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On Block Noncoherent Communication with
Low-Precision Phase Quantization at the Receliver

Jaspreet Singh and Upamanyu Madhow

Abstract—We consider communication over the block non-
coherent AWGN channel with low-precision Analog-to-Digial
Converters (ADCs) at the receiver. For standard uniform Phae
Shift Keying (PSK) modulation, we investigate the performace
of a receiver architecture that quantizesonly the phaseof the
received signal; this has the advantage of beingmplementable
without automatic gain controlsing multiple 1-bit ADCs preceded
by analog multipliers. We study the structure of the transition
density of the resulting channel model. Several results, ls&d
on the symmetry inherent in the channel, are provided to
characterize this transition density. A low complexity procedure
for computing the channel capacity is obtained using theseasults.
Numerical capacity computations for QPSK show that 8-bin
phase quantization of the received signal recovers more tima
80-85% of the capacity attained with unquantized observations,
while 12-bin phase quantization recovers aboved0-95% of the
unquantized capacity. Dithering the constellation is show to
improve the performance in the face of drastic quantization

|. INTRODUCTION

In this work, we study the effect of low-precision receiver
guantization for the block noncoherent AWGN channel, under
M-ary Phase Shift Keying (MPSK) modulation. Since PSK
encodes the information in the phase of the transmitted sym-
bol, we investigate an architecture in which the receiveipsy
guantizes the phase of the received signal, disregardaart
plitude information. Such phase quantization can be effttie
implemented using-bit ADCs preceded by analog multipli-
ers: the use of-bit ADCs is attractive since it results in signifi-
cant power savings and also eliminates the need for Automati
Gain Control (AGC). We study the structure of the input-
output relationship of the resultimhase quantize@lock non-
coherent AWGN channel. Based on the symmetry inherent in
the channel model, we derive several results charactgribm
output probability distribution over a block of symbols,tho
conditioned on the input, and without conditioning. These r
sults are used to provide a low-complexity procedure for-com

As communication systems scale up in speed aI%mngthecapacnyofthechannel(bruteforcecomputehm)s:n

bandwidth, the cost and power consumption of high-preaisiG®MPlexity exponential in block length). As in prior work on
Analog-to-Digital Conversion (ADC) becomes the limitingtl'® Unquantized block noncoherent channel, our capaaity co
factor in modern receiver architectures based on Digita}’tat'Ons assume .that_ the channe! p.ha}se |s.|ndependent from
Signal Processing (DSP)I[1]. One possible approach for tHLQCk to bIOCk' (this yields a pe_SS|m|st|c estimate of p[_-:trfo .
design of such DSP-centric architectures is to reduce tHE"¢€: since the phase correlation across blocks can, i pri
precision of the ADC. In our prior work [2][[3], we analyzedc'ple’ be_epr0|ted to improve performa_nce). l\_lumerlcallmss _

the impact of low-precision quantization on the capacity G'€ Provided for Quaternary Phase Shift Keying (QPSK) with

the ideal real baseband discrete-time Additive White Ganss PN an_d 12-bin phase_ quantizatipn at the receiyer, .and com
Noise (AWGN) channel. In this paper, we consideblack pared with the unquantized capacity obtained earli€r|in\j&

noncoherentomplex baseband AWGN channel that mode%lso_provide results that in(_jicate that dithering the o&i_fa;t_
the effect of carrier asynchronism. If the receiver's locdfon |mpr0veshperforr]manche in the face o;drasnc qugnmmtl .
oscillator is not synchronized with that of the transmijtter Notation Throughout the paper, we denote random vari-

the phase after downconversion is a priori unknown, blﬁ,bles by capital letters, and the specific value they takegusi

for practical values of carrier offset, well approximates! asmall letters. Bold faced notation is used to denote vecibrs

constant over a block of symbols. random variablesE is the expectation operator.

