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On Block Noncoherent Communication with
Low-Precision Phase Quantization at the Receiver

Jaspreet Singh and Upamanyu Madhow∗

Abstract—We consider communication over the block non-
coherent AWGN channel with low-precision Analog-to-Digital
Converters (ADCs) at the receiver. For standard uniform Phase
Shift Keying (PSK) modulation, we investigate the performance
of a receiver architecture that quantizesonly the phaseof the
received signal; this has the advantage of beingimplementable
without automatic gain control, using multiple 1-bit ADCs preceded
by analog multipliers. We study the structure of the transition
density of the resulting channel model. Several results, based
on the symmetry inherent in the channel, are provided to
characterize this transition density. A low complexity procedure
for computing the channel capacity is obtained using these results.
Numerical capacity computations for QPSK show that 8-bin
phase quantization of the received signal recovers more than
80-85% of the capacity attained with unquantized observations,
while 12-bin phase quantization recovers above90-95% of the
unquantized capacity. Dithering the constellation is shown to
improve the performance in the face of drastic quantization.

I. I NTRODUCTION

As communication systems scale up in speed and
bandwidth, the cost and power consumption of high-precision
Analog-to-Digital Conversion (ADC) becomes the limiting
factor in modern receiver architectures based on Digital
Signal Processing (DSP) [1]. One possible approach for the
design of such DSP-centric architectures is to reduce the
precision of the ADC. In our prior work [2], [3], we analyzed
the impact of low-precision quantization on the capacity of
the ideal real baseband discrete-time Additive White Gaussian
Noise (AWGN) channel. In this paper, we consider ablock
noncoherentcomplex baseband AWGN channel that models
the effect of carrier asynchronism. If the receiver’s local
oscillator is not synchronized with that of the transmitter,
the phase after downconversion is a priori unknown, but,
for practical values of carrier offset, well approximated as
constant over a block of symbols.

The classical approach to noncoherent communication is
to approximate the phase as constant over two symbols, and
to apply differential modulation and demodulation. Divsalar
and Simon [4] were the first to point out the gains that
may be achieved by performing multiple symbol differential
demodulation over a block ofL > 2 symbols. More recent
work [5], [6], [7] has shown that block demodulation, even for
large values ofL, can be implemented efficiently, and exhibits
excellent performance for both coded and uncoded systems.
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tion under grants CCF-0729222 and CNS-0832154, and by the Office
for Naval Research under grant N00014-06-1-0066. The authors are with
the ECE Department, UC Santa Barbara, CA 93106, USA.{jsingh,
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In this work, we study the effect of low-precision receiver
quantization for the block noncoherent AWGN channel, under
M -ary Phase Shift Keying (MPSK) modulation. Since PSK
encodes the information in the phase of the transmitted sym-
bol, we investigate an architecture in which the receiver simply
quantizes the phase of the received signal, disregarding the am-
plitude information. Such phase quantization can be efficiently
implemented using1-bit ADCs preceded by analog multipli-
ers: the use of1-bit ADCs is attractive since it results in signifi-
cant power savings and also eliminates the need for Automatic
Gain Control (AGC). We study the structure of the input-
output relationship of the resultingphase quantized-block non-
coherent AWGN channel. Based on the symmetry inherent in
the channel model, we derive several results characterizing the
output probability distribution over a block of symbols, both
conditioned on the input, and without conditioning. These re-
sults are used to provide a low-complexity procedure for com-
puting the capacity of the channel (brute force computationhas
complexity exponential in block lengthL). As in prior work on
the unquantized block noncoherent channel, our capacity com-
putations assume that the channel phase is independent from
block to block, (this yields a pessimistic estimate of perfor-
mance, since the phase correlation across blocks can, in prin-
ciple, be exploited to improve performance). Numerical results
are provided for Quaternary Phase Shift Keying (QPSK) with
8-bin and 12-bin phase quantization at the receiver, and com-
pared with the unquantized capacity obtained earlier in [8]. We
also provide results that indicate that dithering the constella-
tion improves performance in the face of drastic quantization.

Notation: Throughout the paper, we denote random vari-
ables by capital letters, and the specific value they take using
small letters. Bold faced notation is used to denote vectorsof
random variables.E is the expectation operator.

