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Abstract

Constant-dimension codes (CDCs) have been investigated for noncoherent error correction in random

network coding. The maximum cardinality of CDCs with given minimum distance and how to construct

optimal CDCs are both open problems, although CDCs obtainedby lifting Gabidulin codes, referred

to as KK codes, are nearly optimal. In this paper, we first construct a new class of CDCs based on

KK codes, referred to as augmented KK codes, whose cardinalities are greater than previously proposed

CDCs. We then propose a low-complexity decoding algorithm for our augmented KK codes using that

for KK codes. Our decoding algorithm corrects more errors than a bounded subspace distance decoder

by taking advantage of the structure of our augmented KK codes. In the rest of the paper we investigate

the covering properties of CDCs. We first derive bounds on theminimum cardinality of a CDC with a

given covering radius and then determine the asymptotic behavior of this quantity. Moreover, we show

that liftings of rank metric codes have the highest possiblecovering radius, and hence liftings of rank

metric codes arenot optimal packing CDCs. Finally, we construct good covering CDCs by permuting

liftings of rank metric codes.

I. INTRODUCTION

While random network coding [1]–[3] has proved to be a powerful tool for disseminating information

in networks, it is highly susceptible to errors caused by various sources. Thus, error control for random

network coding is critical and has received growing attention recently. Error control schemes proposed

for random network coding assume two types of transmission models: some (see, for example, [4]–

[9]) depend on and take advantage of the underlying network topology or the particular linear network

coding operations performed at various network nodes; others [10], [11] assume that the transmitter
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and receiver have no knowledge of such channel transfer characteristics. The contrast is similar to that

between coherent and noncoherent communication systems. Data transmission in noncoherent random

network coding can be viewed as sending subspaces through anoperator channel [10]. Error correction

in noncoherent random network coding can hence be treated asa coding problem where codewords

are linear subspaces and codes are subsets of the projectivespace of a vector space over a finite field.

Similar to codes defined over complex Grassmannians for noncoherent multiple-antenna channels, codes

defined in Grassmannians associated with the vector space play a significant role in error control for

noncoherent random network coding; Such codes are referredto as constant-dimension codes (CDCs)

[10]. In addition to the subspace metric defined in [10], an injection metric was defined for subspace

codes over adversarial channels in [12].

Construction of CDCs has received growing attention in the literature recently. In [10], a Singleton

bound for CDCs and a family of codes were proposed, which are nearly Singleton-bound-achieving and

referred to as KK codes henceforth. A multi-step construction of CDCs was proposed in [13], and we call

these codes Skachek codes; Skachek codes have larger cardinalities than KK codes in some scenarios,

and reduce to KK codes otherwise. Further constructions forsmall parameter values were given in [14]

and the Johnson bound for CDCs was derived in [15]. Although the CDCs in [15] are optimal in the

sense of the Johnson bound, they exist in some special cases only. Despite these previous works, the

maximum cardinality of a CDC with a given minimum distance and how to construct optimal CDCs

remain open problems.

Although the packing properties of CDCs were investigated in [10], [13]–[15], the covering properties

of CDCs have received little attention in the literature. Covering properties are significant for error control

codes, and the covering radius is a basic geometric parameter of a code [16]. For instance, the covering

radius can be viewed as a measure of performance: if the minimum distance decoding is used, then the

covering radius is the maximum weight of a correctable errorvector [17]; if the code is used for data

compression, then the covering radius is a measure of the maximum distortion [17]. The covering radius

is also crucial for code design: if the covering radius is no less than the minimum distance of a code,

then there exists a supercode with the same minimum distanceand greater cardinality.

This paper has two main contributions. First, we introduce anew class of CDCs, referred to as

augmented KK codes. The cardinalities of our augmented KK codes arealways greater than those of KK

codes, and inmost cases the cardinalities of our augmented KK code are greaterthan those of Skachek

codes. Thus our augmented KK codes represent a step toward solving the open problem (construction

of optimal CDCs) mentioned above. Furthermore, we propose an efficient decoding algorithm for our
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augmented KK codes using the bounded subspace distance decoding algorithm in [10]. Our decoding

algorithm corrects more errors than a bounded subspace distance decoder. Second, we investigate the

covering properties of CDCs. We first derive some key geometric results for Grassmannians. Using these

results, we derive upper and lower bounds on the minimum cardinality of a CDC with a given covering

radius. Since these bounds are asymptotically tight, we also determine the asymptotic behavior of the

minimum cardinality of a CDC with a given covering radius. Although liftings of rank metric codes can

be used to construct packing CDCs that are optimal up to a scalar (see, for example, those in [10]), we

show that all liftings of rank metric codes have the greatestcovering radius possible; our result further

implies that liftings of rank metric codes arenot optimal packing CDCs. We also construct good covering

CDCs by permuting liftings of rank metric codes.

The rest of the paper is organized as follows. To be self-contained, Section II reviews some necessary

background. In Section III, we present our augmented KK codes and a decoding algorithm for these

codes. In Section IV, we investigate the covering properties of CDCs.

II. PRELIMINARIES

A. Subspace codes

We refer to the set of all subspaces ofGF(q)n with dimensionr as the Grassmannian of dimensionr and

denote it asEr(q, n); we refer toE(q, n) =
⋃n

r=0Er(q, n) as the projective space. ForU, V ∈ E(q, n),

both thesubspace metric [10, (3)]

dS(U, V )
def
= dim(U + V )− dim(U ∩ V ) = 2dim(U + V )− dim(U)− dim(V ) (1)

and injection metric [12, Def. 1]

dI(U, V )
def
=

1

2
dS(U, V ) +

1

2
|dim(U)− dim(V )| = dim(U + V )−min{dim(U),dim(V )} (2)

are metrics overE(q, n). A subspace code is a nonempty subset ofE(q, n). The minimum subspace

(respectively, injection) distance of a subspace code is the minimum subspace (respectively, injection)

distance over all pairs of distinct codewords.

B. CDCs and rank metric codes

The GrassmannianEr(q, n) endowed with both the subspace and injection metrics forms an association

scheme [10], [18]. For allU, V ∈ Er(q, n), dS(U, V ) = 2dI(U, V ) and the injection distance provides a
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natural distance spectrum, i.e.,0 ≤ dI(U, V ) ≤ r. We have|Er(q, n)| =
[

n
r

]

, where
[

n
r

]

=
∏r−1

i=0
qn−qi

qr−qi
is

the Gaussian polynomial [19], which satisfies

qr(n−r) ≤

[

n

r

]

< K−1
q qr(n−r) (3)

for all 0 ≤ r ≤ n, whereKq =
∏∞

j=1(1− q−j) [20]. We denote the number of subspaces inEr(q, n) at

distanced from a given subspace asNC(d) = qd
2[r

d

][

n−r
d

]

[10], and denote a ball inEr(q, n) of radius

t around a subspaceU and its volume asBt(U) andVC(t) =
∑t

d=0 NC(d), respectively.

