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Abstract

We consider a power-controlled wireless network with an established network topology in which

the communication links (transmitter-receiver pairs) arecorrupted by the co-channel interference and

background noise. We have fairly general power constraintssince the vector of transmit powers is

confined to belong to an arbitrary convex polytope. The interference is completely determined by a so-

called gain matrix. Assuming irreducibility of this gain matrix, we provide an elegant characterization of

the max-min SIR-balanced power allocation under such general power constraints. This characterization

gives rise to two types of algorithms for computing the max-min SIR-balanced power allocation. One

of the algorithms is a utility-based power control algorithm to maximize a weighted sum of the utilities

of the link SIRs. Our results show how to choose the weight vector and utility function so that the

utility-based solution is equal to the solution of the max-min SIR-balancing problem. The algorithm is

not amenable to distributed implementation as the weights are global variables. In order to mitigate the

problem of computing the weight vector in distributed wireless networks, we point out a saddle point

characterization of the Perron root of some extended gain matrices and discuss how this characterization

can be used in the design of algorithms in which each link iteratively updates its weight vector in parallel

to the power control recursion. Finally, the paper providesa basis for the development of distributed

http://arxiv.org/abs/0901.0824v2
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power control and beamforming algorithms to find a global solution of the max-min SIR-balancing

problem.

Index Terms

Max-min SIR-balancing, Max-min fairness, Power control, Wireless networks, Utility maximization,

Interference management, Distributed algorithms

I. INTRODUCTION

Wireless channel is error-prone and highly unreliable being subject to several impairment

factors that are of transient nature, such as those caused byco-channel interference or multipaths.

Excessive interference can significantly deteriorate the network performance and waste scarce

communication resources. For this reason, strategies for resource allocation and interference

management are usually necessary in wireless networks to provide acceptable QoS levels to the

users.

There are different mechanisms for resource allocation andinterference management. Power

control may play a central role in distributed wireless meshnetworks, where, due to the lack

of a central network controller, link scheduling strategies are notoriously difficult to implement.

Thus, a reasonable approach is to avoid only strong interference from neighboring links, and

then use an appropriate power control policy to manage the remaining interference in a network.

In this paper, we focus on the power control problem, which addresses the issue of coordinating

transmit powers of links such that the worst signal-to-interference ratio (SIR) balanced against

some SIR targets attains its maximum. This so-called max-min SIR-balancing problem is a

widely studied resource allocation problem for wireless networks (see, for instance, [1], [2], [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12] as well as [13, Sections 3.1 and 5.6], [14], [15, Section

5.6]). A key feature of this strategy is that any given SIR (signal-to-interference ratio) targets

are feasible if and only if they are satisfied under a max-min SIR-balanced power allocation.

Moreover, the notion of max-min SIR-balancing is closely related to max-min fairness, the

most common notion of fairness. Note that since we focus on static wireless networks, transmit

powers are to be periodically adjusted to changing channel and network conditions (dynamic

power control). This in turn presumes a relatively low up to moderate network dynamics. In

contrast, in highly dynamic wireless networks, one should consider resource allocation schemes
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for stochasticwireless networks [16], [17], [18], [19], [20], [21], [22],[23].

In the noiselesscase, which is widely considered in the literature [1], [2],[3], [5], [4], [24],

[25], [26]. (an overview can be found in [11], [27]) and wherepower constraints play no role

in the analysis, it is widely known [11], [13, Sections 3.1] that any positive eigenvector of the

(irreducible) gain matrix scaled by a diagonal matrix of given SIR targets is a solution to the

max-min SIR-balancing problem. In [12], the problem was solved for a “noisy” downlink channel

constrained on total power. The sum constraint on transmit powers was captured by an additional

equation so that the optimal solution is characterized in terms of some unique eigenvector of a

certain irreducible gain matrix of higher dimension (see also [13, pp. 111-113]).

Assuming an irreducible gain matrix, Sections III–IV extend these results to any convex

polytope as the constraint set to model constraints on transmit powers of the links. In addition

to the analysis in a higher dimension (as in [12]), we also obtain an elegant characterization

of the max-min SIR-balanced power vector from an eigenvalueproblem of the same dimension

as the original problem. These results were inspired by [28], where the authors used different

tools to characterize rate region in interference channel with constrained power (see also the

acknowledgments after the conclusions at the end of this paper).

In Section V, we use the results of Sections III–IV to establish a connection between the

max-min SIR-balancing power control problem and the utility-based power control problem.

Such a connection is known in the noiseless case [15, Section5.9] and constitutes the starting

point for the analysis in [14]. More precisely, we show how tochoose the weight vector and

utility function so that solving the problem of maximizing aweighted sum of the utilities of

the SIRs leads to the max-min SIR-balancing solution. This result was used in [29] to solve the

max-min SIR-balancing problem over thejoint space of admissible power vectors and receive

beamformers. Thus, the results of this paper provide key tools to generalize the results of [14]

to noisy channels under general power constraints and to a larger class of utility functions.

