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Abstract

Constant-dimension codes (CDCs) have been investigatewbfwoherent error correction in random
network coding. The maximum cardinality of CDCs with givemimum distance and how to construct
optimal CDCs are both open problems, although CDCs obtalnetifting Gabidulin codes, referred
to as KK codes, are nearly optimal. In this paper, we first toes a new class of CDCs based on
KK codes, referred to as augmented KK codes, whose cartiisadire greater than previously proposed
CDCs. We then propose a low-complexity decoding algoritbmdur augmented KK codes using that
for KK codes. Our decoding algorithm corrects more erroenth bounded subspace distance decoder
by taking advantage of the structure of our augmented KK olttethe rest of the paper we investigate
the covering properties of CDCs. We first derive bounds onntiréimum cardinality of a CDC with a
given covering radius and then determine the asymptoti@weh of this quantity. Moreover, we show
that liftings of rank metric codes have the highest possiloieering radius, and hence liftings of rank
metric codes ar@ot optimal packing CDCs. Finally, we construct good covering CDCs bgmging

liftings of rank metric codes.

. INTRODUCTION

While random network coding [1]-[3] has proved to be a powetidol for disseminating information
in networks, it is highly susceptible to errors caused byoer sources. Thus, error control for random
network coding is critical and has received growing attamtiecently. Error control schemes proposed
for random network coding assume two types of transmissiodets: some (see, for example, [4]-
[9]) depend on and take advantage of the underlying netwapklogy or the particular linear network

coding operations performed at various network nodes;retfi], [11] assume that the transmitter


http://arxiv.org/abs/0903.2675v1

and receiver have no knowledge of such channel transfeacteaistics. The contrast is similar to that
between coherent and noncoherent communication systeata. ttansmission in noncoherent random
network coding can be viewed as sending subspaces througpeaator channel [10]. Error correction
in noncoherent random network coding can hence be treated @sling problem where codewords
are linear subspaces and codes are subsets of the projsgtice of a vector space over a finite field.
Similar to codes defined over complex Grassmannians foratwrent multiple-antenna channels, codes
defined in Grassmannians associated with the vector spageapsignificant role in error control for
noncoherent random network coding; Such codes are reféored constant-dimension codes (CDCs)
[10]. In addition to the subspace metric defined in [10], ajedtion metric was defined for subspace
codes over adversarial channels in [12].

Construction of CDCs has received growing attention in itexdture recently. In [10], a Singleton
bound for CDCs and a family of codes were proposed, which aaly Singleton-bound-achieving and
referred to as KK codes henceforth. A multi-step constainctif CDCs was proposed in [13], and we call
these codes Skachek codes; Skachek codes have largeratiiedirthan KK codes in some scenarios,
and reduce to KK codes otherwise. Further constructionsuall parameter values were given in [14]
and the Johnson bound for CDCs was derived in [15]. Althodgh@DCs in [15] are optimal in the
sense of the Johnson bound, they exist in some special cagedDespite these previous works, the
maximum cardinality of a CDC with a given minimum distanceddmow to construct optimal CDCs
remain open problems.

Although the packing properties of CDCs were investigate[ 0], [13]-[15], the covering properties
of CDCs have received little attention in the literaturevéaing properties are significant for error control
codes, and the covering radius is a basic geometric parawfedecode [16]. For instance, the covering
radius can be viewed as a measure of performance: if the miminlistance decoding is used, then the
covering radius is the maximum weight of a correctable ewvemtor [17]; if the code is used for data
compression, then the covering radius is a measure of th@maeaxdistortion [17]. The covering radius
is also crucial for code design: if the covering radius is esslthan the minimum distance of a code,
then there exists a supercode with the same minimum disamtereater cardinality.

This paper has two main contributions. First, we introducaes class of CDCs, referred to as
augmented KK codes. The cardinalities of our augmented Kdés@realways greater than those of KK
codes, and iimost cases the cardinalities of our augmented KK code are gréearthose of Skachek
codes. Thus our augmented KK codes represent a step towlidgsthe open problem (construction

of optimal CDCs) mentioned above. Furthermore, we propeseflicient decoding algorithm for our
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augmented KK codes using the bounded subspace distancdimg@gorithm in [10]. Our decoding
algorithm corrects more errors than a bounded subspacandestdecoder. Second, we investigate the
covering properties of CDCs. We first derive some key gedmegsults for Grassmannians. Using these
results, we derive upper and lower bounds on the minimumirtality of a CDC with a given covering
radius. Since these bounds are asymptotically tight, we détermine the asymptotic behavior of the
minimum cardinality of a CDC with a given covering radiustt#dugh liftings of rank metric codes can
be used to construct packing CDCs that are optimal up to ars(sde, for example, those in [10]), we
show that all liftings of rank metric codes have the greatesering radius possible; our result further
implies that liftings of rank metric codes amet optimal packing CDCs. We also construct good covering
CDCs by permuting liftings of rank metric codes.

The rest of the paper is organized as follows. To be selfainatl, Sectiofll reviews some necessary
background. In Sectiop]ll, we present our augmented KK soaled a decoding algorithm for these

codes. In Sectioh IV, we investigate the covering propemieCDCs.

Il. PRELIMINARIES
A. Subspace codes
We refer to the set of all subspaced&f (¢)"™ with dimension- as the Grassmannian of dimensioand
denote it ast,.(¢,n); we refer toE(q,n) = J;_, Er(¢,n) as the projective space. Fot V' € E(q,n),
both thesubspace metric [10, (3)]

ds(U, V) ' dim(U + V) — dim(U N V) = 2dim(U + V) — dim(U) — dim(V)) 1)

andinjection metric [12, Def. 1]

def 1

a,(U, V)= §dS(U’ V) + %| dim(U) — dim(V)| = dim(U + V) — min{dim(U), dim(V)}  (2)

are metrics over(q,n). A subspace code is a nonempty subset df(¢,n). The minimum subspace
(respectively, injection) distance of a subspace codeésniimimum subspace (respectively, injection)

distance over all pairs of distinct codewords.