A subset ofEr(q, n) is called a constant-dimension code (CDC). A CDC is thus a subspace code

whose codewords have the same dimension. We denote themaximum cardinality of a CDC inEr(q, n)

with minimum distanced asAC(q, n, r, d). Constructions of CDCs and bounds onAC(q, n, r, d) have been

given in [10], [13]–[15], [21]. In particular,AC(q, n, r, 1) =
[

n
r

]

and it is shown [13], [15] forr ≤
⌊

n
2

⌋

and2 ≤ d ≤ r,
qn(r−d+1) − q(r+l)(r−d+1)

qr(r−d+1) − 1
≤ AC(q, n, r, d) ≤

[

n
r−d+1

]

[

r
r−d+1

] , (4)

wherel ≡ n mod r. We denote the lower bound onAC(q, n, r, d) in (4) asL(q, n, r, d). Since the lower

bound is due to the class of codes proposed by Skachek [13], werefer to these codes as Skachek codes.

CDCs are closely related to rank metric codes [22]–[24], which can be viewed as sets of matrices

in GF(q)m×n. The rank distance between two matricesC,D ∈ GF(q)m×n is defined asdR(C,D)
def
=

rk(C − D). The maximum cardinality of a rank metric code inGF(q)m×n with minimum distanced

is given bymin{qm(n−d+1), qn(m−d+1)} and codes that achieve this cardinality are referred to as MRD

codes. In this paper, we shall only consider MRD codes that are either introduced independently in

[22]–[24] for n ≤ m, or their transpose codes forn > m. The number of matrices inGF(q)m×n with

rankd is denoted asNR(q,m, n, d) =
[

n
d

]
∏d−1

i=0 (q
m− qi), and the volume of a ball with rank radiust in

GF(q)m×n asVR(q,m, n, t) =
∑t

d=0 NR(q,m, n, d). The minimum cardinalityKR(q
m, n, ρ) of a code in

GF(q)m×n with rank covering radiusρ is studied in [25], [26] and satisfiesKR(q
m, n, ρ) = KR(q

n,m, ρ)

[25].

CDCs are related to rank metric codes through the lifting operation [11]. Denoting the row space of a

matrix M asR(M), the lifting of C ∈ GF(q)r×(n−r) is defined asI(C) = R(Ir|C) ∈ Er(q, n). For all

C,D ∈ GF(q)r×(n−r), we havedI(I(C), I(D)) = dR(C,D) [11]. A KK code inEr(q, n) with minimum

injection distanced is the lifting I(C) ⊆ Er(q, n) of an MRD codeC ⊆ GF(q)r×(n−r) with minimum

rank distanced and cardinalitymin{q(n−r)(r−d+1), qr(n−r−d+1)}. An efficient bounded subspace distance

decoding algorithm for KK codes was also given in [10]. Although the algorithm was presented forr ≤ n
2 ,

it can be easily generalized to allr.

June 4, 2018 DRAFT



5

III. C ONSTRUCTION OFCDCS

In this section, we construct a new class of CDCs which contain KK codes as proper subsets. Thus

we call them augmented KK codes. We will show that the cardinalities of our augmented KK codes are

always greater than those of KK codes, and that in most cases the cardinalities of our augmented KK

code are greater than those of Skachek codes. Furthermore, we propose a low-complexity decoder for

our augmented KK codes based on the bounded subspace distance decoder in [10]. Since dual CDCs

preserve the distance, we assumer ≤ n
2 without loss of generality.

A. Augmented KK codes

Our augmented KK code is so named because it has a layered structure and the first layer is simply

a KK code. We denote a KK code inEr(q, n) with minimum injection distanced (d ≤ r by definition)

and cardinalityq(n−r)(r−d+1) as E0. For 1 ≤ k ≤
⌊

r
d

⌋

, we first define two MRD codesCk and Dk,

and then constructEk based onCk and Dk. Ck is an MRD code inGF(q)(r−kd)×kd with minimum

distanced for k ≤
⌊

r
d

⌋

− 1 (
⌊

n−r
d

⌋

≥
⌊

r
d

⌋

) and C⌊
r

d
⌋ = {0} ⊆ GF(q)(r−⌊

r

d
⌋d)×⌊ r

d
⌋d; Dk is an

MRD code inGF(q)r×(n−r−kd) with minimum distanced for k ≤
⌊

n−r
d

⌋

− 1 andD⌊n−r

d
⌋ = {0} ⊆

GF(q)r×(n−r−⌊n−r

d
⌋d). For 1 ≤ k <

⌊

r
d

⌋

, the block lengths ofCk and Dk are at leastd, and hence

existence of MRD codes with the parameters mentioned above is trivial. For 1 ≤ k ≤
⌊

r
d

⌋

, I(Ck)

and I(Dk) are either trivial codes or KK codes with minimum injection distanced in Er−kd(q, r) and

Er(q, n − kd), respectively. For1 ≤ k ≤
⌊

r
d

⌋

, Ck
i ∈ Ck, andDk

j ∈ Dk, we defineEk
i,j ∈ Er(q, n) as

the row space of





Ir−kd C
k
i 0

D
k
j

0 0 Ikd



 and Ek = {Ek
i,j}

|Ck|−1,|Dk|−1
i,j=0 . Our augmented KK code

is simply E =
⋃⌊ r

d
⌋

k=0 E
k. In order to determine its minimum distance, we first establish two technical

results. First, for any two matricesA ∈ GF(q)a×n, B ∈ GF(q)b×n, by (1) and (2) we can easily show

that

dS(R(A), R(B)) = 2rk(AT |BT )− rk(A)− rk(B) ≥ |rk(A)− rk(B)|, (5)

dI(R(A), R(B)) = rk(AT |BT )−min{rk(A), rk(B)} ≥ |rk(A)− rk(B)|. (6)

Second, we show that truncating the generator matrices of two subspaces inE(q, n) can only reduce the

(subspace or injection) distance between them.

Lemma 1: Suppose0 ≤ n1 ≤ n. Let A = (A1|A2) ∈ GF(q)a×n, B = (B1|B2) ∈ GF(q)b×n, where

A1 ∈ GF(q)a×n1 andB1 ∈ GF(q)b×n1 . Then for i = 1 and 2, dS(R(Ai), R(Bi)) ≤ dS(R(A), R(B))

anddI(R(Ai), R(Bi)) ≤ dI(R(A), R(B)).

June 4, 2018 DRAFT



6

Proof: It suffices to prove it fori = 1 andn1 = n−1. We need to distinguish two cases, depending

on rk(AT
1 |B

T
1 ). First, if rk(AT

1 |B
T
1 ) = rk(AT |BT ), then it is easily shown thatrk(A1) = rk(A)

and rk(B1) = rk(B), and hencedS(R(A1), R(B1)) = dS(R(A), R(B)) and dI(R(A1), R(B1)) =

dI(R(A), R(B)) by (5) and (6), respectively. Second, ifrk(AT
1 |B

T
1 ) = rk(AT |BT )−1, thendS(R(A1), R(B1)) =

2rk(AT |BT )− 2− rk(A1)− rk(B1) ≤ dS(R(A), R(B)) by (5) anddI(R(A1), R(B1)) = rk(AT |BT )−

1−min{rk(A1), rk(B1)} ≤ dI(R(A), R(B)) by (6).

Proposition 1: E has minimum injection distanced.