II. CHANNEL MODEL AND RECEIVER ARCHITECTURE

The received signal over a block of lengthL, after quanti-
zation is represented as

Zl = Q(Sle
jΦ +Nl) , l = 0, 1, · · · , L− 1, (1)

where,
• S := [S0 S1 · · · SL−1] is the transmitted vector,
• Φ is an unknown constant with uniform distribution on

[0, 2π),
• N := [N0 · · · NL−1] is a vector of i.i.d. complex Gaus-

sian noise with varianceσ2 = N0/2 in each dimension,
• Q : C → K = {0, 1, · · · ,K − 1} denotes a quantization

function that maps each point in the complex plane to
one of theK quantization indices, and
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Fig. 1. Receiver architecture for 8-sector quantization.

• Z := [Z0 Z1 · · · ZL−1] is the vector of quantized
received symbols, so that eachZl ∈ K.

Each Sl is picked in an i.i.d. manner from a uniform
M-PSK constellation denoted by the set of pointsA =
{ejθ0 , ejθ1 , · · · , ejθM−1}, where θm = (θm−1 + 2π

M
) 1, for

m = 1, 2, · · · ,M − 1.
We now introduce the random vectorX =

[X0 X1 · · · XL−1], with eachXi picked in an i.i.d. manner
from a uniform distribution on the set{0, 1, · · · ,M − 1}.
Our channel model (1) can now equivalently be written as

Zl = Q(ejθXl ejΦ +Nl) , l = 0, 1, · · · , L− 1 , (2)

with every output symbolZl ∈ {0, 1, · · · ,K − 1} as before,
and every input symbolXl ∈ {0, 1, · · · ,M − 1}. The set of
all possible input vectors is denoted byX , while Z denotes
the set of all possible output vectors.

We considerK-bin (or K-sector) phase quantization: our
quantizer divides the interval[0, 2π) into K equal parts, and
the quantization indices go from0 to K − 1 in the counter-
clockwise direction. Fig. 1(b) depicts the scenario forK=8.
Thus, our quantization function isQ(c) = ⌊arg(c)|(2π

K
)⌋,

wherec ∈ C, and ⌊p⌋ denotes the greatest integer less than
or equal top. Such phase quantization can be implemented
using 1-bit ADCs preceded by analog multipliers which
provide linear combinations of theI andQ channel samples.
For instance, employing1-bit ADC on I and Q channels
results in uniform4-sector phase quantization, while uniform
8-sector quantization can be achieved simply by adding two
new linear combinations,I+Q and I-Q, corresponding to a
π/4 rotation of I/Q axes (no analog multipliers needed in
this case), as shown in Fig. 1(a).

Note: Throughout the paper, we will assume that the PSK
constellation sizeM , and the number of quantization binsK,
are such thatK = aM for some positive integera.

III. I NPUT-OUTPUT RELATIONSHIP

In this section, we study the relationship between the
channel input and output, and present results that govern the
structure of the output probability distribution, both condi-
tioned on the input (i.e.,P(Z|X)), and without conditioning
(i.e., P(Z)). These distributions are integral to computing the
channel capacity (our focus in this paper), as well as for soft
decision decoding (not considered here). While brute force

1Unless stated otherwise, any arithmetic operations for phase angles are
assumed to be performed modulo2π. For the output symbolsZl, the arith-
metic is moduloK, while for the input symbolsXl (introduced immediately
after in the text ), it is modulo M.

( x = 2 )

( x = 0 )

( x = 3 )

( x = 1 )
unknown channel 

rotation

03

2

5

4

1

6

7

z = 3

z = 4

(x,ϕ) (x,ϕ

+2∏/8) 
(x,ϕ) 

(x+1,ϕ) 

z = 2

z = 4

Fig. 2. QPSK with 8-sector quantization (i.e., M=4, K=8). a)depicts how
the unknown channel phaseφ results in a rotation of the transmitted symbol
(square : original constellation , circle : rotated constellation). (b) and (c)
depict the circular symmetry induced in the conditional probability P(z|x, φ)
due to the circular symmetry of the complex Gaussian noise. (b) shows
that increasingφ by 2π/K = (π/4) and z by 1 will keep the conditional
probability unchanged, i.e.,P(z = 3|x, φ) = P(z = 4|x, φ+ 2π/K). (c)
shows that increasingx by 1 andz by 2 = (K/M) will keep the conditional
probability unchanged, i.e.,P(z = 2|x, φ) = P(z = 4|x+ 1, φ).

computation (computingP(z|x) for every z ∈ Z and every
x ∈ X ) of these distributions has exponential complexity in
the block length, we show that their inherent structure can
be exploited to obtain significant complexity reduction. We
illustrate our results throughout with the running exampleof
QPSK with8-sector quantization, depicted in Fig. 2(a).