The classical approach to noncoherent communication is||. CHANNEL MODEL AND RECEIVER ARCHITECTURE
to approximate the phase as constant over two symbols, ang o eceived signal over a block of length after quanti-
to apply differential modulation and demodulation. Diwsal tio is represented as
and Simon [[4] were the first to point out the gains that _
may be achieved by performing multiple symbol differential Zr=Q(S1e’* + N;) , 1=0,1,--- L —1,
demodulation over a block of. > 2 symbols. More recent where,
work [5], [€], [7] has shown that block demodulation, even fo . S:—[So Si - ;4] is the transmitted vector,

large values of_, can be implemented efficiently, and exhibits D i K tant with unif distributi
excellent performance for both coded and uncoded systems. ° 0 '23 r;\n unknown constant with uniform distrioution on
) a 1

e N:=[Ny --- Np_4]is a vector of i.i.d. complex Gaus-
sian noise with variance? = Ny/2 in each dimension,

e Q:C—-K=1{0,1,---, K — 1} denotes a quantization
function that maps each point in the complex plane to
one of theK quantization indices, and
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Quantization . . . . .
. . . o Fig. 2. QPSK with 8-sector quantization (i.e., M=4, K=8). d&picts how
Fig. 1. Receiver architecture for 8-sector quantization. the unknown channel phageresults in a rotation of the transmitted symbol
. . (square : original constellation , circle : rotated coratin). (b) and (c)
o Z = [Zy Z1 -+ Zp-] is the vector of quantized gepict the circular symmetry induced in the conditionalbaaility P(z|z, )
received symbols, so that eaéh € K. due to the circular symmetry of the complex Gaussian noiséa) skiows

. . . - . that increasingp by 27/K = (w/4) and z by 1 will keep the conditional
Each §; is picked in an iid. manner from a uniformgopaniity unchanged, i.eR(z = 3(z, ¢) = P(z = 4|z, é + 27 /K). (c)

o -]

Receiver Architecture

M-PSK constellation denoted by the set of points = shows that increasing by 1 andz by 2 = (K /M) will keep the conditional
{63907 6391’ . 76391\/171 }, wheref,, = (0,1 + %) El, for probability unchanged, i.eR(z = 2|z,¢) = P(z = 4|z + 1, ¢).
m=1,2,---,M—1.

We now introduce the random vectorX = computation (computind(z|x) for everyz € Z and every
[Xo X1 --- Xp_4], with eachX; picked in an i.i.d. manner x € X) of these distributions has exponential complexity in
from a uniform distribution on the sef0,1,---,M — 1}. the block length, we show that their inherent structure can

Our channel mode[{1) can now equivalently be written as be exploited to obtain significant complexity reduction. We
B 0% i@ B illustrate our results throughout with the running examgie
Zi=Q"e!m + N, 1=0,1,---.L=1,  (2) qopsK withs-sector quantization, depicted in FIg. 2(a).

with every output symbo¥; € {0,1,--- , K — 1} as before, Conditioned on the channel phadeP(Z|X, ®) is a product
and every input symbak; € {0,1,--- ,M — 1}. The set of Of individual symbol probabilitie$ (Z;| X;, ). We therefore
all possible input vectors is denoted By, while Z denotes begin by analyzing the symmetries in the latter.
the set of all possible output vectors. .

We considerK-bin (or K-sector) phase quantization: ourA' Properties o(Z| Xi, ) . -
quantizer divides the intervad, 2r) into K equal parts, and We have that P(z|z;, ¢) is the probability that
the quantization indices go fromto & — 1 in the counter- arg(e’1 %)+ ;) belongs to the intervakz 2 57 (z+1)).
clockwise direction. Figl1(b) depicts the scenario f6r8. [N other words, it is the probability that the complex Gaassi
Thus, our quantization function iQ(c) = |arg(c)|(%)|, noise N takes the pointe’ = ¥%) on the unit circle, to
wherec € C, and |p| denotes the greatest integer less thaother point whose phase belongs[2  3Z(z +1)).
or equal top. Such phase quantization can be implementd¢t'€ t0 the circular symmetry of t_h_e complex Gaussian noise,
using 1-bit ADCs preceded by analog multipliers whichfhis is the same as the probability thag takes the point
provide linear combinations of theand @ channel samples. e/ 9+ on the unit circle, to another point Wh(_)se phase
For instance, employing-bit ADC on I and Q channels Pelongs to[ 7 (=1 +1) ¥ (21 + 1 +1)), wherei is an integer.
results in uniformi-sector phase quantization, while uniform/Ve thus get our first two results.
8-sector quantization can be achieved simply by adding twoProperty A-1:P(z|z;, ¢) = P(z + ilzi, ¢ +i5F).
new linear combinations[+Q and I-Q, corresponding to a  Property A-2:P(z|x, ¢) = P(z +ialz +i,¢).
/4 rotation of I/Q) axes (no analog multipliers needed in Note thatdy,; = 0, + 3Fi = 0, + 3Z (ia), which gives
this case), as shown in Figl 1(a). PropertyA-2.