Proof: We show that any two codewordsEk
i,j, E

c
a,b ∈ E are at injection distance at leastd using

Lemma 1. Whenc 6= k, let us assumec < k without loss of generality, and thendI(E
k
i,j , E

c
a,b) ≥

dI(R(Ir−kd|0), R(Ir−cd)) = (k−c)d ≥ d. Whenc = k anda 6= i, thendI(E
k
i,j, E

k
a,b) ≥ dI(I(C

k
i ), I(C

k
a)) ≥

d. Whenc = k, a = i, andb 6= j, thendI(E
k
i,j, E

k
i,b) ≥ dI(I(D

k
j ), I(D

k
b )) ≥ d.

Let us first determine the cardinality of our augmented KK codes. By construction,E has cardinality

|E| = q(n−r)(r−d+1)+
∑⌊ r

d
⌋

k=1 |C
k||Dk|, where|C⌊

r

d⌋| = 1 and|Ck| = min{q(r−kd)(kd−d+1), qkd(r−kd−d+1)}

for 1 ≤ k ≤
⌊

r
d

⌋

− 1 and |D⌊n−r

d
⌋| = 1 and

|Dk| = min{qr(n−r−kd−d+1), q(n−r−kd)(r−d+1)} for 1 ≤ k ≤
⌊

n−r
d

⌋

− 1.

Let us compare the cardinality of our augmented KK codes to those of KK and Skachek codes. Note

that all three codes are CDCs with minimum injection distance d in Er(q, n). First, it is easily shown that

our augmented KK codes properly contain KK codes for all parameter values. This is a clear distinction

from Skachek codes with cardinalityL(q, n, r, d), which by (4) reduce to KK codes for3r > n. In order to

compare our codes to Skachek codes when3r ≤ n, we first remark that (4) and (3) lead toL(q, n, r, d)−

q(n−r)(r−d+1) < K−1
q q(n−2r)(r−d+1). Also, we have|E| ≥ q(n−r)(r−d+1) + |C1||D1| ≥ q(n−r)(r−d+1) +

q(n−r−d)(r−d+1). Hence|E| − q(n−r)(r−d+1) > Kqq
(r−d)(r−d+1)(L(q, n, r, d) − q(n−r)(r−d+1)), and our

augmented KK codes have a greater cardinality than Skachek codes whend < r. We emphasize that for

CDCs of dimensionr, their minimum injection distanced satisfiesd ≤ r. A Skachek code is constructed

in multiple steps, and in thei-th step (i ≥ 1), subspaces that correspond to a KK code inEr(q, n − ir)

are added to the code. Whend = r, E is actually the code obtained after the first step.

B. Decoding of augmented KK codes

LetA = (A0|A3) ∈ GF(q)a×n be the received matrix, whereA0 ∈ GF(q)a×r andA3 ∈ GF(q)a×(n−r).

We propose a decoding algorithm that either produces the unique codeword inE closest toR(A) in the

subspace metric or returns a failure. Suppose the minimum subspace distance of our augmented KK

codes is denoted as2d, a bounded distance decoder would find the codeword that is closest toR(A)

June 4, 2018 DRAFT
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up to subspace distanced − 1. Our decoding algorithm always returns the correct codeword if it is at

subspace distance at mostd− 1 from the received subspace, thus correcting more errors than a bounded

subspace distance decoder.

Given the layered structure ofE , our decoding algorithm forE is based on a decoding algorithm for

Ek, shown below in Algorithm 1, for anyk. We denote the codewords inE0 asE0
0,j for 0 ≤ j ≤ |E0|−1.

Algorithm 1: EBDD(k,A).

Input:k andA = (A1|A2|A3) ∈ GF(q)a×n, A1 ∈ GF(q)a×(r−kd), A2 ∈ GF(q)a×kd, A3 ∈ GF(q)a×(n−r).

Output: (Ek
i,j , dk, fk).

1.1 If k = 0, use the decoder forE0 to obtain E0
0,j , calculatedk = dS(R(A), E0

0,j), and return

(E0
0,j , dk, 0). If the decoder returns a failure, return(I(0), d, 0).

1.2 Use the decoder ofI(Ck) on (A1|A2) to obtainCk
i . If the decoder returns a failure, setC

k
i = 0,

D
k
j = 0 and return(Ek

i,j , d, 0).

1.3 Use the decoder ofI(Dk) on (A1|A3) to obtainDk
j . If the decoder returns a failure, setD

k
j = 0

and return(Ek
i,j , d, 0).

1.4 Calculatedk = dS(R(A), Ek
i,j) andfk = 2d−max{dS(R(A1|A2), I(C

k
i )), dS(R(A1|A3), I(D

k
j ))}

and return(Ek
i,j , dk, fk).

Algorithm 1 is based on the bounded distance decoder proposed in [10]. Whenk = 0, E0 is simply a

KK code, and the algorithm in [10] is used directly; whenk ≥ 1, given the structure ofEk, two decoding

attempts are made based on(A1|A2) and (A1|A3), and both are based on the decoding algorithm in

[10].

We remark that Algorithm 1 always return(Ek
i,j, dk, fk). If a unique nearest codeword inEk at distance

no more thand − 1 from R(A) exists, then by Lemma 1 Steps 1.2 and 1.3 succeed and Algorithm 1

returns the unique nearest codeword inEk
i,j. However, when such unique codeword inEk at distance no

more thand − 1 does not exist, the return valuefk can be used to find the unique nearest codeword

becausefk is a lower bound on the distance from the received subspace toany other codeword inEk.

Also, whenfk = 0, Algorithm 2 below always returns a failure. Thus, we call Algorithm 1 an enhanced

bounded distance decoder.

Lemma 2: Suppose the output ofEBDD(k,A) is (Ek
i,j , dk, fk), then dS(R(A), Ek

u,v) ≥ fk for any

Ek
u,v ∈ Ek provided(u, v) 6= (i, j).

Proof: The casefk = 0 is trivial, and it suffices to considerfk = min{2d−dS(R(A1|A2), I(C
k
i )), 2d−

June 4, 2018 DRAFT
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dS(R(A1|A3), I(D
k
j ))}. Whenu 6= i, Lemma 1 yields

dS(R(A), Ek
u,v) ≥ dS(R(A1|A2), I(C

k
u))

≥ dS(I(C
k
i ), I(C

k
u))− dS(R(A1|A2), I(C

k
i ))

≥ 2d− dS(R(A1|A2), I(C
k
i )) ≥ fk.

Similarly, whenv 6= j, we obtaindS(R(A), Ek
u,v) ≥ 2d− dS(R(A1|A3), I(D

k
j )) ≥ fk.

The algorithm forE thus follows.

Algorithm 2: Decoder forE .

Input: A = (A0|A3) ∈ GF(q)a×n, A0 ∈ GF(q)a×r, A3 ∈ GF(q)a×(n−r).

Output: Either a failure or the unique nearest codeword inE from R(A).

2.1 If rk(A) < r − d+ 1, return a failure.

2.2 Calculater − rk(A0) = ld+m where0 ≤ l ≤
⌊

r
d

⌋

and0 ≤ m < d.

2.3 CallEBDD(l,A) to obtain(El
i,j, dl, fl). If dl ≤ d− 1, returnEl

i,j .

2.4 If m = 0, return a failure. Otherwise, callEBDD(l+1,A) to obtain(El+1
s,t , dl+1, fl+1). If dl+1 ≤

d− 1, returnEl+1
s,t .

2.5 If dl < min{d+m, fl, dl+1, fl+1, 2d−m}, returnEl
i,j . If dl+1 < min{d+m,dl, fl, fl+1, 2d−m},

returnEl+1
s,t .