An advantage of the utility-based approach is that there exist distributed power control schemes

to compute the max-min SIR power vector, provided that each link knows how to select its weight

[30], [31]. The problem is however that a desired weight vector is determined by positive left

and right eigenvectors of some nonnegative matrix, so that the links cannot choose their weights

independently. Thus, as neither the eigenvectors nor the corresponding matrices are a priori

known at any node, the presented approach for computing the max-min SIR power allocation is
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still not amenable to implementation in decentralized wireless networks.

A basic idea to overcome or at least to alleviate this problemis to let each link iteratively

update its weight vector in parallel to the power control recursion. In Section V-B, we point

out that a saddle point characterization of the Perron rootsof some nonnegative matrices. This

characterization provides a basis for efficient saddle point algorithms converging to a max-

min SIR-balanced power vector. Basically, the idea is redolent of primal-dual algorithms that

employ some optimization methods to minimize the Lagrangian over primal variables and to

simultaneouslymaximize it over dual variables.

Before starting with the analysis, we introduce definitions, notation and state the max-min

SIR-balancing problem.

II. DEFINITIONS AND PROBLEM STATEMENT

We consider a wireless network with an established network topology, in which all links share

a common wireless spectrum. LetK ≥ 2 users (logical links) compete for access to the wireless

links and letK = {1, . . . , K} denote the set of all users. The transmit powerspk, k ∈ K, of the

users are collected in the vectorp = (p1, . . . , pK) ≥ 0, which is referred to aspower vectoror

power allocation. The transmit powers are subject to power constraints so that p ∈ P where1

P = {p ∈ R
K
+ : Cp ≤ p̂,C ∈ {0, 1}N×K} ⊂ R

K (1)

for some given̂p = (P1, . . . , PN) > 0 andC with at least one1 in each column so thatP is a

compact set. Throughout the paper, we useN = {1, . . . , N} whereN is the number of power

constraints. The main figure of merit is the SIR at the output of each receiver given by

(A.1) SIRk(p) = pk/Ik(p), k ∈ K, where the interference functionIk is Ik(p) = (Vp+ z)k =
∑K

l=1 vk,lpl + zk.

V := (vk,l) ∈ R
K×K
+ is thegain matrix, vk,l = Vk,l/Vk,k if l 6= k and0 if l = k whereVk,l ≥ 0

with Vk,k > 0 is the attenuation of the power from transmitterl to receiverk. The kth entry of

z := (z1, . . . , zK) is zk = σ2
k/Vk,k, whereσ2

k > 0 is the noise variance at the receiver output.

Let γ1, . . . , γK > 0 be theSIR targetsand letΓ = diag(γ1, . . . , γK). We say that the SIR

targets are feasible if there exists a power vectorp ∈ P (called a valid power vector) such that

SIRk(p) ≥ γk > 0.

1
R+,R++ are nonnegative and positive reals, respectively.
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Definition 1: Given anyΓ, p̄ is said to be a max-min SIR-balanced power vector if

p̄ := argmax
p∈P

min
k∈K

(SIRk(p)/γk) . (2)

It is important to notice that the maximum in (2) exists asmink∈K(SIRk(p)/γk) is continuous

on the compact setP. Thus,γk are not necessarily met under optimal power control (2). For

this reason,γk can also be interpreted as adesiredSIR value of linkk. A trivial but important

observation is that̄p > 0, allowing us to focus onP+ = P ∩ R
K
++.

III. SOME PRELIMINARY OBSERVATIONS

In general,p̄ of Definition 1 is not unique. For general power constraints,the uniqueness is

ensured ifV is irreducible [32], [33] since then the links are mutually dependent through the

interference. In order to see this, notice that the problem (2) is equivalent to finding the largest

positive thresholdt such thatt ≤ SIRk(p)/γk for all k ∈ K andp ∈ P. The constraints can

be equivalently written in a matrix form asΓz ≤ (1
t
I − ΓV)p andp ∈ P. So, asp must be a

positive vector, [15, Theorem A.51] implies that the threshold t must satisfy

ρ(ΓV) < 1/t . (3)

Now, one particular solution to the max-min SIR-balancing problem (2) isp̄′ given by

p̄′ =
(

1/t′I− ΓV
)−1

Γz, p̄′ ∈ P (4)

where

t′ = argmaxt≥0 t s.t. (1/tI− ΓV)p = Γz,p ∈ P . (5)

Note thatp̄′ is a max-min SIR-balanced power vector such thatSIRk(p̄
′)/γk = SIRl(p̄

′)/γl for

eachk, l ∈ K. This immediately follows from (4) when it is written as a system of K SIR

equations. By (3), (4), (5) and [15, Theorem A.51],p̄′ > 0 exists and is a unique power vector

corresponding to a point in the feasible SIR region2 that is farthest from the origin in a direction

of the unit vectorγ/‖γ‖1.

The above considerations are illustrated in Fig. 1. The plots depict two examples of feasible

SIR regions in a system with two users. In both cases, the point (SIR(p̄′)1, SIR(p̄
′)2), with p̄′

2The feasible SIR region is the subset ofR
K

+ of all SIR levels that can be achieved by means of power control. F defined by

(7) becomes the feasible SIR region ifφ(x) = x andγk = 1, k ∈ K.
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Fig. 1. The feasible SIR region under individual power constraints and two different gain matricesV ≥ 0. The following

notation is used:̄γk = SIRk(p̄) and γ̄′

k = SIRk(p̄
′) wherep̄ andp̄′ are defined by (2) and (4), respectively.Left: V is chosen

so thatSIR2(p) = p2/z1, in which casēp is not unique.Right: V is irreducible, in which casēp is unique and equal to (4).

