.

Lemma 1: Consider a stationary discrete-time wrapping
quantization channel with a continuous input x and a discrete
output ŷ ∈ {Y1, Y2 · · · , YN} of finite cardinality N . If the the
channel transition probability functions are continuous, then
the capacity is achievable by a discrete input distribution with
at most N mass points.

Proof: Lemma 1 is a direct result of the fact that due to
wrapping operation, the input can be treated as confined on
the interval [0, T ] where T is the underlying modulus. �

B. Capacity with Uniform Wrapping Quantization

We now focus on uniform wrapping quantization system
with N output and show that the capacity can be achieved
by an explicit uniform input distribution with exactly N mass
points.

Proposition 1: For a stationary discrete-time channel with
wrapping quantization with N finite output as Yi = (i −
1)p, i = 1, · · · , N and quantizing operation as

Q(v) = argmin
Yi

min
k∈Z
|kNp+ Yi − v|,

the capacity can be achieved by an equiprobable input on N
mass points.

Proof: Let u0 ∈ [0, Np] and g(w) = H(ŷ|x = w) such that

g(u0) = min
w∈[0,Np]

g(w).



Due to modulo operation, we can conclude that

g(u0) = min
w∈(−∞,∞)

g(w).

Since the finite output is in an arithmetic series, there exist
another N − 1 points

ui = (u0 + ip) mod Np, i = 1, · · · , N − 1

such that
g(ui) = g(u0).

Now we consider the input alphabet as [u0, · · · , uN−1],
then H(ŷ|x) is minimized. By assigning equiprobability on
each mass point, H(ŷ) is maximized and maxH(ŷ) = logN .
Therefore, the system capacity is

C = logN −H(ŷ|x∗)

where x∗ is uniformly distributed on the alphabet
[u0, · · · , uN−1]. �

Proposition 1 shows that for uniform wrapping quantization
systems with finite output of cardinality N , there exists a
uniformly distributed input on N mass points which achieves
capacity regardless of the noise distribution. These N mass
points may, however, be different for different noise models.

The conditional entropy H(ŷ|x = u0) is illustrated in Fig.
1 when we consider the channel noise n to be gaussian
distributed with zero mean and unit variance. In Fig. 1, the
number of output levels is N = 5 and the quantization
resolution is p = 3. It shows that the conditional entropy is
minimized when u0 is at the mass points of the output.
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Fig. 1. Conditional entropy with standard gaussian noise, N = 5 and p = 3.

Yet for gaussian noise with relatively large variance and also
for other noise distributions, the optimal input might possibly
be different. Due to periodicity, we can restrict u0 to be on
the interval [0, p]. Simulation in Fig. 2 shows that u0 changes
as a step function with respect to the standard deviation of
the zero mean gaussian noise (both u0 and the noise standard
deviation are normalized with respect to p):

u0/p =

{
0 σn/p ≤ τ

0.5 σn/p > τ.
(10)

where τ ≈ 0.64.
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Fig. 2. Distribution of u0 with respect to standard deviation of the zero
mean gaussian noise.

For uniformly distributed noise, we have the following
result.

Proposition 2: Suppose n is uniformly distributed on
[−α p2 , α

p
2 ]. For α ≤ 1, input with equiprobability at output

mass points achieves the capacity at logN ; for 1 < α ≤ N ,
the optimal input alphabet is{

[0, p, · · · , (N − 1)p] + α
p

2

}
mod Np

or {
[0, p, · · · , (N − 1)p]− αp

2

}
mod Np

which achieve the capacity at

C = logN −H(v)

where v has mass probability distribution at bαc mass points
with probability as(

1
α
, · · · , 1

α
,
α− bαc

α

)
with bαc representing the largest integer smaller than α.

Proof: When α ≤ 1, the result is evident.
When 1 < α ≤ N , the noise covers the whole decision

range for bαc − 1 output mass points and these outputs occur
with probability 1

α for each. Another two output mass points
share the remaining α−bαc

α probability. Due to the concavity
of the entropy function, H(ŷ|x) is minimized if and only if
one mass point of these two takes this remaining probability.
In this case, H(ŷ|x) = H(v) where v has mass probability
distribution at bαc mass points with probability as(

1
α
, · · · , 1

α
,
α− bαc

α

)
and the input alphabet is{

[0, p, · · · , (N − 1)p] + α
p

2

}
mod Np

or {
[0, p, · · · , (N − 1)p]− αp

2

}
mod Np.

With equiprobable input from this alphabet, the capacity is
achieved at C = logN −H(v).



Note, for α > N , we can likewise determine the capacity
and input distribution, however the effect of the the modulo
operation needs to be more carefully considered. �

C. Relationship to Capacity with Uniform Saturation Quanti-
zation

For systems with uniform finite-level quantization, we de-
fine that the gaussian noise is weak if its variance satisfies:

1) σn/p ≤ τ where τ is defined in equation (10), and
2) Pr(|n| ≥ 3p

2 ) ≈ 0.
Proposition 3: Consider a gaussian noise corrupted system

with input confined on the interval [0, Np] and output from
the finite alphabet {Y1, Y2 · · · , YN |Yi = (i− 1)p}. Let Cs be
the system capacity under saturation quantization and Cw be
the system capacity under wrapping quantization with modulo
period T = Np. Then if the noise n satisfies the weak
conditions, we have

Cs > Cw.

Proof: Without loss of generality, we consider the noise
has zero mean. Under the weak gaussian noise condition, it is
known from the previous subsection that the optimal input
distribution for uniform wrapping quantization is uniform
distribution on output alphabet and the capacity is

Cw = logN −H(v)

where v has mass probability distribution over 3 mass points
with probability as(

Pr(|n| ≤ p/2),
1
2

Pr(|n| > p/2),
1
2

Pr(|n| > p/2)
)
.