2.6 Return a failure.

Proposition 2: If the received subspace is at subspace distance at mostd − 1 from a codeword inE ,

then Algorithm 2 returns this codeword. Otherwise, Algorithm 2 returns either a failure or the unique

codeword closest to the received subspace in the subspace metric.

Proof: We first show that Algorithm 2 returns the unique nearest codeword in E to the received

subspace if it is at subspace distance at mostd− 1. For all 1 ≤ k ≤
⌊

r
d

⌋

andEk
u,v ∈ Ek, Lemma 1 and

(5) yield

dS(R(A), Ek
u,v) ≥ dS(R(A0), I(C

k
u)) ≥ |r − kd− rk(A0)| = |(l − k)d+m|. (7)

Similarly (5) yieldsdS(R(A), E0
0,v) ≥ ld + m for any v. HencedS(R(A), Ek) ≥ d for k ≤ l − 1 or

k ≥ l + 2. Therefore, the unique nearest codeword is either inE l or E l+1 and applying Algorithm 1 for

E l andE l+1 always returns the nearest codeword.

We now show that when the distance from the received subspaceto the code is at leastd, Algorithm 2

either produces the unique nearest codeword or returns a failure. First, by (7),dS(R(A), E l−1) = d+m

anddS(R(A), E l+2) = 2d−m, while dS(R(A), Ek) ≥ 2d for k ≤ l − 2 or k ≥ l + 3. Also, by Lemma

June 4, 2018 DRAFT
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2, dS(R(A), El
u,v) ≥ fl for all (u, v) 6= (i, j) and dS(R(A), E l+1) ≥ min{dl+1, fl+1}. Therefore, if

dl < min{d+m, fl, dl+1, fl+1, 2d−m}, thenEl
i,j is the unique codeword closest toR(A). Similarly, if

dl+1 < min{d+m,dl, fl, fl+1, 2d−m}, thenEl+1
s,t is the unique codeword closest toR(A).

We note that whenrk(A) < r − d + 1, by (5) Steps 1.2 and 1.3 would both fail, and Algorithm 2

will return a failure. We also justify why Algorithm 2 returns a failure ifdl ≥ d andm = 0 in Step 2.3.

Supposedl ≥ d andm = 0 and we apply Algorithm 1 forE l+1. Then we havedl ≥ d +m and by (7)

dl+1 ≥ |d−m| = d+m. Therefore, neither inequality in Step 2.5 is satisfied and the decoder returns a

failure.

By Proposition 2, Algorithm 2 decodes beyond the half distance. However, the decoding radius of

Algorithm 2 is limited. It is easy to see that the decoding radius of Algorithm 2 is at mostd+
⌊

d
2

⌋

due

to the termsd+m and2d−m in the inequalities in Step 2.5. We emphasize that this is just an upper

bound, and its tightness is unknown. Supposer− rk(A0) = ld+m, when Algorithm 2 decodes beyond

half distance, it is necessary thatfl andfl+1 be both nonzero in Step 2.5. This implies that the row space

of (A1|A2) is at subspace distance no more thand− 1 from I(Cl) andI(Cl+1) and that the row spaces

of (A1|A3) are at subspace distance no more thand− 1 from I(Dl) andI(Dl+1).

We note that the inequalities in Step 2.5 are strict in order to ensure that the output of the decoder is

the unique nearest codeword from the received subspace. However, if one of the nearest codewords is

an acceptable outcome, then equality can be included in the inequalities in Step 2.5.

Our decoding algorithm can be readily simplified in order to obtain a bounded subspace distance

decoder, by removing Step 2.5. We emphasize that the generaldecoding algorithm has the same order

of complexity as this simplified bounded subspace distance decoding algorithm.

Finally, we note that the decoding algorithms and discussions above consider the subspace metric. It is

also remarkable that our decoder remains the same if the injection metric is used instead. We formalize

this by the following proposition.

Proposition 3: If the received subspace is at injection distance at mostd− 1 from a codeword inE ,

then Algorithm 2 returns this codeword. Otherwise, Algorithm 2 returns either a failure or the unique

codeword closest to the received subspace in the injection metric.

The proof of Proposition 3 is based on the observation that a codeword in a CDC is closest to the

received subspace in the subspace metric if and only if the codeword is closest to the received subspace

in the injection metric by (2), and is hence omitted.

The complexity of the bounded subspace distance decoder in [10] for a KK code inE(q, n) is on the

order ofO(n2) operations overGF(q)n−r for r ≤ n
2 , which is hence the complexity of decodingE0.
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This algorithm can be easily generalized to include the casewherer > n
2 , and we obtain a complexity on

the order ofO(n2) operations overGF(qmax{r,n−r}). Thus the complexity of decodingI(Ck) andI(Dk)

for k ≥ 1 is on the order ofO(r2) operations overGF(qmax{kd,r−kd}) andO((n−kd)2) operations over

GF(qmax{r,n−kd−r}), respectively. The complexity of the decoding algorithm for Ek is on the order of

the maximum of these two quantities. It is easily shown that the complexity is maximized fork = 0,

that is, our decoding algorithm has the same order of complexity as the algorithm for the KK codeE0.

IV. COVERING PROPERTIES OFCDCS

The packing properties of CDCs have been studied in [10], [13]–[15], [21] and an asymptotic packing

rate of CDCs was defined and determined in [10]. Henceforth inthis section, we focus on the covering

properties of CDCs in the Grassmannian instead. We emphasize that sincedS(U, V ) = 2dI(U, V ) for all

U, V ∈ Er(q, n), we consider only the injection distance in this section. Furthermore, sincedI(U, V ) =

dI(U
⊥, V ⊥) for all U, V ∈ Er(q, n), without loss of generality we assume thatr ≤

⌊

n
2

⌋

in this section.

A. Properties of balls in the Grassmannian

We first investigate the properties of balls in the Grassmannian Er(q, n), which will be instrumental

in our study of covering properties of CDCs. First, we derivebounds on the volume of balls inEr(q, n).

Lemma 3: For all q, n, r ≤
⌊

n
2

⌋

, and0 ≤ t ≤ r, qt(n−t) ≤ VC(t) < K−2
q qt(n−t).

Proof: First, we haveVC(t) ≥ NC(t) ≥ qt(n−t) by (3). Also,NC(d) < K−1
q NR(q, n − r, r, d), and

henceVC(t) < K−1
q VR(q, n− r, r, t) < K−2

q qt(n−t) asVR(q, n− r, r, t) < K−1
q qt(n−t) [20, Lemma 9].

We now determine the volume of the intersection of twospheres of radii u and s respectively and

distanced between their centers, which is referred to as the intersection numberJC(u, s, d) of the

association scheme [27]. The intersection number is an important parameter of an association scheme.

Lemma 4: For all u, s, andd between0 andr,

JC(u, s, d) =
1

[

n
r

]

NC(d)

r
∑

i=0

µiEu(i)Es(i)Ed(i),

whereµi =
[

n
i

]

−
[

n
i−1

]

andEj(i) is a q-Eberlein polynomial [28]:

Ej(i) =

j
∑

l=0

(−1)j−lqli+(
j−l

2 )
[

r − l

r − j

][

r − l

i

][

n− r + l − i

l

]

.