The point(γ′′

1 , γ
′′

2 ) corresponds to the max-min fair power allocation.

given by (4) is the point at the intersection of the boundary of the feasible SIR region with

the line defined by theγ vector and is max-min SIR-balanced. It is however not the unique

solution if SIRs of some users can be increased without affecting the minimum. The examples

of configurations in which the power allocation̄p′ given by (4) is not and is a unique solution

of the max-min SIR-balancing problem are presented in the left and in the right subplot of Fig.

1, respectively.

Now let us assume throughout the paper that

(A.2) φ : R++ → Q ⊆ R is continuously differentiable and strictly increasing function.

By strict monotonicity, one hasφ(mink∈KSIRk(p)/γk) = mink∈Kφ(SIRk(p)/γk) for every

p > 0. Thus, as̄p ∈ P+,

p̄ = argmax
p∈P+

min
k∈K

φ(SIRk(p)/γk) (6)

where p̄ is a max-min SIR-balanced power vector defined by (2). With (6) in hand, we can

prove a sufficient condition for the uniqueness ofp̄ under general power constraints. To this

end, givenφ, we define the setF ⊂ QK as

F =
{

q ∈ QK : qk = φ
(

SIRk(p)/γk
)

, k ∈ K,p ∈ P+

}

(7)

Note thatF can be interpreted as a feasible QoS region where the QoS value for link k is

φ(SIRk(p)/γk). By (A.2) and [15, Sect. 5.3], the following can be said aboutF.

Observation 1:There is abijective continuous map3 from F ontoP+ (see also (23)). If

3The reader should bear in mind that the existence of such a bijective map allows us to prove some results inF.



7

(A.3) the inverse functiong(x) := φ−1(x) is log-convex [15],

thenF is downward comprehensive, connected and convex. Moreover,SIRk(p̄
′) with p̄′ defined

by (4) corresponds to a point on the boundary ofF whereq1 = . . . = qK with qk defined by (7).

Note that the boundary ofF (denoted by∂F) is the set of all points ofF such that, if

p is the corresponding power vector in (7), thenCp ≤ p̂ holds with at least one equality.

Widely known examples of functions satisfying (A.2) and (A.3) arex 7→ log(x), x > 0, and

x 7→ −1/xn, n ≥ 1, x > 0. Now let us state the following auxiliary result.

Lemma 1:Suppose that (A.2) and (A.3) hold. LetV be irreducible. Then,q ∈ ∂F if and

only if there existsw > 0 such thatq maximizesx 7→ wTx overF.

Proof: By convexity and downward comprehensivity ofF, every boundary point of this set

is a maximal point and it maximizesx 7→ wTx overF for somew ≥ 0 [34, pp. 54–58]. Since

V is irreducible, it follows from [35, Theorem 4.3] (see also [35, Corollary 4.3]) thatw > 0.

Now we can easily observe the following.

Observation 2:If V ≥ 0 is irreducible, then̄p is unique and equal tōp′ defined by (4).

Proof: The proof is deferred to Appendix VIII-A.

We complete this section by pointing out a connection between the max-min SIR-balancing

problem considered in this paper and the notion of max-min fairness. A vector of balanced

SIRs with entriesSIRk(p
′′)/γk, k ∈ K is max-min fair if anySIRk(p

′′)/γk cannot be increased

without decreasing someSIRl(p
′′)/γl, l 6= k which is smaller than or equal toSIRk(p

′′)/γk; the

vectorp′′ is then a max-min fair power allocation [36], [37]. A max-minfair power allocation

is therefore also max-min SIR-balanced (provided that the feasible SIR region is downward

comprehensive); the converse is in general not true. However, if the max-min SIR-balancing

problem has a unique solution given by (4), this solution is also max-min fair and there are

no other max-min fair power allocations. These relations can be observed in Fig. 1 where both

max-min SIR-balanced and max-min fair points are indicated.

IV. CHARACTERIZATION OF MAX -M IN SIR-BALANCING

In this section, we characterizēp ∈ P+ defined by (2) under the assumption thatV is

irreducible. We point out possible extensions to reduciblematrices at the end of this section.

We assume thatP ⊂ R
K
+ is a convex polytope given by (1). So, throughout this section,
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maxn∈N gn(p) ≤ 1 where

gn(p) := 1/Pnc
T
np, n ∈ N (8)

and cn ∈ {0, 1}K is a (column) vector equal to thenth row of the matrixC. Now, using (8),

the max-min SIR power vector̄p defined by (2) can be written as

p̄ = argmax
p≥0

min
k∈K

(SIRk(p)/γk) s.t. max
n∈N

gn(p) ≤ 1 . (9)

whereγk > 0, k ∈ K, is arbitrary but fixed.

Lemma 2:Let p̄ be any power vector that solves (9). Then, the following holds

(i) maxn∈N gn(p̄) = 1.