Note: Throughout the paper, we will assume that the PSK PropertyA-2 simply states that if we jump from one point
constellation sizél/, and the number of quantization biag, N the M-PSK constellation to the next, then we must jump

are such thaf = aM for some positive intege. a = 4 quantization sectors in order to keep the conditional
probability invariant. This is intuitive, since the sep#ra
[1l. INPUT-OUTPUT RELATIONSHIP between consecutive points in the input constellatiahrig/,

In this section, we study the relationship between thehile each quantization sector covers an angle2of K.
channel input and output, and present results that govern ffor QPSK with X' = 8, Figs. 2(b) and 2(c) depict example
structure of the output probability distribution, both don scenarios for the two properties.
tioned on the input (i.e.P(Z|X)), and without conditioning  If we puti = —x; in PropertyA-2, we get the following
(i.e., P(Z)). These distributions are integral to computing thepecial case, which relates the conditioning on a genered
channel capacity (our focus in this paper), as well as for sdfe conditioning oro.
decision decoding (not considered here). While brute forceProperty A-3:P(z;|z;, ¢) = P(z; — ax;|0, ¢).

To motivate our final property, we consider our example of
lUnless stated otherwise, any arithmetic operations fos@rangles are QPSK with K = 8. While we haves distinct quantization sec-
assumed to be performed modua. For the output symbol;, the arith- if look . h . . fth
metic is moduloK, while for the input symbolsX; (introduced immediately tOI‘S,.I we look at Fig. 2(_3-)' t e orientation of theseectors
after in the text ), it is modulo M. relative to thet constellation points (shown as squares) can be



described by dividing the sectors infogroups :{0,2,4,6}, Property B-2 Let II denote a permutation operation, and
and{1, 3,5, 7}. For instance, the positioning of the first sectoflx (Ilz) the vector obtained on permuting (z) under this
(z = 0) w.r.t. z = 0 is identical to the positioning of the third operation. ThenP(z|x) = P(I1z|IIx).

sector ¢ = 2) w.r.t. . = 1 (and similarlyz = 4 w.r.t . = 2, Proof: As in the proof of Property, the idea is to condition
andz = 6 w.r.t x = 3). On the other hand, the positioning ofon ® and work with the symbol probabilitie®(z;|x;, ).
the second sector (= 1) w.r.t. z = 0 is identical to the posi- ConsiderP(z|x, ?) = lL:_Ol P(zi|x;, @), andP (I1z|IIx, @) =

tioning of the fourth sectorz(= 3) w.r.t. = 1 (and similarly Hf;ol P((I1z),|(IIx),, ®). Since multiplication is a commuta-
z=>5w.rtz =2, andz = 7w.rtx = 3). Interms of the con- tive operation, we hav@®(z|x,®) = P(Ilz|llx, ®). Taking

ditional probabilities, this implies, for example, that wél expectation w.r.td completes the proof. u
haveP(z = 7|z; = 3,¢) = P(zi = 1|z; = 0,¢), and simi-  The next two results extend propertids3 and A-4.

larly, P(z; = 6|x; = 3,¢) = P(z1 = Olz; = 0,¢). In general,  Property B-3:Define the input vectok, = [0 - -0]. Then,
we can relate the conditional probability of every oddvith  P(z|x) = P(z — ax|xo), wherea = 1@ and the subtractlon is
that of z; = 1, and similarly of every even; with that ofz; =  performed moduld.