Although Lemma 4 is obtained by a direct application of Theorems 3.5 and 3.6 in [29, Chapter II],

we present it formally here since it is a fundamental geometric property of the Grassmannian and is very

instrumental in our study of CDCs. We also obtain a recursionformula for JC(u, s, d).
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Lemma 5: JC(u, s, d) satisfies the following recursion:JC(0, s, d) = δs,d, JC(u, 0, d) = δu,d, and

cu+1JC(u+1, s, d) = bs−1JC(u, s−1, d)+(as−au)JC(u, s, d)+cs+1JC(u, s+1, d)−bu−1JC(u−1, s, d),

where cj = JC(1, j − 1, j) =
[

j
1

]2
, bj = JC(1, j + 1, j) = q2j+1

[

r−j
1

][

n−r−j
1

]

, andaj = JC(1, j, j) =

NC(1) − bj − cj for 0 ≤ j ≤ r.

The proof follows directly from [27, Lemma 4.1.7], [27, Theorem 9.3.3], and [27, Chapter 4, (1a)], and

hence is omitted. LetIC(u, s, d) denote the intersection of twoballs in Er(q, n) with radii u ands and

distanced between their centers. SinceIC(u, s, d) =
∑u

i=0

∑s
j=0 JC(i, j, d), Lemma 4 also leads to an

analytical expression forIC(u, s, d). Proposition 4 below shows thatIC(u, s, d) decreases asd increases.

Proposition 4: For all u ands, IC(u, s, d) is a non-increasing function ofd.

The proof of Proposition 4 is given in Appendix A. Therefore,the minimum nonzero intersection

between two balls with radiiu and s in Er(q, n) is given by IC(u, s, u + s) = JC(u, s, u + s) for

u+ s ≤ r. By Lemma 5, it is easily shown thatJC(u, s, u+ s) =
[

u+s
u

]2
for all u ands whenu+ s ≤ r.

We derive below an upper bound on the union of balls inEr(q, n) with the same radius.

Lemma 6: The volume of the union ofany K balls inEr(q, n) with radiusρ is at most

BC(K, ρ) = KVC(ρ)−

l
∑

a=1

[AC(q, n, r, r − a+ 1)−AC(q, n, r, r − a+ 2)]IC(ρ, ρ, r − a+ 1)

−[K −AC(q, n, r, r − l + 1)]IC(ρ, ρ, r − l), (8)

wherel = max{a : K ≥ AC(q, n, r, r − a+ 1)}.

Proof: Let {Ui}
K−1
i=0 denote the centers ofK balls with radiusρ and letVj = {Ui}

j−1
i=0 for 1 ≤

j ≤ K. Without loss of generality, we assume that the centers are labeled such thatdI(Uj ,Vj) is non-

increasing forj ≥ 1. For 1 ≤ a ≤ l andAC(q, n, r, r − a + 2) ≤ j < AC(q, n, r, r − a + 1), we have

dI(Uj ,Vj) = dI(Vj+1) ≤ r−a+1. By Proposition 4,Uj hence covers at mostVC(ρ)− IC(ρ, ρ, r−a+1)

subspaces that are not previously covered by balls centeredat Vj.

We remark that using any upper bound onAC(q, n, r, r − a + 1) in the proof of Lemma 6 leads to

a valid upper bound onBC(K, ρ). Hence, although the value ofAC(q, n, r, r − a + 1) is unknown in

general, the upper bound in (4) can be used in (8) in order to obtain an upper bound on the volume of

the union on balls in the Grassmannian.

B. Covering CDCs

The covering radius of a CDCC ⊆ Er(q, n) is defined asρ = maxU∈Er(q,n) dI(U, C). We denote the

minimum cardinality of a CDC inEr(q, n) with covering radiusρ asKC(q, n, r, ρ). SinceKC(q, n, n−
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r, ρ) = KC(q, n, r, ρ), we assumer ≤
⌊

n
2

⌋

. Also, KC(q, n, r, 0) =
[

n
r

]

andKC(q, n, r, r) = 1, hence we

assume0 < ρ < r henceforth. We first derive lower bounds onKC(q, n, r, ρ).

Lemma 7: For all q, n, r ≤
⌊

n
2

⌋

, and0 < ρ < r, KC(q, n, r, ρ) ≥ min
{

K : BC(K, ρ) ≥
[

n
r

]}

≥
[n
r
]

VC(ρ)
.

Proof: Let C be a CDC with cardinalityKC(q, n, r, ρ) and covering radiusρ. Then the balls around

the codewords cover the
[

n
r

]

subspaces inEr(q, n); however, by Lemma 6, they cannot cover more than

BC(|C|, ρ) subspaces. Therefore,BC(KC(q, n, r, ρ), ρ) ≥
[

n
r

]

and we obtain the first inequality. Since

BC(K, ρ) ≤ KVC(ρ) for all K, we obtain the second inequality.

The second lower bound in Lemma 7 is referred to as the sphere covering bound for CDCs. This

bound can also be refined by considering the distance distribution of a covering code.

Proposition 5: For 0 ≤ δ ≤ ρ, let Tδ = min
∑r

i=0Ai(δ), where the minimum is taken over all integer

sequences{Ai(δ)} which satisfyAi(δ) = 0 for 0 ≤ i ≤ δ − 1, 1 ≤ Aδ(δ) ≤ NC(δ), 0 ≤ Ai(δ) ≤ NC(i)

for δ + 1 ≤ i ≤ r, and
∑r

i=0Ai(δ)
∑ρ

s=0 JC(l, s, i) ≥ NC(l) for 0 ≤ l ≤ r. ThenKC(q, n, r, ρ) ≥

max0≤δ≤ρ Tδ.

Proof: Let C be a CDC with covering radiusρ. For anyU ∈ Er(q, n) at distanceδ from C, letAi(δ)

denote the number of codewords at distancei from U . Then
∑r

i=0 Ai(δ) = |C| and we easily obtain

Ai(δ) = 0 for 0 ≤ i ≤ δ − 1, 1 ≤ Aδ(δ) ≤ NC(δ), and0 ≤ Ai(δ) ≤ NC(i) for δ + 1 ≤ i ≤ r. Also, for

0 ≤ l ≤ r, all the subspaces at distancel from U are covered, hence
∑r

i=0 Ai(δ)
∑ρ

s=0 JC(l, s, i) ≥ NC(l).

We remark that Proposition 5 is a tighter lower bound than thesphere covering bound. However,

determiningTδ is computationally infeasible for large parameter values.

Another set of linear inequalities is obtained from the inner distribution {ai} of a covering codeC,

defined asai
def
= 1

|C|

∑

C∈C |{D ∈ C : dI(C,D) = i}| for 0 ≤ i ≤ r [30].

Proposition 6: Let t = min
∑r

i=0 ai, where the minimum is taken over all sequences{ai} satisfying

a0 = 1, 0 ≤ ai ≤ NC(i) for 1 ≤ i ≤ r,
∑r

i=0 ai
∑ρ

s=0 JC(l, s, i) ≥ NC(l) for 0 ≤ l ≤ r, and
∑r

i=0 ai
Ei(l)
NC(i)

≥ 0 for 0 ≤ l ≤ r. ThenKC(q, n, r, ρ) ≥ t.