(ii) If V ≥ 0 is irreducible, then̄p is unique and

∀k∈Kγk/SIRk(p̄) = β, β > 0 . (10)

Proof: The proof can be found in Appendix VIII-B.

Becausēp maximizesmink∈K(SIRk(p)/γk) overP, it follows from (10) that1/β > 0 is the

corresponding maximum. It must be emphasized that (10) is not true for general nonnegative

matricesV ≥ 0. In the lemma, we require that the gain matrix be irreducible, which is sufficient

for (10) to hold but not necessary. The irreducibility property ensures that, regardless of the

choice ofP, there is no subnetwork being completely decoupled from therest of the network.

To be more precise, ifV is irreducible, then the network is entirely coupled by interference

so that the type of power constraints is irrelevant for this issue (see also the remark at the end

of this section). Unless otherwise stated, it is assumed in the remainder of this section that

V ≥ 0 is an arbitraryirreducible matrix. Due to(ii) of Lemma 2, this implies that the max-min

SIR-balanced power vector is unique.

Let us define

N0(p) :=
{

n0 ∈ N : n0 = argmax
n∈N

gn(p) = 1
}

(11)

which includes the indices of those nodes for which the powerconstraints are active under the

power vectorp. By (i) of Lemma 2, the cardinality ofN0(p̄) must be larger than or equal to1.

In what follows, letβ > 0 be the constant in part(ii) of the lemma. This together with part(i)

implies that

βp̄ = ΓVp̄+ Γz gn(p̄) = 1 . (12)
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Putting the first equation into the second one yields a set ofK+1 equations that, if written in a

matrix form, show that if̄p solves the max-min SIR-balancing problem, then there is a constant

β > 0 such that

β p̃ = A(n)p̃, β > 0, p̃ ∈ R
K+1
++ (13)

for eachn ∈ N0(p̄) wherep̃ = (p̄, 1) is the extended power vector and the nonnegative matrix

A(n) ∈ R
(K+1)×(K+1)
+ is defined to be

A(n) =





ΓV Γz

1
Pn
cTnΓV

1
Pn
cTnΓz



 , n ∈ N . (14)

Alternatively, we can write (12) asβp̄ = ΓVp̄ + Γz · gn(p̄), from which we obtain, for each

n ∈ N0(p̄),

βp̄ = B(n)p̄, β > 0, p̄ ∈ R
K+1
++

(15)

whereB(n) ∈ R
K×K
+ is defined to be (for eachn ∈ N)

B(n) := ΓV +
1

Pn

ΓzcTn = Γ
(

V +
1

Pn

zcTn
)

= ΓṼ
(n)

(16)

and Ṽ
(n)

:= V + 1
Pn
zcTn , n ∈ N. So, givenp̄ defined by (9), the equations (13) and (15)

hold for eachn ∈ N0(p̄). In other words, the solution of (9) in a network entirely coupled by

interference must satisfy (13) and (15) for each noden ∈ N whose power constraints are active

at the maximum. This is summarized in the following lemma.

Lemma 3: If V ≥ 0 is irreducible and̄p solves the max-min SIR-balancing problem (9), then

p̄ satisfies both (13) and (15) for someβ > 0 and eachn ∈ N0(p̄).

Note that the lemma is an immediate consequence of parts(i) and (ii) of Lemma 2, from

which (13) and (15) follow for an arbitraryn ∈ N0(p̄). Now we are in a position to prove the

following result.

Lemma 4:Suppose thatV ≥ 0 is irreducible. Then, for any constantsc1 > 0 andc2 > 0, the

following holds.

(i) For eachn ∈ N, there is exactly one positive vectorp = p(n) ∈ R
K
+ with gn(p) = c1

satisfyingβ(n) p = B(n)p for someβ(n) > 0. Moreover,β(n) is a simple eigenvalue of

B(n) andβ(n) = ρ(B(n)).
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(ii) For eachn ∈ N, there is exactly one positive vectorp̃ = p̃(n) ∈ R
K+1
+ with p̃K+1 = c2

satisfyingβ(n) p̃ = A(n)p̃ for someβ(n) > 0. Moreover,β(n) is a simple eigenvalue of

A(n) andβ(n) = ρ(A(n)).

Proof: The reader can find the proof in Appendix VIII-C.

The lemma says that, for eachn ∈ N, the matrix equationβ(n) p = B(n)p with β(n) > 0

andp ∈ R
K
+ is satisfied if and only ifp is a positive right eigenvector ofB(n) associated with

β(n) = ρ(B(n)). Furthermore, ifgn(p) = 1, thenp is unique. Similarly,β(n) p = A(n)p with

β(n) > 0 and p ∈ R
K+1
+ is satisfied if and only ifp is a positive right eigenvector ofA(n)

associated withβ(n) = ρ(A(n)) and there is exactly one such an eigenvector whose last entry

is equal to one. Furthermore, for eachn ∈ N, β(n) = ρ(A(n)) = ρ(B(n)). This is because

if ρ(B(n))p = B(n)p holds for somen ∈ N, then we must haveρ(B(n))p̃ = A(n)p̃ where

p̃ = (p, 1) ∈ R
K
++. Thus, by Lemma 4, we must have

ρ(A(n)) = ρ(B(n)), n ∈ N . (17)

Note that a solution to the max-min SIR-balancing problem isnot necessarily obtained for each

n ∈ N since, in the optimum, some power constraints may be inactive. Indeed, in general, the

setNc
0(p̄) = N \ N0(p̄) is not an empty set wherēp defined by (9) is unique due to(ii) of

Lemma 2.