B. CDCs and rank metric codes

The Grassmanniah, (¢, n) endowed with both the subspace and injection metrics formesaociation

scheme [10], [18]. For alU, V' € E.(q,n), ds(U,V) = 24,(U, V') and the injection distance provides a

June 4, 2018 DRAFT



i

natural distance spectrum, i.6.< d,(U, V) < r. We have|E,(¢,n)| = ["], where["] =[]/, ‘;":g is

the Gaussian polynomial [19], which satisfies
T n - rin—r
r

forall 0 <r <mn, whereK, = [];Z,(1 - q~7) [20]. We denote the number of subspacesiirg,n) at
distanced from a given subspace a¥(d) = ¢* [/] [";"] [10], and denote a ball it (¢,n) of radius
t around a subspadé and its volume as3,(U) and Ve(t) = °},_, Nc(d), respectively.

A subset ofE,.(¢,n) is called a constant-dimension code (CDC). A CDC is thus sssate code
whose codewords have the same dimension. We denotaakenum cardinality of a CDC inE,(q, n)
with minimum distancel as A.(q, n, r, d). Constructions of CDCs and bounds 4p(q, n, r, d) have been

given in [10], [13]-[15], [21]. In particularAc(q, n,7,1) = [] and it is shown [13], [15] for < |Z|

and2 <d<r,
n(r—d+1) _ (r+l)(r—d+1) n
1 ! < Actg,n,r,d) < =i (@)

[l
wherel =n mod r. We denote the lower bound of.(¢, n, r,d) in () asL(q, n,r,d). Since the lower

qr(r—d—i-l) -1

bound is due to the class of codes proposed by Skachek [13jeferto these codes as Skachek codes.

CDCs are closely related to rank metric codes [22]-[24],cvhian be viewed as sets of matrices
in GF(¢)"™ ™. The rank distance between two matricd€sD € GF(q)"*" is defined asiz(C, D) def
rk(C — D). The maximum cardinality of a rank metric code @G (¢)™*" with minimum distancel
is given bymin{gm("—4+1) ¢n(m—d+1)}1 and codes that achieve this cardinality are referred to a®MR
codes. In this paper, we shall only consider MRD codes thatedther introduced independently in
[22]-[24] for n < m, or their transpose codes far > m. The number of matrices iGF(q)™*"™ with
rank d is denoted asVx(q, m,n,d) = [1}] [T%=) (¢ — ¢*), and the volume of a ball with rank raditisn
GF(q)™*"™ asVx(q,m,n,t) = Ziz:o Nk(q, m,n,d). The minimum cardinalitysz(¢™, n, p) of a code in
GF(g)™*™ with rank covering radiug is studied in [25], [26] and satisfids(¢™, n, p) = Kr(¢", m, p)
[25].

CDCs are related to rank metric codes through the liftingratien [11]. Denoting the row space of a
matrix M as R(M), the liting of C € GF(¢q)"("~") is defined ad(C) = R(1,|C) € E,(¢q,n). For all
C,D € GF(q)"™ "), we haved,(I(C), I(D)) = dx(C, D) [11]. A KK code in E,(¢q, n) with minimum
injection distancel is the lifting I(C) C E,(q,n) of an MRD codeC C GF(q)"*™~") with minimum
rank distancel and cardinalitymin{q("—")("=d+1) gr(n=r=d+1)1 An efficient bounded subspace distance
decoding algorithm for KK codes was also given in [10]. Altigh the algorithm was presented foK Z,

it can be easily generalized to all
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I1l. CONSTRUCTION OFCDCs

In this section, we construct a new class of CDCs which carntdd codes as proper subsets. Thus
we call them augmented KK codes. We will show that the calfii@s of our augmented KK codes are
always greater than those of KK codes, and that in most chagesardinalities of our augmented KK
code are greater than those of Skachek codes. Furthermererapose a low-complexity decoder for
our augmented KK codes based on the bounded subspace distacader in [10]. Since dual CDCs

preserve the distance, we assume 3 without loss of generality.

A. Augmented KK codes

Our augmented KK code is so named because it has a layeretustrand the first layer is simply
a KK code. We denote a KK code if,. (¢, n) with minimum injection distancé (d < r by definition)
and cardinalityg™ "=+ as 0. For1 < k < |5], we first define two MRD code&* and D*,
and then construcE® based onC* and D*. C* is an MRD code inGF(q)"—*4)xkd with minimum
distanced for k < 2] —1 (|%==] > [2]) andclil = {0} C GF(q)(Lil9xLil% Dk is an
MRD code in GF(g)"*("="=k4) with minimum distancel for k < ["5"| — 1 and DL*7"] = {0} C
GF(q)’”X(”""‘L%Jd). Forl <k < [gJ, the block lengths of* and DF are at leastl, and hence

existence of MRD codes with the parameters mentioned at®wevial. For1 < k < |%], I(C*)
and I(D¥) are either trivial codes or KK codes with minimum injectioistdnced in E,_.q(¢,r) and
E.(q,n — kd), respectively. Fol < k < |%]|, CF € CF, andDé? e DF, we defineEf,j € E.(q,n) as

I_ ‘C’? 0 ‘ 1Dk
rohd | D% | and Ek = {Efj}l.cjkz‘ol’mk‘ '. Our augmented KK code
0 | 0 |T| o

the row space of(

is simply £ = U,gijo E*. In order to determine its minimum distance, we first essibtivo technical
results. First, for any two matrices € GF(q)**", B € GF(q)**", by (1) and[(2) we can easily show
that

&
=
Z
=
=
i

2rk(AT|BT) — rk(A) — rk(B) > |rk(A) — rk(B)], (5)
d(R(A),R(B)) = rk(AT|BT) — min{rk(A),rk(B)} > |rk(A) — rk(B)|. (6)
Second, we show that truncating the generator matrices@stwspaces i (¢, n) can only reduce the
(subspace or injection) distance between them.
Lemma 1: Suppose) < n; < n. Let A = (A1|Ay) € GF(q)**", B = (B1|B2) € GF(¢q)"*", where
A; € GF(q)»™ andB; € GF(¢q)>*™. Then fori = 1 and2, ds(R(A;), R(B;)) < ds(R(A), R(B))
andd,(R(A;),R(B;)) < d(R(A),R(B)).
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Proof: It suffices to prove it fori = 1 andn; = n— 1. We need to distinguish two cases, depending
on rk(AT|BT). First, if tk(AT|BT) = rk(AT|BT), then it is easily shown thatk(A;) = rk(A)
and rk(B;) = rk(B), and henceds(R(A1), R(B1)) = ds(R(A),R(B)) and d,(R(A;), R(B1)) =
d(R(A), R(B)) by (8) and[(6), respectively. Secondyif(AT|BY) = rk(AT|BT)—1, thends(R(A1), R(B1)) =
ork(AT|BT) —2— k(A1) —rk(B1) < ds(R(A), R(B)) by 8) andd,(R(A,), R(B,)) = rk(AT|BT) —