Conditioned on the channel phaseΦ, P(Z|X,Φ) is a product
of individual symbol probabilitiesP(Zl|Xl,Φ). We therefore
begin by analyzing the symmetries in the latter.

A. Properties ofP(Zl|Xl,Φ)

We have that P(zl|xl, φ) is the probability that
arg(ej(θxl

+φ)+Nl) belongs to the interval[ 2π
K
zl

2π
K
(zl+1)).

In other words, it is the probability that the complex Gaussian
noise Nl takes the pointej(θxl

+φ) on the unit circle, to
another point whose phase belongs to[ 2π

K
zl

2π
K
(zl + 1)).

Due to the circular symmetry of the complex Gaussian noise,
this is the same as the probability thatNl takes the point
ej(θxl

+φ+ 2π

K
i) on the unit circle, to another point whose phase

belongs to[ 2π
K
(zl + i) 2π

K
(zl + 1+ i)), wherei is an integer.

We thus get our first two results.
Property A-1:P(zl|xl, φ) = P(zl + i|xl, φ+ i 2π

K
).

Property A-2:P(zl|xl, φ) = P(zl + ia|xl + i, φ).
Note thatθxl+i = θxl

+ 2π
M
i = θxl

+ 2π
K
(ia), which gives

PropertyA-2.
PropertyA-2 simply states that if we jump from one point

in the M-PSK constellation to the next, then we must jump
a = K

M
quantization sectors in order to keep the conditional

probability invariant. This is intuitive, since the separation
between consecutive points in the input constellation is2π/M ,
while each quantization sector covers an angle of2π/K.
For QPSK withK = 8, Figs. 2(b) and 2(c) depict example
scenarios for the two properties.

If we put i = −xl in PropertyA-2, we get the following
special case, which relates the conditioning on a generalxl to
the conditioning on0.

Property A-3:P(zl|xl, φ) = P(zl − axl|0, φ).
To motivate our final property, we consider our example of

QPSK withK = 8. While we have8 distinct quantization sec-
tors, if we look at Fig. 2(a), the orientation of these8 sectors
relative to the4 constellation points (shown as squares) can be



described by dividing the sectors into2 groups :{0, 2, 4, 6},
and{1, 3, 5, 7}. For instance, the positioning of the first sector
(z = 0) w.r.t. x = 0 is identical to the positioning of the third
sector (z = 2) w.r.t. x = 1 (and similarlyz = 4 w.r.t x = 2,
andz = 6 w.r.t x = 3). On the other hand, the positioning of
the second sector (z = 1) w.r.t. x = 0 is identical to the posi-
tioning of the fourth sector (z = 3) w.r.t. x = 1 (and similarly
z = 5 w.r.t x = 2, andz = 7 w.r.t x = 3). In terms of the con-
ditional probabilities, this implies, for example, that wewill
haveP(zl = 7|xl = 3, φ) = P(zl = 1|xl = 0, φ), and simi-
larly, P(zl = 6|xl = 3, φ) = P(zl = 0|xl = 0, φ). In general,
we can relate the conditional probability of every oddzl with
that ofzl = 1, and similarly of every evenzl with that ofzl =
0, with corresponding rotations of the symbolxl. For general
values ofK andM , the number of groups equalsa = K

M
, and

we can relate the probability of anyzl with that of zl mod a.
Property A-4:Let zl = qla+ rl, whereql is the quotient on

dividing zl by a, andrl is the remainder, i.e,rl = zl mod a.
Then,P(zl|xl, φ) = P(zl mod a|xl − ql, φ).

While this result follows directly from PropertyA-2 by
putting i = −ql, it is an important special case, as it
enables us to restrict attention to only the firsta sectors
(Zl ∈ {0, 1, · · · , a − 1}), rather than having to work with
all the K sectors. As detailed later, this leads to significant
complexity reduction in capacity computation.

We now use these properties to present results forP(Z|X).

B. Properties ofP(Z|X)

Property B-1: Let 111 denote the row vector with all entries
as1. ThenP(z|x) = P(z + i111|x).

Proof: For a fixedx, increasing eachzl by the same number
i leaves the conditional probability unchanged, because the
phaseΦ in the channel model (1) is uniformly distributed in
[0, 2π). A detailed proof follows. We have

P(z|x) = EΦ (P(z|x,Φ)) = EΦ

(

L−1
∏

l=0

P(zl|xl,Φ)

)

= EΦ

(

L−1
∏

l=0

P(zl + i|xl,Φ+ i
2π

K
)

)

= EΦ̂

(

L−1
∏

l=0

P(zl + i|xl, Φ̂)

)

= EΦ̂

(

P(z+ i111|x, Φ̂))
)

= P(z+ i111|x).