Now we combine Lemmas 3 and 4 to obtain the following.

Theorem 1:Let β be given by (10). IfV ≥ 0 is irreducible, then the following statements

are equivalent.

(i) p̄ ∈ P+ solves the max-min SIR-balancing problem (9).

(ii) For eachn ∈ N0(p̄), p̄ is a unique positive right eigenvector ofB(n) associated with

β = ρ(B(n)) > 0 such thatgn(p̄) = 1.

(iii) For each n ∈ N0(p̄), p̃ is a unique positive right eigenvector ofA(n) associated with

β = ρ(A(n)) > 0 such thatp̃K+1 = 1.

Proof: The proof can be found in Appendix VIII-D.

Theorem 1 implies that ifV is irreducible, then̄p > 0 is the (positive) right eigenvector of

B(n) associated withρ(B(n)) ∈ σ(B(n)) for eachn ∈ N0(p̄). Alternatively, p̄ can be obtained

from p̃ = (p̄, 1), which is the positive right eigenvector ofA(n) associated withρ(A(n)) for each

n ∈ N0(p̄). The problem is, however, thatN0(p̄) is not known as this set is determined by the
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solution to the max-min SIR-balancing problem, and hence its determination is itself a part of

the problem. As the SIR targets are feasible if and only if they are met under̄p, the following

characterization of the setN0(p̄) immediately follows from [28] and (17).

Theorem 2 ([28]): Suppose thatV ≥ 0 is irreducible. Then,

N0(p̄) =
{

n0 ∈ N : n0 = argmaxn∈N ρ(B
(n))

}

(18)

Moreover, the feasible SIR regionFγ is characterized as

Fγ =
{

γ ∈ R
K
++ : max

n∈N
ρ(B(n)) = max

n∈N
ρ(A(n)) ≤ 1,

Γ = diag(γ1, . . . , γK)
}

. (19)

The characterization of the feasible SIR region in (19) can be deduced directly from [28] as

the authors show thatmin
k∈K

(SIRk(p)/γk) ≤ min
n∈N

(1/ρ(Bn)), without characterizing, however, the

corresponding power allocation vectorp.

Theorems 1 and 2 directly lead to the following procedure forcomputing the max-min SIR

power vectorp̄ given by (2).

Input: Γ = diag(γ1, . . . , γK).

Output: p̄ ∈ P+ ⊂ P

1: Find an arbitrary indexn0 ∈ N such thatn0 = argmaxn∈N ρ(B
(n)) whereB(n) is given by

(16).

2: Let p̄ be given byρ(B(n0))p̄ = B(n0)p̄ and normalized such thatcTn0
p̄ = Pn0

.

Remark 1 (Remark on reducible matrices):We point out that all the statements in this paper

hold if B(n) is irreducible for eachn ∈ N, which may be satisfied even ifV is reducible. This is

for instance true in the case of a sum power constraint (C = (1, . . . , 1)) whereB = B(1),N =

{1}, is a positive matrix. Moreover, the statement of Theorem 1 can be shown to be true even

if B(n) is irreducible only forn ∈ N0(p̄).

V. APPLICATIONS

In this section, we discuss two other applications of the results. In doing so,V is assumed

to be irreducible. Under this assumption, the feasible QoS region given by (7) can be shown to

be strictly convex [35, Corrolary 4.3].
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A. Computation via utility-based power control

In this section, we show that̄p can be obtained by maximizing the following aggregate utility

function

F (p,w) :=
∑

k∈K
wkφ

(

SIRk(p)/γk
)

(20)

provided that the weight vectorw = (w1, . . . , wK) > 0 is chosen appropriately andφ : R++ → Q

satisfies (A.2) and (A.3). To this end, define

p∗(w) := argmaxp∈P+
F (p,w) . (21)

AlthoughP+ is not compact, it can be shown [15] that the maximum exists if(A.2) and (A.3) are

fulfilled. Furthermore, it is obvious that in the maximum, atleast one power constraint is active,

that is,Cp∗ ≤ p̂ holds at least with one equality. Thus, we haveq∗(w) = (q∗1(w), . . . , q∗K(w)) ∈

∂F for

q∗k(w) = φ
(

SIRk(p
∗(w))/γk

)

. (22)

In words,p∗ = p∗(w) corresponds to a boundary point ofF defined by (7). Different boundary

points can be achieved by choosing different weight vectorsin (20). In particular, Lemma 1

implies thatq ∈ ∂F if and only if q = q∗(w) for somew > 0. For the analysis in this section,

it is important to recall from Observation 1 that there is a bijective map fromF ontoP and this

map can be shown to be [15, Section 5.3]

p(q) = (I−G(q)ΓV)−1G(q)Γz, q ∈ F (23)

whereG(q) := diag(g(q1), . . . , g(qK)) with g(x) defined by (A.3) andρ(G(q)ΓV) < 1, which

ensures the existence ofp(q) and is satisfied for everyq ∈ F [15, Section 5.3]. Note thatg is

strictly increasing andg(x) > 0 for all x ∈ Q, which follows from (A.2) and (A.3).