0, with corresponding rotations of the symhgl For general Property B-4:Let z; = q;a+ r;, whereg; is the quotient on
values of K’ and M, the number of groups equals= £ 17+ and dividing z; by a, andr; is the remainder, i.ey; = z mod

we can relate the probability of any with that of z; mod a. . Define q = (90, ,qr_1], and,zmod a = [zp mod
Property A-4:Let z; = qua+1;, whereg; is the quotienton a --- 2z, 1 mod a]. ThenP(z|x) = P(z mod a | x — q).
dividing z; by a, andr; is the remainder, i.e;; = z; mod a. Proofs: The properties follow fromA-3 and A-4 respec-
Then,P(zi]z;, ¢) = P(z; mod alz; — qi, ¢). tively, by first noting that the vector probability(z|x, ®) is
While this result follows directly from Propertyl-2 by the product of the scalar ones, and then integrating dves
putting ¢ = —¢;, it is an important special case, as it~ Properties ofP(Z)

enables us to restrict attention to only the firstsectors
(Z, € {0,1,--- ,a — 1}), rather than having to work with fir
all the K sectors. As detailed later, this leads to significant
complexity reduction in capacity computation.

We now use these properties to present result®{@{X).

We now consider the unconditional distributi®tz). The
st result states thdt(z) is invariant under constant addition.
Property C-1:P(z) = P(z +41).
Proof: Using PropertyB-1, this follows directly by taking
expectation oveX on both sides. |
B. Properties ofP(Z|X) On similar lines, we now extend ProperBr2 to show that
P(z) is invariant under any permutation of

Property C-2:P(z) = P(Hz)

Proof: We haveP( ) =+ erx P(z|x). Using Property

2, we getP(z) = - Y+ P (Iz[lIx). Sincell is just a
tﬁg mutation operatlon every unique choicexofE X results
in a umqueHx € X. Hence, we can rewrite the last equation
asP(z) = 377 Y cr Plz|x) = P(Ilz). [

Our final result extends Properfy-4.

<H P Zl|Il, )

Property B-1 Let 1 denote the row vector with all entries
as1. ThenP(z|x) = P(z + i1|x).

Proof: For a fixedx, increasing each; by the same number
1 leaves the conditional probability unchanged, because
phase® in the channel mode[{1) is uniformly distributed in
[0,27). A detailed proof follows. We have

Property C-3 Let a = £-. ThenP(z) = P(z mod a).
Proof: Using the same notation as in PropeRy, we have

P(z|x) = Eq (P(z|x, ®))

T
Lo

L-1 9 P(z|x) = P(z mod a | x—q) . Noting that the transformation
. 2w ; ;
=Eo < Pz + t|z, @+ z—)) x — X — q IS a one-to-one mapping, the proof follows on the
K same lines as the proof of Properi2. [ |
A Example: For QPSK with K = 8 and L = 4, P(z =
=E<f>< P(Zz+z'|:cz,<1>)> [5724])=P(z=[1100]).
1=0 We now apply these results for low complexity capacity
—E, (P(z +illx, &))) = P(z +illx). computation.
IV. EFFICIENT CAPACITY COMPUTATION
The second equality follows by the fact that the components
of Z are independent conditioned & and ®. PropertyA—l
gives the third equality. A change of variablds = ® + i2Z = I(X;Z) = H(Z) — H(Z|X).
gives the fourth equality (sincé is uniformly distributed on
0,27), SO is d), thereby completing the proof. m We first discuss computation of the conditional entropy.
Remark 1:For the rest of the paper, we refer to théd . Computation of the conditional entrogy(Z|X)
operationz — z + i1 asconstant addition We haveH (Z|X) = )", H(Z|x)P(x), where H(Z|x) =
Our next result concerns the observation that the condition- ) . P(z|x) log P(z|x) is the entropy of the output when the
probability remains invariant under adentical permutation input vectorX takes on the specific value Our main result
of the components of the vectozsand x. in this section is thafi(Z|x) is constantvx.