1 — min{rk(A:),rk(B1)} < d(R(A), R(B)) by (8). m

Proposition 1: £ has minimum injection distancé

Proof: We show that any two codewordgﬁj,Eg’b € & are at injection distance at leasgtusing
Lemmall. Whenc # k, let us assume < k without loss of generality, and them(Ef,j,Egvb) >
d/(R(T,—14]0), R(L,_q)) = (k—c)d > d. Whene = k anda # i, thend, (EY, X)) > d,(I(CF), I(CK)) >
d. Whene = k, a = i, andb # j, thend,(EF,, EF,) > d,(I(D¥), I(D})) > d. m

Let us first determine the cardinality of our augmented KKadBy constructionf has cardinality
€] = q(n—r)(r—d+1)+2£§1 (CH{[D*), where|cL3] | = 1 and|CF] = min{q(r—Fd(ki—d+1) ghd(r—hd—d+1)y
for 1 <k<|2|—1andpl*7]| =1 and
D] = min{q" ("7 —kd=d+1) gn—r—kd)(r=d+1)} for 1 < k < |2=L| — 1,

Let us compare the cardinality of our augmented KK codes ¢sdtof KK and Skachek codes. Note
that all three codes are CDCs with minimum injection diseahin E,. (¢, n). First, it is easily shown that
our augmented KK codes properly contain KK codes for all paatr values. This is a clear distinction
from Skachek codes with cardinalify(q, n, , d), which by [4) reduce to KK codes f8r > n. In order to
compare our codes to Skachek codes whert n, we first remark tha{.(4) andl(3) lead fdq, n,r,d) —
gr)r=d+1) < Kq—lq(n—%)(r—d—‘rl)' Also, we havelg| > q(n—n—d+1) 4 |c1[|Dl| > ¢(n—r)r—d+1) 4
g=r=dr=d+1) Hencel|&| — ¢(n=N0—d+) 5 [ qr=D=d+D) ([ (g, n, 1, d) — ¢4+ and our
augmented KK codes have a greater cardinality than Skadddsovhen! < r. We emphasize that for
CDCs of dimensiomnr, their minimum injection distancé satisfiesd < r. A Skachek code is constructed
in multiple steps, and in théth step { > 1), subspaces that correspond to a KK cod&jiiq, n — ir)

are added to the code. When= r, £ is actually the code obtained after the first step.

B. Decoding of augmented KK codes

Let A = (Ag|A3) € GF(q)**™ be the received matrix, wher, € GF(¢)**" andAs € GF(¢)** ("),
We propose a decoding algorithm that either produces thguentodeword ir€ closest toR(A) in the
subspace metric or returns a failure. Suppose the minimumspsice distance of our augmented KK

codes is denoted &&l, a bounded distance decoder would find the codeword thabisest toR(A)
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up to subspace distanek— 1. Our decoding algorithm always returns the correct coddvioit is at
subspace distance at makt 1 from the received subspace, thus correcting more errorsaizounded
subspace distance decoder.

Given the layered structure ¢f, our decoding algorithm fo€ is based on a decoding algorithm for
&¥, shown below in Algorithnill1, for an. We denote the codewords &Y as £ ; for 0 < j < [£°] 1.

Algorithm 1: EBDD(k, A).

Input: k andA = (A|A3|A3) € GF(q)**", A1 € GF(q)™ "=+, A, € GF(q)™*?, A3 € GF(q)**(»~7),
Output: (Ef, dy., fx)-
@M1 If & = 0, use the decoder fof” to obtain Ej ;, calculated, = ds(R(A), Eg;), and return
(Eg,j, dy,0). If the decoder returns a failure, retuffi(0), d, 0).
[0.2 Use the decoder df(C*) on (A;|As) to obtainCF. If the decoder returns a failure, s€f = 0,
D = 0 and return(E};, d,0).
[.3 Use the decoder df(D*) on (A;|A3) to obtainD. If the decoder returns a failure, B =0
and return(E;;, d, 0).
@4 Calculatel, = ds(R(A), EF,) and fi, = 2d — max{ds(R(A1|Az), I(CF)), ds(R(A1]As), I(D%))}
and return(Ef ;, dy, fx).

Algorithm [ is based on the bounded distance decoder prddagd0]. Whenk = 0, £° is simply a
KK code, and the algorithm in [10] is used directly; whierr 1, given the structure of*, two decoding
attempts are made based oA;1|A-) and (A1|A3), and both are based on the decoding algorithm in
[10].

We remark that Algorithrill always retu(m?ﬁj, dy, fx). If @ unique nearest codeword i at distance
no more thand — 1 from R(A) exists, then by Lemm@l 1 Step§]1.2 1.3 succeed and Algdiith
returns the unique nearest codewordEif\j. However, when such unique codeword&h at distance no
more thand — 1 does not exist, the return valyg can be used to find the unique nearest codeword
becausef; is a lower bound on the distance from the received subspaaeytmther codeword ig”.
Also, whenf;, = 0, Algorithm[2 below always returns a failure. Thus, we calgailithm[1 an enhanced
bounded distance decoder.

Lemma 2: Suppose the output dEBDD(k, A) is (E};, d, f), thends(R(A), Ef ) > f;, for any
Ef , € £F provided (u,v) # (i, ).

Proof: The casef;, = 0 is trivial, and it suffices to considgy, = min{2d—ds(R(A1|Az), I(C})),2d—
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ds(R(A1|A3), I(D¥))}. Whenu # i, Lemmall yields
ds(R(A), Ey,) > ds(R(A1]A2),1(C}))

> ds(I(CF),1(Ch)) — ds(R(A1]Az), I(CY))

> 2d — ds(R(A1|A2),I(C})) > fi.