The second equality follows by the fact that the components
of Z are independent conditioned onX andΦ. PropertyA-1
gives the third equality. A change of variables,Φ̂ = Φ + i 2π

K

gives the fourth equality (sinceΦ is uniformly distributed on
[0, 2π), so isΦ̂), thereby completing the proof.

Remark 1: For the rest of the paper, we refer to the
operationz → z+ i111 asconstant addition.

Our next result concerns the observation that the conditional
probability remains invariant under anidentical permutation
of the components of the vectorsz andx.

Property B-2: Let Π denote a permutation operation, and
Πx (Πz) the vector obtained on permutingx (z) under this
operation. Then,P(z|x) = P(Πz|Πx).

Proof: As in the proof of Property1, the idea is to condition
on Φ and work with the symbol probabilitiesP(zl|xl,Φ).
ConsiderP(z|x,Φ) =

∏L−1
l=0 P(zl|xl,Φ), andP(Πz|Πx,Φ) =

∏L−1
l=0 P((Πz)l|(Πx)l,Φ). Since multiplication is a commuta-

tive operation, we haveP(z|x,Φ) = P(Πz|Πx,Φ). Taking
expectation w.r.t.Φ completes the proof.

The next two results extend propertiesA-3 andA-4.
Property B-3:Define the input vectorx0 = [0 · · · 0]. Then,

P(z|x) = P(z− ax|x0), wherea = K
M

, and the subtraction is
performed moduloK.

Property B-4:Let zl = qla+ rl, whereql is the quotient on
dividing zl by a, and rl is the remainder, i.e,rl = zl mod
a. Define q = [q0, · · · , qL−1], and, z mod a = [z0 mod
a · · · zL−1 mod a]. ThenP(z|x) = P(z mod a | x− q).

Proofs: The properties follow fromA-3 and A-4 respec-
tively, by first noting that the vector probabilityP(z|x,Φ) is
the product of the scalar ones, and then integrating overΦ .

C. Properties ofP(Z)
We now consider the unconditional distributionP(z). The

first result states thatP(z) is invariant under constant addition.
Property C-1:P(z) = P(z+ i111).
Proof: Using PropertyB-1, this follows directly by taking

expectation overX on both sides.
On similar lines, we now extend PropertyB-2 to show that

P(z) is invariant under any permutation ofz.
Property C-2:P(z) = P(Πz).
Proof: We haveP(z) = 1

ML

∑

x∈X
P(z|x). Using Property

B-2, we getP(z) = 1
ML

∑

x∈X
P (Πz|Πx). SinceΠ is just a

permutation operation, every unique choice ofx ∈ X results
in a uniqueΠx ∈ X . Hence, we can rewrite the last equation
asP(z) = 1

ML

∑

x∈X
P(Πz|x) = P(Πz).

Our final result extends PropertyB-4.
Property C-3: Let a = K

M
. ThenP(z) = P(z mod a).

Proof: Using the same notation as in PropertyB-4, we have
P(z|x) = P(z mod a | x−q) . Noting that the transformation
x → x−q is a one-to-one mapping, the proof follows on the
same lines as the proof of PropertyC-2.

Example: For QPSK withK = 8 and L = 4, P(z =
[5 7 2 4]) = P(z = [1 1 0 0]).

We now apply these results for low complexity capacity
computation.

IV. EFFICIENT CAPACITY COMPUTATION

We wish to compute the mutual information

I(X;Z) = H(Z)−H(Z|X).

We first discuss computation of the conditional entropy.

A . Computation of the conditional entropyH(Z|X)

We haveH(Z|X) =
∑

X
H(Z|x)P(x), whereH(Z|x) =

−
∑

Z
P(z|x) log P(z|x) is the entropy of the output when the

input vectorX takes on the specific valuex. Our main result
in this section is thatH(Z|x) is constant∀x.