Proof: Let C be a CDC with covering radiusρ and inner distribution{ai}. Proposition 5 yields

0 ≤ ai ≤ NC(i) for 1 ≤ i ≤ r,
∑r

i=0 ai
∑ρ

s=0 JC(l, s, i) ≥ NC(l) for 0 ≤ l ≤ r, while a0 = 1 follows the

definition ofai. By the generalized MacWilliams inequalities [30, Theorem3],
∑r

i=0 aiFl(i) ≥ 0, where

Fl(i) =
µl

NC(i)
Ei(l) are the q-numbers of the association scheme [30, (15)], which yields

∑r
i=0 ai

Ei(l)
NC(i)

≥

0. Since
∑r

i=0 ai = |C| we obtain that|C| ≥ t.

Lower bounds on covering codes with the Hamming metric can beobtained through the concept of

the excess of a code [31]. This concept being independent of the underlying metric, it was adapted to
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the rank metric in [25]. We adapt it to the injection metric for CDCs below, thus obtaining the lower

bound in Proposition 7.

Proposition 7: For all q, n, r ≤
⌊

n
2

⌋

, and 0 < ρ < r, KC(q, n, r, ρ) ≥
[n
r
]

VC(ρ)−
ǫ

δ
NC(ρ)

, where ǫ
def
=

⌈

bρ
cρ+1

⌉

cρ+1 − bρ, δ
def
= NC(1) − cρ + 2ǫ, andbρ andcρ+1 are defined in Lemma 5.

The proof of Proposition 7 is given in Appendix B. We now derive upper bounds onKC(q, n, r, ρ).

First, we investigate how to expand covering CDCs.

Lemma 8: For all q, n, r ≤
⌊

n
2

⌋

, and0 < ρ < r, KC(q, n, r, ρ) ≤ KC(q, n− 1, r, ρ − 1) ≤
[

n−ρ
r

]

, and

KC(q, n, r, ρ) ≤ KC(q, n, r − 1, ρ− 1) ≤
[

n
r−ρ

]

.

The proof of Lemma 8 is given in Appendix C. The next upper bound is a straightforward adaptation

of [25, Proposition 12].

Proposition 8: For all q, n, r ≤
⌊

n
2

⌋

, and0 < ρ < r, KC(q, n, r, ρ) ≤
{

1− log[n
r
]
([

n
r

]

− VC(ρ)
)

}−1
+

1.

The proof of Proposition 8 is given in Appendix D. The next bound is a direct application of [16,

Theorem 12.2.1].

Proposition 9: For all q, n, r ≤
⌊

n
2

⌋

, and0 < ρ < r, KC(q, n, r, ρ) ≤
[n
r
]

VC(ρ)
{1 + lnVC(ρ)}.

The bound in Proposition 9 can be refined by applying the greedy algorithm described in [32] to CDCs.

Proposition 10: Let k0 be the cardinality of an augmented KK code with minimum distance2ρ + 1

in Er(q, n) for 2ρ < r and k0 = 1 for 2ρ ≥ r. Then for all k ≥ k0, there exists a CDC with

cardinality k which covers at least
[

n
r

]

− uk subspaces, whereuk0

def
=

[

n
r

]

− k0VC(ρ) anduk+1 = uk −
⌈

ukVC(ρ)

min{[n
r
]−k,BC(uk,ρ)}

⌉

for all k ≥ k0. ThusKC(q, n, r, ρ) ≤ min{k : uk = 0}.

The proof of Proposition 10 is given in Appendix E.

Using the bounds derived above, we finally determine the asymptotic behavior ofKC(q, n, r, ρ). The

rate of a covering CDCC ⊆ Er(q, n) is defined as
logq |C|

logq |Er(q,n)|
. We remark that this rate is defined in a

combinatorial sense: the rate describes how well a CDC covers the Grassmannian. We use the following

normalized parameters:r′ = r
n

, ρ′ = ρ
n

, and the asymptotic ratekC(r
′, ρ′) = lim infn→∞

logq KC(q,n,r,ρ)

logq [
n

r
]

.

Proposition 11: For all 0 ≤ ρ′ ≤ r′ ≤ 1
2 , kC(r

′, ρ′) = 1− ρ′(1−ρ′)
r′(1−r′) .

Proof: The bounds onVC(ρ) in Lemma 3 together with the sphere covering bound yieldKC(q, n, r, ρ) >

K2
q q

r(n−r)−ρ(n−ρ). Using the bounds on the Gaussian polynomial in Section II-B, we obtainkC(r
′, ρ′) ≥

1− ρ′(1−ρ′)
r′(1−r′) . Also, Proposition 9 leads toKC(q, n, r, ρ) < K−1

q qr(n−r)−ρ(n−ρ)[1+ln(K−2
q )+ρ(n−ρ) ln q],

which asymptotically becomeskC(r
′, ρ′) ≤ 1− ρ′(1−ρ′)

r′(1−r′) .

The proof of Proposition 11 indicates thatKC(q, n, r, ρ) is on the order ofqr(n−r)−ρ(n−ρ).
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We finish this section by studying the covering properties ofliftings of rank metric codes. We first

prove that they have maximum covering radius.

Lemma 9: Let I(C) ⊆ Er(q, n) be the lifting of a rank metric code inGF(q)r×(n−r). ThenI(C) has

covering radiusr.

Proof: Let D ∈ Er(q, n) be generated by(0|D1), whereD1 ∈ GF(q)r×(n−r) has rankr. Then,

for any codewordI(C) generated by(Ir|C), it is easily seen thatdI(D, I(C)) = dI(R(0), R(Ir)) = r

by Lemma 1.

Lemma 9 is significant for the design of CDCs. It is shown in [10] that liftings of rank metric codes

can be used to construct nearly optimal packing CDCs. However, Lemma 9 indicates that for any lifting

of a rank metric code, there exists a subspace at distancer from the code. Hence, adding this subspace

to the code leads to a supercode with higher cardinality and the same minimum distance sinced ≤ r.

Thus an optimal CDC cannot be designed from a lifting of a rankmetric code.

Although liftings of rank metric codes have poor covering properties, below we construct a class of

covering CDCs by using permuted liftings of rank metric covering codes. We thus relate the minimum

cardinality of a covering CDC to that of a covering code with the rank metric. For alln andr, we denote

the set of subsets of{0, 1, . . . , n−1} with cardinalityr asSr
n. For allJ ∈ Sr

n and allC ∈ GF(q)r×(n−r),

let I(J,C) = R(π(Ir|C)) ∈ Er(q, n), whereπ is the permutation of{0, 1, . . . , n − 1} satisfyingJ =

{π(0), π(1), . . . , π(r − 1)}, π(0) < π(1) < . . . < π(r − 1), andπ(r) < π(r + 1) < . . . < π(n− 1). We

remark thatπ is uniquely determined byJ . It is easily shown thatdI(I(J,C), I(J,D)) = dR(C,D) for

all J ∈ Sr
n and allC,D ∈ GF(q)r×(n−r).

Proposition 12: For all q, n, r ≤
⌊

n
2

⌋

, and0 < ρ < r, KC(q, n, r, ρ) ≤
(

n
r

)

KR(q
n−r, r, ρ).