Similarly, whenv # j, we obtainds(R(A), Ef ) > 2d — ds(R(A1|A3), (D)) > fy. |
The algorithm for€ thus follows.
Algorithm 2: Decoder for€.
Input: A = (Ag|A3) € GF(¢)™", Ag € GF(q)**", A3 € GF(q)**(»~7),
Output: Either a failure or the unique nearest codeword iinom R(A).
2.1 If rk(A) <r—d+1, return a failure.
2.2 Calculater — rk(Ag) = Id +m where0 <1 < [4] and0 < m < d.
2.3 CallEBDD(/, A) to obtain(E; ;,d;, f;). If dy <d—1, returnE! .

WE
2.4 1f m =0, return a failure. Otherwise, caiBDD(I + 1, A) to obtain(Eifgl,dHl,le). If djpq1 <
d—1, return EL}'.
2.5 If d; < min{d+m, fi,di41, fir1,2d—m}, returnEf.vj. If di1 < min{d+m,dy, fi, fii1,2d —m},
return B
[2.6 Return a failure.

Proposition 2: If the received subspace is at subspace distance atdnedt from a codeword ir¢,
then Algorithm[2 returns this codeword. Otherwise, Aldumit[2 returns either a failure or the unique
codeword closest to the received subspace in the subspade.me

Proof: We first show that Algorithni]2 returns the unique nearest wodeé in £ to the received
subspace if it is at subspace distance at ndostl. For all1 < k < [gj and Efj,v e &k, Lemmal and
(®) yield

ds(R(A), By ) = ds(R(A), I(Cy)) 2 |r — kd — tk(Ag)| = [(I — k)d + m]. ()

Similarly (8) yieIdst(R(A),E&v) > ld + m for any v. Henceds(R(A),&F) > dfor k <1 —1 or
k > 1+ 2. Therefore, the unique nearest codeword is eithef'inr £+ and applying Algorithni1l for
Ehand £ always returns the nearest codeword.

We now show that when the distance from the received subgpabe code is at leagt, Algorithm[2
either produces the unique nearest codeword or returnsuaefafirst, by [7),ds(R(A), 1) =d +m
andds(R(A),E%2) = 2d — m, while ds(R(A),EF) > 2d for k <1 —2 or k > 1+ 3. Also, by Lemma
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2, ds(R(A),El,) > f for all (u,v) # (i,5) and ds(R(A),E™Y) > min{dy1, fi41}. Therefore, if
d; < min{d+m, fi,dj+1, fir1,2d —m}, thenEfvj is the unique codeword closest R(A). Similarly, if
di+1 < min{d + m, dy, fi, fi+1,2d — m}, thenEifg1 is the unique codeword closest ft(A). [ |

We note that whenk(A) < r —d + 1, by (8) Steps]Ll2 and[1.3 would both fail, and Algorithin 2
will return a failure. We also justify why Algorithrnl 2 retusra failure ifd; > d andm = 0 in Step[Z.3B.
Supposel; > d andm = 0 and we apply Algorithni]1 fo€+!. Then we havel; > d +m and by [7)
di+1 > |d —m| = d + m. Therefore, neither inequality in Stefi P.5 is satisfied dreddecoder returns a
failure.

By Proposition 2, Algorithni2 decodes beyond the half distarHowever, the decoding radius of
Algorithm [2 is limited. It is easy to see that the decodingiwadf Algorithm[2 is at mostl + L%J due
to the termsd + m and2d — m in the inequalities in Stelpl[2.5. We emphasize that this isgnsupper
bound, and its tightness is unknown. Suppeserk(Ag) = ld + m, when Algorithm[2 decodes beyond
half distance, it is necessary thatand f;,; be both nonzero in Stép[2.5. This implies that the row space
of (A1|A,) is at subspace distance no more thian 1 from 7(C') and I(C'*!) and that the row spaces
of (A;]A3) are at subspace distance no more tian1 from I(D') and I(D!*1).

We note that the inequalities in Stelp12.5 are strict in ordegrtsure that the output of the decoder is
the unique nearest codeword from the received subspace. Howevergifobithe nearest codewords is
an acceptable outcome, then equality can be included inmntgualities in Stepl2.5.

Our decoding algorithm can be readily simplified in order ttain a bounded subspace distance
decoder, by removing Stépg[2.5. We emphasize that the gedecalding algorithm has the same order
of complexity as this simplified bounded subspace distamo®ding algorithm.

Finally, we note that the decoding algorithms and discunssabove consider the subspace metric. It is
also remarkable that our decoder remains the same if thetimjemetric is used instead. We formalize
this by the following proposition.

Proposition 3: If the received subspace is at injection distance at mioestl from a codeword irt,
then Algorithm[2 returns this codeword. Otherwise, Aldumit[2 returns either a failure or the unique
codeword closest to the received subspace in the injectienian

The proof of Proposition]3 is based on the observation thatdeword in a CDC is closest to the
received subspace in the subspace metric if and only if teword is closest to the received subspace
in the injection metric by[(2), and is hence omitted.

The complexity of the bounded subspace distance decod&0jrfdgr a KK code inE(q,n) is on the

order of O(n?) operations oveGF(q)"~" for r < %, which is hence the complexity of decodigy.
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This algorithm can be easily generalized to include the vaser > 7, and we obtain a complexity on
the order ofO(n?) operations oveGF (¢™*{m"="}), Thus the complexity of decodingC*) and I(D*)
for k > 1 is on the order of(r?) operations oveGF (¢m@{kdr—kd}) andO((n — kd)?) operations over
GF (¢maxirn—kd=r}) “respectively. The complexity of the decoding algorithm & is on the order of
the maximum of these two quantities. It is easily shown that complexity is maximized fok = 0,

that is, our decoding algorithm has the same order of coritplas the algorithm for the KK cod&®.

IV. COVERING PROPERTIES OKCDCs

The packing properties of CDCs have been studied in [10]-13], [21] and an asymptotic packing
rate of CDCs was defined and determined in [10]. Hencefortiig section, we focus on the covering
properties of CDCs in the Grassmannian instead. We emgh#sat sincels(U, V) = 24,(U, V) for all
U,V € E.(¢q,n), we consider only the injection distance in this sectiornrtt@ermore, sincel, (U, V) =

d,(U+, V4 for all U,V € E,.(q,n), without loss of generality we assume that L%J in this section.

A. Properties of balls in the Grassmannian

We first investigate the properties of balls in the Grassri@nh,.(¢,n), which will be instrumental
in our study of covering properties of CDCs. First, we def@inds on the volume of balls i, (¢, n).