Property D-1: H(Z|x) is a constant.
Proof: We show that for any input vectorx, H(Z|x) =

H(Z|x0), wherex0 = [0 · · · 0] as defined before. We have

H(Z|x) = −
∑

Z

P(z|x) log P(z|x)

= −
∑

Z

P(z− ax|x0) logP(z− ax|x0) , (3)

where the second equality follows from PropertyB-3. Now,
sincez → z − ax is just a subtraction operation, it is easy
to see that every unique choice ofz ∈ Z results in a unique
choice ofz− ax ∈ Z. Hence, we can rewrite (3) as

H(Z|x) = −
∑

Z

P(z|x0) logP(z|x0) = H(Z|x0) (4)

Thus, H(Z|X) = H(Z|x0), but brute force computation
of H(Z|x0) still has exponential complexity,P(Z|x0) must
be computed for each of theKL possible output vectorsZ.
However, we show that it suffices to computeP(Z|x0) for a
much smaller set ofZ vectors.

Using PropertyB-2, we haveP(z|x0) = P(Πz|Πx0). Since
x0 = [0..0], any permutation ofx0 gives backx0. Hence,
P(z|x0) = P(Πz|x0). Combined with PropertyB-1, we thus
get that it suffices to computeP(z|x0) for a set of vectorsSZ

in which no vector can be obtained from another by perform-
ing the operations of constant addition and permutation. For
K = 8 andL = {3, 4, 5, 6, 7}, the cardinality of the entire set
of Z vectors, KL, evaluates to{512, 4096, 32768, 2.6 ×
105, 2.1 × 106}, while the cardinality of SZ is
{15, 43, 99, 217, 429}, illustrating the large reduction in com-
plexity. For simplicity of exposition, we do not delve into the
exact details of how we can obtain the setSZ. Fast algorithms
to do this, and their associated complexity are currently being
investigated. More details are available from the authors upon
request, and will be provided in future publications as well.

Once we have the setSZ, we can numerically compute
the probability P(z|x0) for every vector in SZ. The
entropy H(Z|x0) can then be obtained as follows.
For z ∈ SZ, let n(z) denote the number of distinct
vectors that can be generated from it by performing the
operations of constant addition and permutation. This is
straightforward to compute. The conditional entropy then is
H(Z|x0) = −

∑

SZ

n(z)P(z|x0) logP(z|x0).

B. Computation of the output entropyH(Z)
The output entropy isH(Z) = −

∑

Z
P(z) logP(z). A

brute force computation requires us to knowP(z) ∀z ∈ Z,
which clearly has exponential complexity. However, using
PropertiesC-1, C-2 and C-3, we get that it is sufficient to
computeP(z) for a set of vectors̃SZ in which no vector can
be obtained from another one by performing the operations of
constant addition and permutation, and also, the vector com-
ponents∈ {0, 1, · · · , a−1}. This is similar to the situation we
encountered earlier in the last subsection, except that thevector
components there were allowed to be in{0, 1, · · · ,K − 1}.

Example:For QPSK with8 sectors (soa = 2), the relevant
vectors for block length2 are [0 0] and [0 1].

Computation ofP(Z): For each of the vectors in the
set S̃Z defined above, we now need to obtainP(z) =
∑

x∈X
P(z|x)P(x). A brute force approach is to compute

P(z|x) for eachx. However, we can exploit the structure inz
to reduce the number of vectorsx for which we needP(z|x).
Specifically, we have that eachzi ∈ {0, 1, · · · , a − 1}. Since
there are onlya different types of components inz, for block
lengthL > a, some of the components inz will be repeated.
For anyx, we can then use PropertyB-2 to rearrange the
components at those locations for which the components in
z are identical, without changing the conditional probability.
For instance, letzm = zn for somem,n. Then,P(z|x) =
P(z|Πx), whereΠx is obtained fromx by rearranging the
components at locationsm andn. To sum up, we can restrict
attention to a set of vectorsSX in which no vector can be
obtained from another one by permutations between those
locations for which the elements inz are identical. While
for largea, the potential reduction in complexity may not be
large, for small values ofa (which is the paradigm of interest
in this work), the savings will be significant. As before, the
algorithmic details for obtaining the setSX will be provided
in upcoming publications.

V. NUMERICAL RESULTS

We now present capacity results (obtained using the
low-complexity procedure outlined in the last section) for
QPSK with 8-sector and 12-sector phase quantization, for
different block lengths L. For all our results, we normalized
the mutual informationI(X;Z) by L-1 to obtain the per
symbol capacity, since in practice the successive blocks can
be overlapped by one symbol due to slow phase variation
from one block to the next.