We wish to compute the mutual information



Property D-1 H(Z|x) is a constant. Example:For QPSK with8 sectors (sa = 2), the relevant
Proof: We show that for any input vectax, H(Z|x) = vectors for block lengtfz are[0 0] and[0 1].
H(Z|xo), wherexq, = [0---0] as defined before. We have Computation ofP(Z): For each of the vectors in the
set Sz defined above, we now need to obtai{z) =
H(Zlx) = — ) P(ax)logP(z]x) S vex P(z[x)P(x). A brute force approach is ?(T(CZ)mpute

z P(z|x) for eachx. However, we can exploit the structurezn

= — ) P(z—ax|x)logP(z — ax|x0) , (3) to reduce the number of vectaxsfor which we neec (z|x).

z Specifically, we have that each € {0,1,--- ,a — 1}. Since
where the second equality follows from PropeBy3. Now, there are only: different types of components i for block
sincez — z — ax is just a subtraction operation, it is easyength L > a, some of the components inwill be repeated.
to see that every unique choice mfc Z results in a unique For anyx, we can then use Properiy-2 to rearrange the
choice ofz — ax € Z. Hence, we can rewrit¢](3) as components at those locations for which the components in

z are identical, without changing the conditional probaili
H(Zx) = _ZP(Z|X0)1OgP(Z|X0) = H(Zxo) (4) For instance, let,, = z, for somem,n. Then,P(z|x) =
z P(z|lIx), whereIlx is obtained fromx by rearranging the
" components at locationg andn. To sum up, we can restrict
Thus, H(Z|X) = H(Z[xo), but brute force computation 4itention to a set of vectorSx in which no vector can be
of H(Z[xo) still has exponential complexity?(Z|xo) must optained from another one by permutations between those
be computed for each of th&™ possible output vector&. |ocations for which the elements in are identical. While
However, we show that it suffices to compiR€Z|xo) for a  for |argeq, the potential reduction in complexity may not be
much smaller set of vectors. _ large, for small values af (which is the paradigm of interest
Using PropertyB-2, we haveP(z|xo) = P(Ilz|lIxo ). Since i this work), the savings will be significant. As before, the

xo = [0..0], any permutation of, gives backx,. Hence, ajgorithmic details for obtaining the sék will be provided
P(z|xo) = P(Ilz[x). Combined with Property3-1, we thus i, ypcoming publications.

get that it suffices to comput®(z|x,) for a set of vectorsy
in which no vector can be obtained from another by perform- V. NUMERICAL RESULTS

ing the operations of constant addition and permutatiom. FO \WWe now present capacity results (obtained using the
K =8andL = {3,4,5,6,7}, the cardinality of the entire set|ow-complexity procedure outlined in the last section) for
of Z vectors, K", evaluates t0{512,4096,32768,2.6 x QPSK with 8-sector and 12-sector phase quantization, for
10°,21 x 10°}, while the cardinality of Sz is (different block lengths L. For all our results, we normatize
{15,43,99,217, 429}, illustrating the large reduction in com-the mutual information/(X;Z) by L-1 to obtain the per
plexity. For simplicity of exposition, we do not delve inthet symbol capacity, since in practice the successive blocks ca

exact details of how we can obtain the Set Fast algorithms be Over|apped by one Symbo| due to slow phase variation
to do this, and their associated complexity are currentlgde from one block to the next.

investigated. More details are available from the authpeu  g-sector guantizationin Fig.[3, we plot the channel ca-
request, and will be provided in future publications as well pacity with 8-sector quantization, at different SNR valu@®
Once we have the setz, we can numerically compute ayoid clutter, we show the results fér= 6 only.) Also shown
the probability P(z|xo) for every vector in Sz. The for reference are the capacity values for the coherent ease,
entropy H(Z|xo) can then be obtained as followsfor the block noncoherent case without any quantization. We
For z € Sz, let n(z) denote the number of distinCtsee that, foSNR > 2-3 dB, our simples-sector quantization
vectors that can be generated from it by performing th@heme recovers more than-85% of the spectral efficiency
operations of constant addition and permutation. This §ptained with unquantized observations. This is encongagi
straightforward to compute. The conditional entropy then hiven that our work is targeted towards future high banduwidt