Lemma 3: For allg, n, r < [2], and0 <t <r, ¢!~ <V (t) < K 2! Y.

Proof: First, we havel(t) > Nc(t) > ¢""~" by @). Also, N(d) < K, ' Nx(q,n — r,r,d), and

henceV(t) < K7 'WVa(g,n —r,1,t) < K;2¢""Y asVi(q,n —r,m,t) < K;1¢! "% [20, Lemma 9]. m

We now determine the volume of the intersection of tgpheres of radii « and s respectively and
distanced between their centers, which is referred to as the inteémseatumber Jq(u, s,d) of the
association scheme [27]. The intersection number is an ri@pbparameter of an association scheme.

Lemma 4: For all u, s, andd between0) andr,
J (’LL S, d Z,UZ u (Z)a
=0

wherep; = [7] — [,",] and E;(i) is a¢-Eberlein polynomial [28]:

)

ZJ: ]”H )r—l r—=Iln—r+l—1i
— r—gl| i l '

Although Lemmd#4 is obtalned by a direct application of Tkaes 3.5 and 3.6 in [29, Chapter 1],
we present it formally here since it is a fundamental gedmetoperty of the Grassmannian and is very

instrumental in our study of CDCs. We also obtain a recuréiomula for J(u, s, d).
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Lemma 5. Jc(u, s, d) satisfies the following recursionk(0, s, d) = d5 4, Je(u,0,d) = 0, 4, and
Cut1Jdc(u+1,8,d) = bs_1Jc(u, s —1,d)+ (as — ay) Jc(u, s,d) + cs1Jc(u, s+ 1,d) —by—1Jc(u—1, s,d),

wherec; = Jo(1,j — 1,5) = [{]2, b = Jo(1,j + 1,5) = ¢¥ "] ["777], anda; = Je(1,4,4) =
Ne(1) —bj —¢jfor 0 < j <r.

The proof follows directly from [27, Lemma 4.1.7], [27, Tirean 9.3.3], and [27, Chapter 4, (1a)], and
hence is omitted. Lef.(u, s, d) denote the intersection of twmalls in E,.(¢,n) with radii « ands and
distanced between their centers. Sinde(u, s,d) = >2;_ > 7_ Jc(i, j, d), Lemmal4 also leads to an
analytical expression fof:(u, s, d). Propositiof 4 below shows th#t(u, s, d) decreases as increases.

Proposition 4: For all v ands, Ic(u, s,d) is a non-increasing function af.

The proof of Propositio]4 is given in AppendiX A. TherefotBe minimum nonzero intersection
between two balls with radit and s in E,(q,n) is given by I.(u,s,u + s) = Jc(u,s,u + s) for
u+s < r. By Lemmab, it is easily shown thak (u, s, u+s) = [“23]2 for all v ands whenu +s < r.

We derive below an upper bound on the union of ball€irig, n) with the same radius.

Lemma 6: The volume of the union oény K balls in E,(q,n) with radiusp is at most

l
BC(Kv p) = K‘/C(p) - Z[Ac(qvn>r>r —a-+ 1) - AC(Q»”arar —a+ 2)]Ic(p,p,7‘ —a+ 1)

a=1
—[K = Ac(g,n,r,r = L+ 1D)]c(p, p,r = 1), (8)
wherel = max{a : K > Ac(q,n,r,r —a+1)}.
Proof: Let {U;}X,' denote the centers dt balls with radiusp and letV; = {Ui}{;(} for 1 <
J < K. Without loss of generality, we assume that the centersabeléd such thad,(U;,V;) is non-
increasing forj > 1. For1 < a < and Ac(q,n,r,r —a+2) < j < Ac(g,n,r,r —a+ 1), we have
di(U;,Vj) = d,(Vj+1) < r—a+1. By Propositior L #U/; hence covers at mo$t.(p) — Ic(p, p,7 —a+1)
subspaces that are not previously covered by balls cengtrgd |
We remark that using any upper bound dn(q,n,7,» —a + 1) in the proof of Lemmdl6 leads to
a valid upper bound oB:(K, p). Hence, although the value of.(q,n,r,r — a + 1) is unknown in
general, the upper bound in] (4) can be usedln (8) in order taimlan upper bound on the volume of

the union on balls in the Grassmannian.

B. Covering CDCs

The covering radius of a CDCC C E..(q,n) is defined ap = maxycg, (4, di(U,C). We denote the

minimum cardinality of a CDC inE,.(¢,n) with covering radiup as K¢(q,n,r, p). Since Kc(q,n,n —
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r,p) = Kc(g,n,r, p), we assume < |%]. Also, Kc(q,n,r,0) = ['] and Kc(g,n,r,7) = 1, hence we

assumeé) < p < r henceforth. We first derive lower bounds &R (g, n, r, p).

Lemma 7: Forallg,n,r < |%],and0 < p < r, Kc(g,n,7,p) > min {K : B(K, p) > [I]} > VE;]).

Proof: LetC be a CDC with cardinality<c(¢, n, r, p) and covering radiug. Then the balls around
the codewords cover th[sff] subspaces i, (¢, n); however, by Lemmal6, they cannot cover more than
Bc(|Cl, p) subspaces. Therefor&.(Kc(q,n,r,p),p) > [] and we obtain the first inequality. Since
Bc(K, p) < KV¢(p) for all K, we obtain the second inequality. [

The second lower bound in Lemnha 7 is referred to as the spleering bound for CDCs. This
bound can also be refined by considering the distance distibof a covering code.

Proposition 5: For0 < § < p, letTs = min ) _;_, A;(), where the minimum is taken over all integer
sequences$A;(6)} which satisfyA;(0) =0for 0 <i<d—1,1< As5(6) < Ne(9), 0 < A4;(0) < Ne(4)
for 6 +1 <4 <r,and>l_ A;(6) >0 _Jc(l,s,i) > Nc(l) for 0 < 1 < r. Then Kc(q,n,r,p) >
maxo<s<p 1s.

Proof: LetC be a CDC with covering radiys For anyU € E,.(q,n) at distance from C, let A;(J)
denote the number of codewords at distandeom U. Then)"!_, 4;(6) = |C|] and we easily obtain
Ai(0)=0for0<i<d—1,1< As(8) < Nc(9), and0 < A;(0) < Ne(i) for 6+ 1 < i <r. Also, for
0 <! < r, all the subspaces at distarideom U are covered, hence_, A;(6) >-%_, Jc(l, s,4) > Ne(1).