8-sector quantization:In Fig. 3, we plot the channel ca-
pacity with 8-sector quantization, at different SNR values.(To
avoid clutter, we show the results forL = 6 only.) Also shown
for reference are the capacity values for the coherent case,and
for the block noncoherent case without any quantization. We
see that, forSNR > 2-3 dB, our simple8-sector quantization
scheme recovers more than80-85% of the spectral efficiency
obtained with unquantized observations. This is encouraging,
given that our work is targeted towards future high bandwidth
systems (such as those operating in the60 GHz mm-wave
band), for which a small reduction in spectral efficiency is
acceptable. On the other hand, if we measure the power loss
for fixed spectral efficiency, we see that at rates of up to about
1.2 bits/channel use, there is a loss of about1-1.5 dB compared
to the unquantized case. However, the loss is more significant
asSNR increases: the capacity approaches2 bits/channel use
rather slowly at highSNR. Since the input entropyH(X) is
constant, this in turn implies thatH(X|Z) falls off very slowly
asSNR → ∞. A more detailed analysis of the likelihood ratio
P(Z|X,Φ) (omitted here due to lack of space) provides insight
into this behavior. We find that in addition to the symmetries
in P(Z|X,Φ) that we exploited to reduce the complexity of
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and with 8-sector quantization (with and without dithering). Also shown is
the capacity for coherent QPSK.

capacity computations, there are certain other symmetrieswith
adverse consequences as well : they make it impossible to
distinguish between the effect of the unknown phase offset
and the phase modulation on the received signal. More specif-
ically, if we consider the maximum likelihood (ML) estimator
argmax

x,φ

P(z|x, φ), we find that for certain outputsz, irrespec-

tive of theSNR (and also the block length), the estimator al-
ways returns two distinct equally likely solutions(x1, φ1) and
(x2, φ2). In an information-theoretic sense, this ambiguity in-
dicates a significant conditional entropyH(X|Z). As SNR →
∞, the probability of these ambiguous outputs does go to zero,
but very slowly, leading to a slow decrease inH(X|Z) as well.

Possible ways to break the undesirable symmetries could be
to use non-uniform phase quantization, or to employ dithering
across symbols in a block. Here we investigate the role of the
latter. We can dither either at the transmitter by rotating the
QPSK constellation points, or at the receiver by using analog
pre-multipliers to shift the phase quantization boundaries. We
use a simple transmit dither scheme in which we rotate the
QPSK constellation by an angle of1

L
(2π
K
) from one symbol

to the next. Fig. 4(a) shows this scheme for block length L=2
and K=8. The constellation used for the second symbol (shown
by the diamond shape) is dithered from the constellation
used for the first symbol by an angle ofπ/8. With this
choice of transmit constellations, we find that the ambiguity
in the ML estimator is removed, and hence the performance is
expected to improve. The plot in Fig. 3 shows the performance
improvement for L=6.2

While the preceding simple transmit dither scheme has
improved the performance for 8-sector quantization, we hasten
to add that there is no optimality associated with it. A more de-
tailed investigation of different dithering schemes and their po-
tential gains is therefore an important topic for future research.

12-sector quantization:In Fig. 5, we plot the performance
curves for QPSK with 12-sector quantization, for block
length L=2,4,6,8. Also shown for reference are the coherent
and unquantized block noncoherent performance curves. For

2Since the low-complexity procedure outlined in Section IV does not work
once we dither, we used Monte Carlo simulations to compute the capacity
with dithering.

( a ) (b )

Fig. 4. (a) Standard PSK : the same constellation (the one shown) is used
for both symbols in the block. (b) Dithered-PSK : the constellations used for
the two symbols are not identical, but the second one is a dithered version of
the first one.
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Fig. 5. Performance comparison for QPSK : plots depict the capacity of
the coherent channel, unquantized block noncoherent channel (different block
lengths), and the 12-sector quantized block noncoherent channel (different
block lengths).

identical block lengths, the loss in capacity (at a fixedSNR >
2-3 dB) compared to the unquantized case is less than 5-10
%, while the loss in power efficiency (for fixed capacity)
varies between 0.5-2 dB, and dithering is not required.

VI. CONCLUSIONS

We have investigated the capacity limits imposed by the use
of low-precision phase quantization at a carrier-asynchronous
receiver. The symmetries in input-output relationship of the
resulting channel have been exploited to reduce the complexity
of capacity computation. Important topics for future research
include a more detailed investigation of different dithering
schemes (motivated by the performance improvement obtained
using the simple scheme considered here), as well as devel-
opment of practical capacity-approaching coded modulation
strategies. An important practical issue is determining whether
timing synchronization (which is assumed in the model here)
can also be attained using phase-quantized samples, or whether
some form of additional information (perhaps using analog
techniques prior to the ADC) is required.
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