Proof: Let C ⊆ GF(q)r×(n−r) have rank covering radiusρ and cardinalityKR(q
n−r, r, ρ). We show

below thatL(C) = {I(J,C) : J ∈ Sr
n,C ∈ C} is a CDC with covering radiusρ. Any U ∈ Er(q, n) can

be expressed asI(J,V) for someJ ∈ Sr
n and someV ∈ GF(q)r×(n−r). Also, by definition, there exists

C ∈ C such thatdR(C,V) ≤ ρ and hencedI(U, I(J,C)) = dR(C,V) ≤ ρ. ThusL(C) has covering

radiusρ and cardinality≤
(

n
r

)

KR(q
n−r, r, ρ).

It is shown in [25] that forr ≤ n − r, KR(q
n−r, r, ρ) is on the order ofqr(n−r)−ρ(n−ρ), which is

also the order ofKC(q, n, r, ρ). The bound in Proposition 12 is relatively tighter for largeq since
(

n
r

)

is

independent ofq.
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APPENDIX

A. Proof of Proposition 4

Before proving Proposition 4, we introduce some useful notations. For0 ≤ d ≤ r, we denoteUd =

R(Ir|Pd) ∈ Er(q, n), wherePd =





Id 0

0 0



 ∈ GF(q)r×(n−r), hencedI(U0, Ud) = d for all 0 ≤ d ≤ r.

We also denote the set of all generator matrices of all subspaces inBu(U0)∩Bs(Ud) asF (u, s, d), hence

|F (u, s, d)| = IC(u, s, d)
∏r−1

i=0 (q
r − qi).

Lemma 10: Let X = (A|B) ∈ GF(q)r×n, whereA andB haver andn − r columns, respectively.

Furthermore, we denoteA = (A1|a|A2) andB = (B1|b|B2), wherea andb are thed-th columns of

A andB, respectively. ThenX ∈ F (u, s, d) if and only if rk(X) = r, rk(B) ≤ u, andrk(B1 −A1|b−

a|B2) ≤ s.

Proof: First, X is the generator matrix of someV ∈ Er(q, n) if and only if rk(X) = r. Also, it is

easily shown thatdI(V,U0) = rk(B) anddI(V,Ud) = rk(B−APd) = rk(B1−A1|b−a|B2). Therefore,

X ∈ F (u, s, d) if and only if rk(X) = r, rk(B) ≤ u, andrk(B1 −A1|b− a|B2) ≤ s.

We now give the proof of Proposition 4.

Proof: It suffices to show thatIC(u, s, d) ≤ IC(u, s, d−1) for anyd ≥ 1. We do so by first defining

a mappingφ from F (u, s, d) to F (u, s, d− 1) and then proving it is injective. LetX ∈ F (u, s, d), then

by Lemma 10,rk(X) = r, rk(B) ≤ u, and rk(B1 − A1|b − a|B2) ≤ s. Since the mappingφ only

modifiesb, we shall denoteφ(X) = Y = (A|B1|c|B2). We hence have to show thatrk(Y) = r,

rk(B1|c|B2) ≤ u, andrk(B1 −A1|c|B2) ≤ s. We need to distinguish three cases.

• Case I:rk(B1 − A1|B2) ≤ s − 1. In this case,c = b. Note thatrk(Y) = r, rk(B) ≤ u, and

rk(B1 −A1|c|B2) ≤ rk(B1 −A1|B2) + 1 ≤ s.

• Case II:rk(B1−A1|B2) = s andrk(B1|B2) ≤ u−1. In this case,c = b−a. Note thatrk(Y) = r,

rk(B1|c|B2) ≤ rk(B) + 1 ≤ u, andrk(B1 −A1|c|B2) = rk(B1 −A1|b− a|B2) = s.

• Case III: rk(B1 − A1|B2) = s and rk(B1|B2) = u. We denote the column space of a matrixD

asC(D). We haveb− a ∈ C(B1 −A1|B2) andb ∈ C(B1|B2). Hencea ∈ C(B1|B2|B1 −A1).

DenotingC(B1|B2|B1−A1) = C(B1|B2)⊕S, whereS is a fixed subspace ofC(B1−A1), a can

be uniquely expressed asa = r+ s, wherer ∈ C(B1|B2) ands ∈ S. In this case,c = b− r. Since

b ∈ C(B1|B2), rk(X) = rk(A|B1|B2) = r = rk(Y). Also, sincec ∈ C(B1|B2), rk(B1|c|B2) =

rk(B1|B2) = u. Finally, c = b− a+ s ∈ C(B1 −A1|B2), thereforerk(B1 −A1|c|B2) = s.

It is easy to show thatφ is injective. Therefore,|F (u, s, d)| ≤ |F (u, s, d − 1)| and IC(u, s, d) ≤

IC(u, s, d − 1).
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B. Proof of Proposition 7

We adapt below the notations in [31], [33] to the injection metric for CDCs. For allV ⊆ Er(q, n)

and a CDCC ⊆ Er(q, n) with covering radiusρ, the excess onV by C is defined to beEC(V )
def
=

∑

C∈C |Bρ(C)∩V | − |V |. Hence if{Wi} is a family of disjoint subsets ofEr(q, n), thenEC (
⋃

i Wi) =
∑

iEC(Wi). We defineZ
def
= {Z ∈ Er(q, n) : EC({Z}) ≥ 1}, i.e.,Z is the set of subspaces covered by

at least two codewords inC. It follows that |Z| ≤ EC(Z) = EC(Er(q, n)) = |C|VC(ρ)−
[

n
r

]

.

Before proving Proposition 7, we need the following adaptation of [31, Lemma 8]. LetC be a code

in Er(q, n) with covering radiusρ. We defineA
def
= {U ∈ Er(q, n) : dI(U, C) = ρ}.

Lemma 11: For U ∈ A\Z and0 < ρ < r, we haveEC(B1(U)) ≥ ǫ.

Proof: SinceU /∈ Z, there is a uniqueC0 ∈ C such thatdI(U,C0) = ρ. We have|Bρ(C0)∩B1(U)| =

IC(ρ, 1, ρ) = JC(ρ, 0, ρ)+JC(ρ, 1, ρ)+JC(ρ− 1, 1, ρ) = 1+aρ+ cρ. For any codewordC1 ∈ C satisfying

dI(U,C1) = ρ + 1, by Lemma 5 we have|Bρ(C1) ∩ B1(U)| = JC(ρ, 1, ρ + 1) = cρ+1. Finally, for

all other codewordsC2 ∈ C at distance> ρ + 1 from U , we have|Bρ(C2) ∩ B1(U)| = 0. Denoting

N
def
= |{C1 ∈ C : dI(U,C1) = ρ+ 1}|, we obtain

EC(B1(U)) =
∑

C∈C

|Bρ(C) ∩B1(U)| − |B1(U)|

= 1 + aρ + cρ +Ncρ+1 −NC(1)− 1 = −bρ +Ncρ+1

≡ −bρ mod cρ+1.

The proof is completed by realizing that−bρ < 0, while EC(B1(U)) is a non-negative integer.

We now establish a key lemma.

Lemma 12: If Z ∈ Z and0 < ρ < r, then |A ∩B1(Z)| ≤ VC(1)− cρ.