[

We remark that Propositionl 5 is a tighter lower bound than ghkere covering bound. However,
determiningT}y is computationally infeasible for large parameter values.

Another set of linear inequalities is obtained from the ndestribution {a;} of a covering code’,

E LY e {D €C:d(C,D) =i} for 0 <i <r[30]

Proposition 6: Lett = min )., a;, where the minimum is taken over all sequen¢eg satisfying

ap = 1,0 < a; < Ne(@) for 1 <4 < r, 30 qaid> bt Jc(l,s,i) > Ne(l) for 0 < 1 < r, and
Ei()

Yoo aixggy = 0 for 0 <1 <r. ThenKc(q,n,r,p) > t.

Proof: Let C be a CDC with covering radius and inner distribution{a;}. Propositior[ b yields

defined asy;

0<a; <N(i)forl<i<wr Y jai> b yJc(l,s,i) > Ne(l) for 0 <1 <r, while ap = 1 follows the

definition of ;. By the generalized MacWilliams inequalities [30, Theor@n) ., a;F;(i) > 0, where

F (i) = %Ei(l) are the g-numbers of the association scheme [30, (15)],hwhedds> ", aiﬁé—((?) >
0. Since);_,a; = |C| we obtain thaiC| > t. [

Lower bounds on covering codes with the Hamming metric camHtiained through the concept of

the excess of a code [31]. This concept being independeriteofihderlying metric, it was adapted to
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the rank metric in [25]. We adapt it to the injection metriac ©8DCs below, thus obtaining the lower

bound in Proposition]7.

Proposition 7: For all ¢, n, » < |2], and0 < p < r, Kc(g,n,7,p) > %, wheree &'
5

Li’ij Cot1 — by, 6 oo Nc(1) — ¢, + 2¢, andb, and ¢, are defined in Lemmia 5.

The proof of Propositiof]7 is given in AppendiX B. We now deriwpper bounds oic(q, n,, p).
First, we investigate how to expand covering CDCs.

Lemma 8: For allg, n, r < |%], and0 < p < r, Kc(g,n, 7, p) < Ke(g,n—1,7,p—1) < [**], and
Ke(g,n,r,p) < Ke(g,n,r —Lp—1) < [" ].

The proof of Lemm&l8 is given in AppendiX C. The next upper labisna straightforward adaptation
of [25, Proposition 12].

Proposition 8. For allg, n, r < | 2], and0 < p < r, Kc(q,n, 7, p) < {1 — logm (" - Vc(p))}_lJr
1.

The proof of Propositio]8 is given in AppendiX D. The next bdus a direct application of [16,

Theorem 12.2.1].

Proposition 9: For all ¢, n, r < [gJ and0 < p <r, Kc(g,n,r,p) < vgi]p) {14+ InVc(p)}.

The bound in Propositidd 9 can be refined by applying the greégbrithm described in [32] to CDCs.
Proposition 10: Let ky be the cardinality of an augmented KK code with minimum dis&2p + 1
in E.(q,n) for 2p < r andky = 1 for 2p > r. Then for allk > ko, there exists a CDC with
cardinality k& which covers at least’] — u;, subspaces, where, def "] — koVe(p) andugir = ug —

weVe(p) w for all k£ > ko. ThusK¢(q,n,r, p) < min{k : ux = 0}.

[min{[:]—k,Bc(uk,P)}
The proof of Propositiof 10 is given in Appendix E.

Using the bounds derived above, we finally determine the psytio behavior ofK¢(¢,n,, p). The
rate of a covering CDC C E,(gq,n) is defined a Oglo‘% |(Cq‘n)|. We remark that this rate is defined in a
combinatorial sense: the rate describes how well a CDC sdber Grassmannian. We use the following

normalized parameters: = =, o’ = 2, and the asymptotic rate.(r’, o) = lim inf,,_, tog, [

Proposition 11: Forall0 < p/ <+’ < % ke(r' p) =1— fg:f;

Proof: The bounds of;.(p) in Lemmd3 together with the sphere covering bound yi€ldq, n, r, p) >
KZ2q (n=m)=r(=p) Using the bounds on the Gaussian polynomial in Se€fior, W& obtaink.(r’, o) >

1— fg:f; Also, Propositiohd leads thc(q, n, 7, p) < K, 1q" "= =P=P)[1+In(K %)+ p(n—p)Ing],

which asymptotically becomés.(r’, p') <1 — fg:fg ]

The proof of Propositioi 11 indicates that.(¢,n,r, p) is on the order ofy”(*—")—r(n=p),
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We finish this section by studying the covering propertiedifihgs of rank metric codes. We first
prove that they have maximum covering radius.

Lemma 9: Let I(C) C E,(¢q,n) be the lifting of a rank metric code iGF(¢)"™*(™~7). ThenI(C) has
covering radius-.

Proof: Let D € E,(q,n) be generated byo|D;), whereD; € GF(q)"*("~") has rankr. Then,
for any codeword/(C) generated byI,|C), it is easily seen thad,(D,I(C)) = d,(R(0), R(I,)) = r
by Lemmall. [

Lemmal® is significant for the design of CDCs. It is shown in][tiat liftings of rank metric codes
can be used to construct nearly optimal packing CDCs. Horwéeenma 9 indicates that for any lifting
of a rank metric code, there exists a subspace at distaficen the code. Hence, adding this subspace
to the code leads to a supercode with higher cardinality haedsame minimum distance sinde< r.
Thus an optimal CDC cannot be designed from a lifting of a rar@tric code.

Although liftings of rank metric codes have poor coveringperties, below we construct a class of
covering CDCs by using permuted liftings of rank metric aavg codes. We thus relate the minimum
cardinality of a covering CDC to that of a covering code whke tank metric. For ath andr, we denote
the set of subsets db), 1,...,n— 1} with cardinalityr asS!. For allJ € S, and allC € GF(g)"* "),
let 7(J,C) = R(n(I,|C)) € E.(q,n), wherer is the permutation of0,1,...,n — 1} satisfyingJ =
{m(0),7(1),...,7(r =1}, 7(0) <7(1) <...<7w(r—1),andn(r) <7w(r+1) <...<w(n—1). We
remark thatr is uniquely determined by. It is easily shown that],(I(J,C),I(J,D)) = dx(C, D) for
all 7 € ST and allC,D € GF(g)"*(»=7),

Proposition 12: For all g, n, r < | 2], and0 < p <r, Kc(g,n, 7, p) < (7)Kr(¢" ", 7, p).