Lemma 5:q ∈ ∂F if and only if maxn∈Nλn(q) = 1 where λn(q) := ρ(G(q)B(n)) >

ρ(G(q)ΓV) > 0.

Proof: The proof is deferred to Appendix VIII-E.

Now we are in a position to prove the following.

Theorem 3:Suppose that (A.2) and (A.3) hold. Letq ∈ ∂F andu(q) = (g′(q1)/g(q1), . . . , g
′(qK)/g(qK)) >

0. Then, we haveq = q∗(w) given by (22) if

w = c · u(q) ◦ y ◦ x, c > 0 (24)
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wherey and x are positive left and right eigenvectors ofG(q)B(n0), respectively, associated

with λn0
(q) for any n0 = argmaxn∈Nλn(q).

Proof: The reader can find the proof in Appendix VIII-F.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

w

ρ(G(q)B(1)) = 1

F

ρ(G(q)B(2)) = 1

q1 = φ
(

SIR1(p)/γ1
)

q1 = q2

q̄ = q∗(w)

∂F

q2 = φ
(

SIR2(p)/γ2
)

Fig. 2. An illustration of Corollary 1. The figure shows an example of the feasible QoS region defined by (7) with2 users

subject to individual power constraints (C = I). The point q̄ = q∗(w) with w = cy ◦ x, c > 0, corresponds to the unique

max-min SIR-balanced power allocation. The weight vectorw is normal to a hyperplane which supports the feasible QoS region

at q̄ ∈ ∂F.

Now we can establish a connection between (2) and (21). The connection is illustrated by

Figure 2.

Corollary 1: Let y and x be positive left and right eigenvectors ofB(n0) associated with

ρ(B(n0)) for anyn0 ∈ N0(p̄). If w = cy ◦ x, c > 0, then p̄ = p∗(w).

Proof: The proof can be found in Appendix VIII-G.

B. Saddle point characterization of the Perron roots

Finally, we point out that Theorem 1 gives rise to a saddle point characterization ofρ(B(n)), n ∈

N0(p̄). Let ΠK := {x ∈ R
K
+ : ‖x‖1 = 1} andΠ+

K = ΠK ∩ R
K
++. We defineG : Π+

K × P+ → R

as

G(w,p) :=
∑

k∈K
wkψ

(

γk/SIRk(p)
)
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whereψ(x) := −φ(1/x). A key ingredient in the proof of the saddle point characterization is

the following theorem, which can be deduced from [15, Sections 1.2.4–5]:

Theorem 4:Assume that (A.1)–(A.3) hold andV is irreducible. LetB = B(n) for anyn ∈ N,

and letw = y ◦ x ∈ Π+
K wherey andx are positive left and right eigenvectors ofB associated

with ρ(B). Then, for allp > 0,

ψ(ρ(B)) ≤
∑

k∈K
wkψ

((Bp)k
pk

)

. (25)

Equality holds if and only ifp = x > 0.

Now we are in a position to present the saddle point characterization of the Perron root of

B(n), n ∈ N0(p̄), similar to the one for the noiseless case which can be found in [15].

Theorem 5:Suppose that (A.2) and (A.3) hold, andV is irreducible. Then,

ψ(ρ(B(n0))) = sup
w∈Π+

K

inf
p∈P+

G(w,p) = inf
p∈P+

sup
w∈Π+

K

G(w,p)

wheren0 = argmaxn∈Nρ(B
(n)). Moreover, a point(w∗,p∗) is the saddle point ofG(w,p) if

and only ifp∗ = p̄ andw ∈ W, where

W =
{

w ∈ Π+
K : w =

∑

n∈N0

cnw
(n),

∑

n∈N0

cn = 1, cn ≥ 0
}

and w(n) := y(n) ◦ x(n) ∈ Π+
K with ρ(B(n))x(n) = B(n)x(n), ρ(B(n))y(n) = (B(n))Ty(n),

(y(n))Tx(n) = 1. In words, at the saddle point the power vector is equal to themax-min SIR-

balanced power allocation, whereas the weight vector is anylinear combination of the vectors

w(n) for n ∈ N0(p̄).

With Theorems 1 and 4 in hand, the proof is similar to that in [15, Section 1.2.4]. The

existence of a saddle point is ensured by irreducibility of the gain matrix since then positive

left and right eigenvectors exist. The uniqueness follows from the irreducibility property and the

normalizations.

The reason why the theorem is of interest is that it provides abasis for the design of alternative

power control algorithms for saddle point problems that converge top̄ and may be amenable to

distributed implementation. Basically, the idea of the algorithm is redolent of that of primal-dual

algorithms that converge to a saddle point of the associatedLagrange function [34]. Development

of new algorithms is currently a subject of our ongoing work;the main idea, however, consists

in minimizing the functionG(w,p) with respect top, andsimultaneouslymaximizingG(w,p)
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with respect tow. The straight-forward approach employs the gradient projection method, where

in order for the objective function to be convex in the power variable the substitutions = log(p)

is used. Each iteration encompasses the calculation of the gradient ofG(w, es), and an update of

the vectorsw ands in the direction and against the direction of the gradient, respectively. This

process requires a suitable step size to be chosen. The iteration is concluded with a projection

of the updated values ofw ands onto the corresponding sets of valid values.