Proof: By definition of ρ, there existsC ∈ C such thatdI(Z,C) ≤ ρ. By Proposition 4,|B1(Z) ∩

Bρ−1(C)| ≥ cρ, with equality achieved fordI(Z,C) = ρ. A subspace at distance≤ ρ − 1 from any

codeword does not belong toA. Therefore,B1(Z) ∩ Bρ−1(C) ⊆ B1(Z)\A, and hence|A ∩ B1(Z)| =

|B1(Z)| − |B1(Z)\A| ≤ VC(1)− |B1(Z) ∩Bρ−1(C)|.

We now give a proof of Proposition 7.

Proof: For a codeC with covering radiusρ andǫ ≥ 1,

γ
def
= ǫ

{[

n

r

]

− |C|VC(ρ− 1)

}

− (ǫ− 1)

{

|C|VC(ρ)−

[

n

r

]}

(9)

≤ ǫ|A| − (ǫ− 1)|Z| (10)

≤ ǫ|A| − (ǫ− 1)|A ∩ Z| = ǫ|A\Z|+ |A ∩ Z|,
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where (10) follows from|Z| ≤ |C|VC(ρ)−
[

n
r

]

.

γ ≤
∑

A∈A\Z

EC(B1(A)) +
∑

A∈A∩Z

EC(B1(A)) (11)

=
∑

A∈A

EC(B1(A)),

where (11) follows from Lemma 11 and|A ∩ Z| ≤ EC(A ∩ Z).

γ ≤
∑

A∈A

∑

U∈B1(A)∩Z

EC({U}) (12)

=
∑

U∈Z

∑

A∈B1(U)∩A

EC({U}) =
∑

U∈Z

|A ∩B1(U)|EC({U}),

where (12) follows the fact that the second summation is overdisjoint sets{U}. By Lemma 12, we

obtain

γ ≤
∑

U∈Z

(VC(1)− cρ)EC({U})

= (VC(1)− cρ)EC(Z)

= (VC(1)− cρ)

{

|C|VC(ρ)−

[

n

r

]}

. (13)

Combining (13) and (9), we obtain the bound in Proposition 7.

C. Proof of Lemma 8

Proof: Let C be a code inEr(q, n−1) with covering radiusρ−1 and cardinalityKC(q, n−1, r, ρ−1).

Define the codeC1 ⊆ Er(q, n) asC1 = {R(C|0) : R(C) ∈ C}. For anyU1 ∈ Er(q, n) with generator

matrix U1 = (U|u), whereU ∈ GF(q)r×n−1 andu ∈ GF(q)r×1, we prove that there existsC1 ∈ C1

generated byC1 = (C|0) such thatdI(C1, U1) ≤ ρ. We remark thatrk(U) is equal to eitherr or r− 1.

First, if rk(U) = r, then there existsC ∈ C such thatrk(CT |UT ) ≤ r+ρ−1. Second, ifrk(U) = r−1,

then letU0 be r − 1 linearly independent rows ofU. For anyv ∈ GF(q)n−1, v /∈ R(U0), there exists

C ∈ C such thatr+ ρ− 1 ≥ rk(CT |UT
0 |v

T ) ≥ rk(CT |UT
0 ) = rk(CT |UT ). Hencerk(CT

1 |U
T
1 ) ≤ r+ ρ

anddI(C1, U1) ≤ ρ. ThusC1 has covering radius at mostρ and henceKC(q, n, r, ρ) ≤ KC(q, n−1, r, ρ−1),

which appliedρ times yieldsKC(q, n, r, ρ) ≤ KC(q, n − ρ, r, 0) =
[

n−ρ
r

]

.

Similarly, letD be a code inEr−1(q, n) with covering radiusρ−1 and cardinalityKC(q, n, r−1, ρ−1).

Define the codeD1 = {R((DT |dT )T ) : R(D) ⊆ D} ∈ Er(q, n), whered ∈ GF(q)n is chosen at random
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such thatrk(DT |dT ) = r. We remark that|D1| ≤ |D|. For anyV1 ∈ Er(q, n) with generator matrix

V1 = (VT |vT )T , there existsD1 ∈ D1 with generator matrixD1 = (DT |dT )T with rk(DT |VT ) ≤

r+ρ−2. Thusrk(DT
1 |V

T
1 ) ≤ r+ρ andD1 has covering radius at mostρ. ThusKC(q, n, r, ρ) ≤ |D1| ≤

KC(q, n, r − 1, ρ− 1) which appliedρ times yieldsKC(q, n, r, ρ) ≤ KC(q, n, r − ρ, 0) =
[

n
r−ρ

]

.

D. Proof of Proposition 8

Proof: Denoting the set of all codes of cardinalityK in Er(q, n) as SK , we have|SK | =
(

Q
K

)

,

whereQ
def
=

[

n
r

]

. For any codeC ∈ K we denote the number of subspaces inEr(q, n) at distance> ρ

from C asP (C). The average value ofP (C) for all codesC ∈ SK is given by

1

|SK |

∑

C∈SK

P (C) =
1

|SK |

∑

C∈SK

∑

U∈Er(q,n)

dI(U,C)>ρ

1

=
1

|SK |

∑

U∈Er(q,n)

∑

C∈SK

dI(U,C)>ρ

1

=
1

|SK |

∑

U∈Er(q,n)

(

Q− VC(ρ)

K

)

(14)

=
Q

|SK |

(

Q− VC(ρ)

K

)

.

Eq. (14) comes from the fact that there are
(

Q−VC(ρ)
K

)

codes with cardinalityK that do not coverU .

For all K, there exists a codeC′ ∈ SK for which P (C′) is no more than the average, i.e.,P (C′) ≤

Q
(

Q
K

)−1(Q−VC(ρ)
K

)

≤ Q
(

1−Q−1VC(ρ)
)K

. ForK =
⌊

− 1
logQ(1−Q−1VC(ρ))

⌋

+1, P (C′) ≤ Q
(

1−Q−1VC(ρ)
)K

<

1 andC′ has covering radius at mostρ.

E. Proof of Proposition 10

Proof: The proof is by induction onk. First, an augmented KK code is a code with cardinalityk0

and minimum distance2ρ + 1 for 2ρ < r, which hence leavesuk0
subspaces uncovered; for2ρ ≥ r, a

single codeword coversVC(ρ) subspaces. Second, suppose there exists a code with cardinality k which

leavesexactly vk (vk ≤ uk) subspaces uncovered, and denote the set of uncovered subspaces asVk. Let

G be the graph where the vertex set isEr(q, n) and two vertices are adjacent if and only if their distance

is at mostρ. Let A be the adjacency matrix ofG andAk be thevk columns ofA corresponding to

Vk. There arevkVC(ρ) ones inAk, distributed across|N(Vk)| rows, whereN(Vk) is the neighborhood

[34] of Vk. By construction,N(Vk) does not contain any codeword, hence|N(Vk)| ≤
[

n
r

]

− k. Also, by

Lemma 6,|N(Vk)| ≤ BC(vk, ρ) ≤ BC(uk, ρ). Thus|N(Vk)| ≤ min
{[

n
r

]

− k,BC(uk, ρ)
}

and there exists
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a row with at least

⌈

vkVC(ρ)

min{[n
r
]−k,BC(uk,ρ)}

⌉

ones inAk. Adding the subspace corresponding to this row to

the code, we obtain a code with cardinalityk+1 which leaves at mostvk−

⌈

vkVC(ρ)

min{[n
r
]−k,BC(uk,ρ)}

⌉

≤ uk+1

subspaces uncovered.
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