H(Z[x0) = — Y _ n(z)P(z|x0) log P(z|xo). systems (such as those operating in @leGHz mm-wave
Sz band), for which a small reduction in spectral efficiency is
B. Computation of the output entrogy(Z) acceptable. On the other hand, if we measure the power loss
The output entropy isH(Z) = —) - P(z)logP(z). A for fixed spectral efficiency, we see that at rates of up to abou

brute force computation requires us to knéMz) Vz € Z, 1.2 bits/channel use, there is a loss of abbut5 dB compared
which clearly has exponential complexity. However, usintp the unquantized case. However, the loss is more significan
PropertiesC-1, C-2 and C-3, we get that it is sufficient to asSNR increases: the capacity approacBdsits/channel use
computeP(z) for a set of vectorsSz in which no vector can rather slowly at highlSNR. Since the input entropy! (X) is

be obtained from another one by performing the operationsainstant, this in turn implies thaf (X|Z) falls off very slowly
constant addition and permutation, and also, the vector- coasSNR — oo. A more detailed analysis of the likelihood ratio
ponents= {0,1,---,a—1}. This is similar to the situation we P(Z|X, ®) (omitted here due to lack of space) provides insight
encountered earlier in the last subsection, except thattier into this behavior. We find that in addition to the symmetries
components there were allowed to be{in1,--- , K —1}.  in P(Z|X, ®) that we exploited to reduce the complexity of
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Fig. 3. Performance comparison for QPSK with block length- 6 : plots
depict the capacity of the block noncoherent channel wittguantization,
and with 8-sector quantization (with and without dithejinglso shown is
the capacity for coherent QPSK.
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capacity computations, there are certain other symmaetiitbs
adverse consequences as well : they make it impossible to

Capacity (bits per channel use )

[ Solid curves ]

distinguish between the effect of the unknown phase offset ool Unauanized biock nonconerent ]
and the phase modulation on the received signal. More specif e ‘ ‘ ‘ ‘ ‘ ‘
ically, if we consider the maximum likelihood (ML) estimato SNR E/N,) (d8)

arglgax P(z|x, ¢), we find that for certain outputs irrespec- Fig. 5. Performance comparison for QPSK : plots depict theacity of

. X . the coherent channel, unquantized block noncoherent ehédifferent block
tive of theSNR (and also the block length), the estimator alrengths), and the 12-sector quantized block noncoheremtnzi (different

ways returns two distinct equally likely solutiofs,, ¢1) and block lengths).

(x2, ¢2). In an information-theoretic sense, this ambiguity ingyentical block lengths, the loss in capacity (at a fisétR >
dicates a significant conditional entrop§(X|Z). AsSNR — 5 3 ) compared to the unquantized case is less than 5-10
oo, the probability of these ambiguous outputs does go to Z8EY, while the loss in power efficiency (for fixed capacity)

but very slowly, leading to a slow decreaseiiX|Z) as well. varies between 0.5-2 dB, and dithering is not required.
Possible ways to break the undesirable symmetries could be V. CONCLUSIONS

to use non-uniform phase quantization, or to employ ditigeri , . T
across symbols in a block. Here we investigate the role of the Ve have _|n_vest|gated the capacity limits |mposed by the use
latter. We can dither either at the transmitter by rotating tof onv-precr|13|on phase _qua_nu_zatlon ata carrrer-as;r]r_rmhl;?
QPSK constellation points, or at the receiver by using apal6SCeIVer. The symmetries in input-output relationship fu t
pre-multipliers to shift the phase quantization boundarie resultmg.channel havg been exploited to reduce the coritylex
use a simple transmit dither scheme in which we rotate tﬂé capacity computation. Important topics for future resha
QPSK constellation by an angle df(2) from one symbol include a more detailed investigation of different ditineyri
to the next. Fig[4(a) shows this scheir(ne for block length L:sQ:_hemes (motivated by the perfprmance improvement ofstaine
and K=8. The constellation used for the second symbol (shoWind the simple scheme considered here), as well as devel-
by the diamond shape) is dithered from the constellatigiPMent of practical capacity-approaching coded moduiatio
used for the first symbol by an angle af/s. With this strategies. An important practical issue is determiningtivar
choice of transmit constellations, we find that the ambjguifiming synchroqization_(which is assumed in the model here)
in the ML estimator is removed, and hence the performanceci%n also be attame(_j_usmg_phase-q_uantlzed sample_s, dnevhet
expected to improve. The plot in FIg. 3 shows the performang@Me form of additional information (perhaps using analog
improvement for L=6] techniques prior to the ADC) is required.
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