The minimization ofG(w,p) in the power domain using the gradient projection method cor-

responds to employing the power control algorithm presented in [15, Section 6.5]. In particular,

the gradient can be computed in a distributed way, and the projection onto the feasible set is also

distributedly implementable in many cases of interest. As for the optimization in the weights

domain, the gradient can be computed independently by each node, but performing the projection

requires in general centralized operation.

VI. CONCLUSIONS

In this paper, we have characterized the max-min SIR-balanced power allocation under general

power constraints. This characterization is an extension of the results known previously for

the noiseless case, in which the power constraints play no role. We have also established a

connection between the max-min SIR-balancing power allocation problem and the utility-based

power allocation problem for the considered case, and as an application of our results we have

discussed two classes of power allocation algorithms basedon those two approaches. Finally, we

have presented a saddle-point characterization of the Perron roots of the extended gain matrices

which may constitute a basis for developing distributed power control algorithms.
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VIII. A PPENDIX

A. Proof of Observation 2

Let (A.3) be satisfied, and let̄p ∈ P+ be any solution to (2) or, equivalently, (6). Letq̄k =

φ(SIRk(p̄)/γk), k ∈ K . By Observation 1,F is a convex downward comprehensive set and,

by (A.2), (6) and (7),q̄ = (q̄1, . . . , q̄K) ∈ ∂F is its boundary point since at least one power

constraint is active in the optimum (see Lemma 2). Thus, by irreducibility of V and Lemma

1, there existsw > 0 such thatwT (q̄ − u) ≥ 0 for all u ∈ F. Due to positivity ofw, this

implies that for anyu ∈ F,u 6= q̄, there is at least one indexi = i(q̄,u) ∈ K such that

q̄i > ui. In particular, for anyu ∈ F,u 6= q̄′ there isi = i(q̄′,u) ∈ K such thatq̄′i > ui where

q̄′k = φ(SIRk(p̄
′)/γk), k ∈ K. On the other hand, however, we haveq̄′ ≤ q̄. This is simply

becausēq′1 = · · · = q̄′K = mink∈Kφ(SIRk(p̄)). Combining both inequalities shows thatq̄ = q̄′,

and hence, by bijectivity, we obtain̄p = p̄′, which is unique by [15, Theorem A.51].

B. Proof of Lemma 2

Part (i) should be obvious since if we hadgn(p̄) < 1 for all n ∈ N, then it would be

possible to increasemink∈KSIRk(p̄)/γk by allocating the power vectorcp̄ ∈ P+ with c =

1/maxn∈N gn(p̄) > 1. In order to show part(ii), note that if (A.2) and (A.3) hold, then, by

Observation 1,F is a convex downward comprehensive set. Moreover,p̄ ∈ P+ given by (6)

corresponds to a point̄q ∈ ∂F, with q̄k = φ(SIRk(p̄)/γk), k ∈ K. Thus, by irreducibility ofV,

it follows from Lemma 1 that̄q is a maximal point ofF, and hencēq ≤ q for anyq ∈ F implies

that q = q̄ [34]. That is, there is no vector inF that is larger in all components than̄q. On

the other hand, by the discussion in Sect. III,q̄ is a point where the hyperplane in the direction

of the vector(1/K, . . . , 1/K) intersects the boundary ofF. As a result,q̄1 = · · · = q̄K , which

together with the maximality property and strict monotonicity of φ, shows thatSIRk(p̄)/γk = β

for eachk ∈ K whereβ is positive due to(i). If V is irreducible, the uniqueness ofp̄ follows

from Observation 2.

C. Proof of Lemma 4

Let n ∈ N be arbitrary. First we prove part(i). Since1/Pnzc
T
n ≥ 0 andV is irreducible,

we can conclude from (16) thatB(n) ≥ 0 is irreducible as well. Thus, by the Perron-Frobenius
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theorem for irreducible matrices [33], [32], there exists apositive vectorp which is an eigenvector

of B(n) associated withρ(B(n)), and there are no nonnegative eigenvectors ofB(n) associated

with ρ(B(n)) other thanp and its positive multiples. Among all the positive eigenvectors, there

is exactly one eigenvectorp > 0 such thatgn(p) = c1. This proves part(i). In order to prove

(ii), note that ifA(n) was irreducible, then we could invoke the Perron-Frobeniustheorem and

proceed essentially as in part(i) to conclude(ii) (with the uniqueness property resulting from

the normalization of the eigenvector so that its last component is equal toc2 > 0). In order to

show thatA(n) is irreducible, letG(A(n)) be the associated directed graph of{1, . . . , K + 1}

nodes [33]. SinceΓV is irreducible, it follows that the subgraphG(ΓV) is strongly connected

[33]. Furthermore, as the vectorΓz is positive, we can conclude from (14) that there is a directed

edge leading from nodeK + 1 to each noden < K + 1 belonging to the subgraphG(ΓV).