Now, we consider applying the same input distribution to
saturation quantization. The mutual information is

Is(x; ŷ) = logN − N − 2
N
H(v)− 2

N
H(u) (11)

where u is binary distributed with probability as(
Pr(|n| ≤ p/2) +

1
2

Pr(|n| > p/2),
1
2

Pr(|n| > p/2)
)
.

Due to concavity of the entropy function, we have H(u) <
H(v). Therefore,

Cs ≥ Is(x; ŷ) > Cw.

�
Fig. 3 illustrates the capacities of saturation quantization and

wrapping quantization with respect to the number of quanti-
zation levels where noise variance σ2 = 1 and quantization
resolution p = 2. The capacity of saturation quantization is
obtained by exhaustive search and the mutual information, Is,
is defined in equation (11).

It is observed from Fig. 3 that the gap between capacities
of saturation quantization and wrapping quantization decreases
as the number of quantization levels increases. And we also
observe that Is serves as a nice approximation to the capacity
of saturation quantization, especially when the number of
quantization levels increases.
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Fig. 3. Capacity comparison under weak gaussian noise condition.

IV. CAPACITY OF SYSTEMS WITH INFINITE-LEVEL
UNIFORM OUTPUT QUANTIZATION

Infinite-level uniform quantization models the extreme case
for both saturation quantization and wrapping quantization,
when the number of quantization levels goes to infinity.

A. Uniform Approximation of Quantization Error

Infinite-level uniform quantization with step size p (quanti-
zation resolution) is a nonlinear process converting continuous
signals into discrete signals in a staircase-type relation (see
[8]).

In equation (5), we assume the received signal y before
quantization to be with probability density function fy and
characteristic function

φy(s) = Ey[exp(isy)].

The probability density function of δy is given by Sripad
and Snyder [3]

fδy(e) =

8>>>>><>>>>>:

1

p
+

1

p

X
k 6=0

φy

„
2πk

p

«
exp

„
−i2πke

p

«
,

−p/2 ≤ e ≤ p/2

0 otherwise.
(12)

We have Lemma 2 proved in [1].
Lemma 2 [1]: If fy is symmetric with y = 0 and ∃ α > 1

such that lim
u→∞

φy(u)uα = 0, then the distribution fδy of the
quantization error δy converges to the uniform distribution as
the quantization step size goes to zero, i.e.

lim
∆→0

fδy(e) =


1
p , −p/2 ≤ e ≤ p/2

0 otherwise.

Based on Lemma 2, we can easily derive proposition 4.
Proposition 4: Consider the system model in equation (6)

with h and n as independently gaussian distributed with zero
means and variances σ2

h, σ2
n respectively. Then δy converges

to the uniform distribution as the quantization step size goes
to zero.



Proof: Let g = hx and we have

φg(u) = Ex [Eh[exp (iuhx)|x]] = Ex
[
exp(−σ

2
hu

2x2

2
)
]
≤ 1,

so we have φy(u) = φg(u)φn(u) ≤ φn(u).

Since φn(u) = exp (−σ
2
nu

2

2 ), therefore ∃ α = 2, such that

lim
u→∞

φy(u)uα = 0.

We also note that fy(a) = fy(−a). Therefore, the conclu-
sion is justified. �

B. Bounds of Capacity

We now assume the quantization error z in equation (6) is
uniformly distributed with zero mean and variance σ2

z , and
independent of channel noise n. Then an inequality for the
capacity of the quantized system C is given by Ihara [2]

C0 ≤ C ≤ C0 +D(P (0, σ2
z + σ2

n)||N (0, σ2
z + σ2

n)) (13)

where

C0 =
1
2

log
(

1 +
Exσ

2
h

σ2
n + σ2

z

)
,

P (0, σ2
z + σ2

n) represents the distribution of the sum noise
(z+n), N (0, σ2

z+σ2
n) represents the gaussian distribution with

zero mean, variance σ2
z + σ2

n and D(P ||Q)) is the divergence
defined as

D(P ||Q)) =
∫
P

log
P

Q
. (14)

Note that C = C0 if and only if z follows complex gaussian
as G(0, σ2

z) and it is independent of n.
The probability density function for the sum noise (z + n)

can be explicitly written as

fz+n(t) =
Φ( t+

√
3σz

σn
)− Φ( t−

√
3σz

σn
)

2
√

3σz

where Φ(·) is the cumulative distribution function of standard
gaussian distribution.

Now, we consider the system model in equation (6) with
signal to quantization noise ratio fixed as SQNR = 5, 20
dB and vary the signal to channel noise ratio SCNR. Fig. 4
illustrates the lower and upper bounds of channel capacity
compared with the channel capacity without quantization. The
maximum gap between the lower and upper bounds is

max(D(P (0, σ2
z + σ2

n)||N(0, σ2
z + σ2

n)))

= D(U(0, σ2
z + σ2

n)||N(0, σ2
z + σ2

n))

≈ 0.26 bits
(15)

which is independent of SQNR.
Therefore, either the lower or upper bound is a nice ap-

proximation of channel capacity with quantization under the
uniform approximation of quantization noise.
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Fig. 4. The lower and upper bounds of channel capacity with SQNR = 5, 20
dB.

V. CONCLUSION

We have investigated the capacity of the discrete-time chan-
nel with both finite-level uniform quantization and infinite-
level uniform quantization. For finite-level uniform quantiza-
tion, we have derived the capacity and capacity achieving input
distribution associated with uniform wrapping quantization.
We have also studied the relationship between the capacities
associated with saturation quantization and wrapping quantiza-
tion. For infinite-level uniform quantization, we have analyzed
the quantization error distribution and studied the capacity
using the lower and upper bounds by Ihara [2].
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