Proof: LetC C GF(¢q)"*(™~") have rank covering radiysand cardinalityKx(¢"~", r, p). We show
below thatL(C) = {I(J,C) : J € S;,,C € C} is a CDC with covering radiug. Any U € E,(q,n) can
be expressed af.J, V) for someJ € S” and someV € GF(q)"*("~"), Also, by definition, there exists
C € C such thatdg(C,V) < p and hencel,(U,I(J,C)) = dr(C,V) < p. Thus L(C) has covering
radiusp and cardinality< () Kx(¢"~",r, p). |

It is shown in [25] that forr < n —r, Kx(¢" ", r,p) is on the order ofg"("~")—,(»=r) which is
also the order of<c(q,n,r, p). The bound in Proposition 12 is relatively tighter for largsince (") is

independent of.
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APPENDIX
A. Proof of Proposition 4
Before proving Propositiohl4, we introduce some useful timta. For0 < d < r, we denotel/; =

I

0|0
We also denote the set of all generator matrices of all swespa B, (Uy) N Bs(Uy) asF(u, s, d), hence

|F(u,s,d)| = Ic(u, 5,d) [T (4" — ¢').
Lemma 10: Let X = (A|B) € GF(q)"*", where A and B haver andn — r columns, respectively.

R(I,|Py) € E,(q,n), whereP, = € GF(q)™ ("), henced,(Uy, Uy) = dforall0 < d < r.

Furthermore, we denotA = (A;|alA2) andB = (B;|b|B2), wherea andb are thed-th columns of
A andB, respectively. TheiX € F(u,s,d) if and only if rk(X) = r, rk(B) < u, andrk(B; — A1|b —
a|Bg) < s.

Proof: First, X is the generator matrix of sonié € E,.(¢,n) if and only if rk(X) = r. Also, it is
easily shown that,(V,Uy) = rk(B) andd,(V,Uy) = rk(B— AP,;) = rk(B; —A1|b—a|B3). Therefore,
X € F(u,s,d) if and only if rk(X) = r, rk(B) < u, andrk(B; — A;1|b — a|Bg) < s. [

We now give the proof of Propositidd 4.

Proof: It suffices to show thaf.(u, s,d) < I(u,s,d—1) for anyd > 1. We do so by first defining
a mappingy from F(u, s,d) to F(u,s,d — 1) and then proving it is injective. LeX € F(u, s, d), then
by Lemmal1D,rk(X) = r, tk(B) < u, andrk(B; — A;|b — a|By) < s. Since the mapping only
modifies b, we shall denotes(X) = Y = (A|B;|c|B2). We hence have to show thak(Y) = r,
rk(B1|c|B2) < u, andrk(B; — A;|c|B2) < s. We need to distinguish three cases.

o Case l:tk(B; — A1|B2) < s — 1. In this casec = b. Note thatrk(Y) = r, rk(B) < u, and
rk(B; — Aq[c|B2) <1k(B; — A1|B2) + 1 <s.

o Case Il:tk(B; — A;|B;y) = s andrk(B;|Bs3) < u—1. In this casec = b—a. Note thatrk(Y) = r,
rk(B1|c|B2) <1k(B) + 1 < wu, andrk(B; — A1|c|B2) =rk(B; — Ai|b — a|B3) = s.

o Case lll:tk(B; — A1|B2) = s andrk(B;|B2) = u. We denote the column space of a maffx
asC(D). We haveb —a € C(B; — A;|By) andb € C(B;|B3). Hencea € C(B1|B2|B; — A;).
DenotingC(B1|B2|B1 — A1) = C(B1|B2)® S, whereS is a fixed subspace @f(B; — A;), a can
be uniquely expressed as=r +s, wherer € C(B;|B3) ands € S. In this casec = b —r. Since
b € C(B1|B2), rk(X) = rk(A|B1|B2) = r = rk(Y). Also, sincec € C(B;|B3), rk(Bi|c|B2) =
rk(B1|B2) = u. Finally,c =b —a+s € C(B; — A;|Bs), thereforerk(B; — A;|c|B2) = s.

It is easy to show that is injective. Therefore|F(u,s,d)| < |F(u,s,d — 1)| and Ic(u,s,d) <

Ic(u,s,d—1). [ |
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B. Proof of Proposition[7]

We adapt below the notations in [31], [33] to the injectiontricefor CDCs. For allV C E,.(¢,n)
and a CDCC C E,(¢q,n) with covering radiusp, the excess oV by C is defined to beEq(V) def
Y cec |B,(C)NV|—|V|. Hence if{W;} is a family of disjoint subsets af, (¢,n), thenE¢ (U, W;) =
> Ec(W;). We definez d:ef{Z € E.(¢,n) : Ec({Z}) > 1}, i.e., Z is the set of subspaces covered by
at least two codewords i@. It follows that|Z| < E¢(Z) = Ec¢(E,(g,n)) = [C|Ve(p) — [7].
Before proving Proposition] 7, we need the following adaptatf [31, Lemma 8]. LeC be a code
in E,.(g,n) with covering radiusp. We defineA d:ef{U € E.(¢g,n) : d/(U,C) = p}.
Lemma 11: ForU € A\Z and0 < p < r, we haveE¢(B;1(U)) > .

Proof: SinceU ¢ Z, there is a uniqué€’y € C such thati,(U, Cy) = p. We have B,(Co)NB1(U)| =
Ic(p,1,p) = Je(p,0,p) + Jc(p, 1,p) + Jc(p—1,1,p) = 1 +a, +c,. For any codeword’; € C satisfying
d(U,Cy) = p+ 1, by Lemmalb we haveB,(C1) N B1(U)| = Je(p,1,p + 1) = cp41. Finally, for
all other codeword<’, € C at distance> p + 1 from U, we have|B,(C2) N B1(U)| = 0. Denoting

N®(cy ec:d(U,Cy) = p+ 1}, we obtain

Ec(Bi(U)) = D 1B,(C)NBi(U)| ~ |B1(U)
cec
= l4a,+c,+Ncoy1 — Ne(1) = 1= —b,+ Ncypa

—b, mod cpq1.