Finally, note that asΓV is irreducible, each row ofΓV has at least one positive entry. Hence,

the vector1/Pnc
T
nΓV has at least one positive entry as well, from which and (14) itfollows that

there is a directed edge leading from a node belonging toG(ΓV) to nodeK + 1. So,G(A(n))

is strongly connected, and thusA(n) is irreducible.

D. Proof of Theorem 1

(i) → (ii): By Lemma 3,p̄ ∈ P+ satisfies (15) for someβ > 0. Thus, by Lemma 4, part(i)

implies part(ii). (ii) → (iii): Given anyn ∈ N0(p̄), it follows from (15) thatρ(B(n))p̄ = B(n)p̄

with gn(p̄) = 1 is equivalent toρ(B(n))p̄ = ΓVp̄+ Γz, which in turn can be rewritten to give

(13) with β = ρ(B(n)) and p̃ = (p̄, 1). Sincep̄ is positive, so is alsõp. Thus,p̃ with p̃K+1 = 1

is a positive right eigenvector ofA(n) and the associated eigenvalue is equal toρ(B(n)) > 0. So,

considering part(iii) of Lemma 4, we can conclude that(iii) follows from (ii). (iii) → (i): By

Lemma 4, for eachn ∈ N0(p̄), there exists exactly one positive vectorp̃ with p̃K+1 = 1 such

that (13) is satisfied. Furthermore,β = ρ(A(n)), n ∈ N0(p̄) is a simple eigenvalue ofA(n). Now

considering Lemma 3 proves the last missing implication.

E. Proof of Lemma 5

By (7) with (A.2), we haveq ∈ F if and only if there isp ∈ P such thatφ(SIRk(p)/γk) ≥ qk

for eachk ∈ K. Thus,q ∈ F if and only if 1/λ := maxp∈P mink∈K(SIRk(p)/γkg(qk)) ≥ 1

where the maximum always exists. Comparing the left hand side of the inequality above with
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(2) shows that the only difference to the original problem formulation is thatγk is substituted by

γkg(qk) or, equivalently,Γ by G(q)Γ, which is positive definite as well. Thus, by (10), Theorem

1 and Theorem 2, we haveq ∈ F if and only if λ = maxn∈Nλn(q) ≤ 1. Moreover,p(q) given

by (23) is theuniquepower vector such thatqk = φ(SIRk(p(q))/γk) for eachk ∈ K. Since the

Neumann series converges for anyq ∈ F, we havep(q) =
∑∞

l=0(G(q)ΓV)lG(q)Γz. Now as

G(q)Γz is positive andG(q)ΓV is irreducible, we can conclude from [15, Lemma A.28] and

(A.2) that each entry ofp(q) is strictly increasingin each entry ofq. Thus, asF is downward

comprehensive andq /∈ ∂F holds if and only if all power constraints are inactive, for every

q ∈ int(F), there isq̃ ∈ ∂F such that̃q = q+u for someu > 0. By irreducibility of B(n), this

implies thatλn(q) < λn(q + u) = λn(q̃) ≤ 1 for eachn ∈ N So, if maxn∈Nλn(q) = 1, then

q ∈ ∂F. Conversely, ifq ∈ ∂F, we must havemaxn∈Nλn(q) = 1 since otherwise there would

exist q̃ /∈ F such thatmaxn∈Nλn(q̃) = 1, which would contradict Theorem 2. This completes

the proof.

F. Proof of Theorem 3

Let q̃ ∈ ∂F andn0 = argmaxn∈Nλn(q) be arbitrary and note thatF is a convex set. So, by

Lemma 1, there isw > 0 such that̃q maximizesq 7→ wTq overF. Lemma 5 implies that this

convex problem can be stated asq̃ = argmaxqw
Tq subject toλn0

(q) = 1,q ∈ QK . Due to

(A.2), the spectral radius is continuously differentiableon QK . Thus, the Karush-Kuhn-Tucker

conditions [34], which are necessary and sufficient for optimality (due to the convexity property),

imply thatw is parallel with∇λn0
(q). Now, by [42], we have∂λn0

(q)

∂qk
= ykg

′(qk)
∑

l∈K b
(n0)
k,l xl =

g′(qk)
g(qk)

yk
∑

l∈K g(qk)b
(n0)
k,l xl = λn0

(q) g
′(qk)
g(qk)

ykxk = g′(qk)
g(qk)

ykxk for eachk ∈ K wherey andx are

left and right positive eigenvectors ofG(q)B(n0) associated withλn0
(q), which, by irreducibility,

are unique up to positive multiples.

G. Proof of Corrolary 1

As V is irreducible, Observations 1 and 2 (see also the proof) imply that p̄ corresponds to a

point q̄ ∈ ∂F. Sinceq∗(w) ∈ ∂F for anyw > 0, it follows from Theorem 3 that̄q = q∗(w) if

w is has the form (24). Now by Observations 1 and 2, we haveq̄1 = · · · = q̄K . Thus, as bothg

and its derivativeg′ are strictly monotonic (by (A.2) and (A.3)), we must haveu(q̄) = a1, a > 0

andG(q̄) = 1/ρ(B(n0))I. Thus, the corollary follows from Theorem 3.
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