The proof is completed by realizing thath, < 0, while E¢(B;(U)) is a non-negative integer. |
We now establish a key lemma.
Lemma 12: If Z € Z and0 < p < r, then| AN By(Z)| < V(1) — cp.

Proof: By definition of p, there exists” € C such thatd,(Z, C') < p. By Propositior’ 4,|B;(Z) N
B,—1(C)| > ¢,, with equality achieved for,(Z,C) = p. A subspace at distance p — 1 from any
codeword does not belong td. Therefore,B,(Z) N B,—1(C) C B1(Z)\\A, and hencg AN B(Z)| =
Bi(2)] = |BL(Z)\A| < Ve(1) = |B1(2) N B,-1(C)). .

We now give a proof of Propositidd 7.

Proof: For a codeC with covering radiusp ande > 1,

- e{m —|C|Ve(p — 1)} —(e—1) {\C\Vc(p) - M} ©)

< A= (e-DIZ] (10)

0]

< A= (e~ DIANZ| = | A\Z| + AN 2],
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where [ID) follows from Z| < [C|Vc(p) — [1].

T

v <Y E(Bi(A)+ Y Ee(Bi(4) (11)
AcA\Z AcAnZ
= ) Ee(Bi(A))
AcA

where [11) follows from LemmB11 aridl N Z| < E¢(AN Z).

ooy E(ud (12)

A€ AUEB, (A)NZ

-y ¥ EC({U} > AN B(U)|Ec({U}),

UEZ AeB, (U)N Uez

2
IN

where [(12) follows the fact that the second summation is aligpint sets{U}. By Lemmal[1R, we

obtain
7S D (Vell) =) Ec({U})
UezZ
= (Ve(1) = ¢p) Ee(2)
= k) - e {lcrveto - ]} (13)
Combining [18) and[(9), we obtain the bound in Proposifibn 7. [ |

C. Proof of Lemma8

Proof: LetC be a code irF, (g, n—1) with covering radiup—1 and cardinalityK(¢q,n—1,r, p—1).
Define the code&; C E,.(¢,n) asC; = {R(C|0) : R(C) € C}. For anyU; € E,(q,n) with generator
matrix U; = (Ulu), whereU € GF(q)"*"~! andu € GF(q)"*!, we prove that there exists; € C
generated byC; = (CJ0) such thatd,(C1,U;) < p. We remark thatk(U) is equal to either or r — 1.
First, if rk(U) = r, then there existé’ € C such thatk(CT|UT) < r+p—1. Second, ifrk(U) = r —1,
then letUy ber — 1 linearly independent rows dfl. For anyv € GF(¢)"~!, v ¢ R(Uy), there exists
C € C such thatr + p — 1 > tk(CT|UT|vT) > rk(CT|UY) = tk(CT|UT). Hencerk(CT|UT) <r +p
andd,(C1,Uy) < p. ThusC; has covering radius at mosend hence<c(q,n,r, p) < Kc(¢,n—1,r, p—1),
which appliedp times yieldsK.(q,n,r, p) < Kc(g,n — p,r,0) = [";”].

Similarly, letD be a code in,._1(gq, n) with covering radiup—1 and cardinalityK(q,n,r—1, p—1).
Define the cod®; = {R((D?|d")?) : R(D) C D} € E,(¢q,n), whered € GF(¢)" is chosen at random
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such thatrk(D”'|d”) = r. We remark tha{D;| < |D|. For anyV; € E,(g,n) with generator matrix
Vi = (VIvDT, there existsD; € D; with generator matrixD; = (D7|d7)7 with rk(D7|VT) <
r+ p—2. Thustk(DT|VT) < r +p andD; has covering radius at mogt Thus K¢(q,n,7,p) < |D;| <

Kc(g,n,r —1,p — 1) which appliedp times yieldsK(q,n,r, p) < Kc(g,n,7 — p,0) = [Tfp]. [ |

D. Proof of Proposition

Proof: Denoting the set of all codes of cardinalify in E,(q,n) as Sk, we have|Sk| = (2)
where @ def [jf] For any code&l € K we denote the number of subspaceif(q,n) at distance> p
from C as P(C). The average value a?(C) for all codesC € Sk is given by

1 1
B 2 PO = gg 2 2!

CeSk CeESK UEEr(q,n)
d (U7C)>p

- X X

S
| K| UEE, (q,n) CE€Sk
dl(ch)>p

_ ﬁ 3 (Q _.r‘(/C(p)> (14)

U€E,(g,n)

_ ys%\<Q_f‘(/C(p)>'

Eq. (I4) comes from the fact that there a(l%‘[‘?(”)) codes with cardinalityx’ that do not covelU.

For all K, there exists a codé’ € Sk for which P(C’) is no more than the average, i.&(C’) <
-1,0-Vv _ K _ K

Q(j%) (Q KC(p)) <Q(1-Q 'Welp)” . ForK = L—m}f‘l' PC)<Q(1-Q 'Ve(p)” <

1 andC’ has covering radius at mogt |

E. Proof of Proposition

Proof: The proof is by induction ork. First, an augmented KK code is a code with cardinatify
and minimum distancep + 1 for 2p < r, which hence leaves,, subspaces uncovered; fop > r, a
single codeword coverg;(p) subspaces. Second, suppose there exists a code with diéydinavhich
leavesexactly vy, (vy < ui) subspaces uncovered, and denote the set of uncoverechsebsgd/;. Let
G be the graph where the vertex setfis(q, n) and two vertices are adjacent if and only if their distance
is at mostp. Let A be the adjacency matrix ai and A be thewv, columns of A corresponding to
Vi. There arev,Ve(p) ones inAy, distributed acrosgN (V)| rows, whereN (V;,) is the neighborhood
[34] of V.. By construction,N (V},) does not contain any codeword, hendgV;,)| < [] — k. Also, by
Lemmal®,|N(Vi,)| < Be(vk, p) < Be(uk, p). Thus|N(Vy)| < min {['] — k, Bc(ug, p) } and there exists
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. v Ve(p) . . . .
a row with at Ieasl[min{[i]_kac(ukvp)}-‘ ones inA,. Adding the subspace corresponding to this row to
: ; ; : _ v Ve (p)
the code, we obtain a code with cardinality- 1 which leaves at moast;, [min{[z]_kﬁduk’p)}w < Upi1
subspaces uncovered. |
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