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Abstract—Channel polarization is a method of constructing N matrix GG, which he called the generator matrix, defined
capacity achieving codes for symmetric binary-input discete recursively as
memoryless channels (B-DMCs)[[1]. In the original paper, tle Lo
construction complexity is exponential in the blocklength In L R
this paper, a new construction method for arbitrary symmetric Gon = Ron (F® Gann), G o= Fi= 11

binary memoryless channel (B-MC) with linear complexity in
the blocklength is proposed. Furthermore, new upper bound d  Where® denotes Kronecker product and whefg. denotes

lower bound of the block error probability of polar codes are the so-called reverse shuffle matrix, which is a permutation
derived for the BEC and arbitrary symmetric B-MC, respectively. matrix.
For a given B-MCW : {0,1} — Y, a log-likelihood ratio
|. INTRODUCTION (LLR) log(W (y | 0)/W (y | 1)) of W is a sufficient statistic

TR 4 ; timating inpute € {0, 1} given outputy € Y. Hence,
Channel polarization, introduced by Arikan [1], is a methoﬁ)r es . ! ;
of constructing capacity achieving codes for symmetriabjn we can associate t’ a B-MC W’ : {0,1} — R with the

input discrete memoryless channels (B-DMCs). Polar codlelsR of W as |ts_output, andv”’ _ha_s the same pe_rformanc_e
which are realized by channel polarization require only lo s W under maximum a pos_terlorl (MAP)_decodlng. In this
encoding and decoding complexity for achieving capacitg}.aper' we deal with symmetric B-MCs defined as follows.
Furthermore, it was shown by Arikan and Telaigr [2] that th®efinition 1. AB-MCW : {0,1} — ) is said to be symmetric
block error probability of polar codes i@(2‘Nﬁ) for any if its associated B-MOV’ : {0,1} — R introduced above
fixed 8 < 3, whereN is the blocklength. It is significantly fast satisfiesiW’(y | 0) = W'(—y | 1).

since the block error probability of low-density parityexdk
(LDPC) codes is polynomial iV [3]. However, in [1], code
construction with polynomial complexity is introduced wnl
for the binary erasure channel (BEC). The main result of thji)

paper is to show code construction with N') complexity for dimensional row vector, and lef — (u,, i1, ..., u;) be a

ity oymmetcbivry gt momoness chmel (831 ooy Lt s conigera et harri |
' PP &) = WNEN | WNGy), with input u¥ € {0,1}V

block error probability of polar codes are derived for the®E 1 ) ST . -
and arbitrary symmetric B-MC, respectively. In Sectigh “and outputy{’ € R]]VV’ \J’\,Vh'c?v's obta]{[ned by comb|_n|ng\/
channel polarization and polar codes introduced(in [1] apgrallel B'?VMCSWN (w1 | 1) =TT,y Wy | 2:) via the
described. In Sectidnlll, the construction method for sy operatlon:cl. - G, Whlc_h should be perilgormed in the
symmetric B-MC is shown. In Section 1V, a lower boundm)du'o'2 arithmetic. We define subchannﬁl’él as

of the block error probability of polar codes is derived for i i 1
§ ) Goct WA ui ! i) = gy D Wvled [ uf).
ul,

Let I(W) denote the capacity between the input and the output
of a symmetric B-MCWV.

We consider communication over a symmetric B-NIC :

.1} — R. Let u) = (w1, uo, ..., uy) denote anN-

arbitrary symmetric B-MC. In Sectidn]V, a new upper bound N

of the block error probability of polar codes over the BEC is

derived. In Sectiof M1, some techniques for tightening sunLet U € {0,1}" andY;¥ € R¥ be random variables which
are discussed. In Sectibn VIl, numerical calculation rissate  follow the joint probability Wy (y¥ | u)¥)/2V. The mutual
compared with numerical simulation results. Finally, théper information(UV; YY) is split by applying the chain rule, as

is concluded in Section VIlI. N
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A. Channel polarization

Let the blocklengthV be an integer power of 2. Iri[1],

. o . U Y, U7 = I(U; U
Arikan discussed channel polarization on the basis aVaxn
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Arikan proved the channel polarization property, whichesta
that every term in the last line of](1) takes a value ne@t0 roreeo
zero or one, and that sinc&U;Y{") = NI(W), the 574
approximate numbers of those terms which take values near
one and zero aréVI(W) and N(1 — I(W)), respectively. 100 ¢ e S
This property suggests the following approach to desigajn%
capacity-achieving error-correcting code: Pick up eletmer 01
u{ which correspond to those subchannels with high mutyglg
information I(W](VZ)), and use them as the information bits.
Non-information bits in:¥ are clamped to prespecified valued.11
The values of the non-information bits are assumed to be all-
zero in this paper, since they do not affect performance B§. 1. The decoding tree fot = 3, i = 4. A binary expansion ofi — 1)
resulting codes if the transmitting channel is symmeiric []_is 011. Bits0 and1 in the expansion correspond to check nodes and variable
. . . . - nodes, which are described as filled squares and filled sjrckspectively.
InSte(%d of choosing S_UbChannels with high mutual mfomm_tl Dashed nodes and edges have already been determiredrtd and thus
I(Wy’), Arikan considered another strategy of constructiosliminated. Thin nodes and edges are not useful for decddintipe fourth bit
choosing subchannels with low Bhattacharyya paramete?igce thin degree-3 check nodes are connected to a unknatableanode.
. . . . . . Thé leaf nodes are given messages from a channel.
which is mentioned later in this section.

B. Decoding
Arikan considered successive cancellation (SC) decoding/i"e €duality is due to disjointness df5;v}. The first

order to achieve capacity with low complexity. In SC decagglin inequality follows from the above—_mentio_nec_i inclu_sioramjn_
decoding results for the non-information bits are se.tfhe PetWeenA; v andB; y. The last |neq.ual|ty(|_:;‘ valid for arbi-
information bits are decoded sequentially in the ascendiff§"y Symmetric channel$|[3]. In particulaf,’ = 2P(A; x)
order of their indices, via maximum likelihood (ML) decodin if‘and only if the channel is the BEC. Arikan proposed a
of the channelV’\"’. More precisely, the decoding result of method of designing a code in which one choogeshat

th bit is minimizes the rightmost side ofl(3), and called the resgitin
. _ @ _ code a polar code. In this paper, we propose an alternatée co
Ui(yy' i) = argmax W' (y1", @' |w;).  (2)  construction strategy in whick(A; v) is directly evaluated,

U=V,

o “instead of Z{, and 7 that minimizes )", ; P(A; n) is
If the two likelihood values are equal, the decoder deteesiinghosen. We call the codes resulting from our strategy polar
0 or 1 with probability 1/2. codes as well.

C. Upper bound of performance and construction In the rest of this paper, we use the notatioAs and
- . . B, instead ofA; xy and B; v, respectively, by dropping the
When a sef C {1,2,..., N} of indices of the information ! Ain N pectively, by pping

bits is fixed, the block error event, denoted By of the blocklength V', when it is evident from the context.

resuling code with SC decoding is a union owrof the I1l. CONSTRUCTION OFPOLAR CODES
eventsB; y that the first bit error occurs at theth bit. One o ]
has We show in this section thdtP(.4,)} are regarded as decod-

NN N i N i ing error probabilities of belief propagation (BP) decagion
Bin={uy,y1,c0 |47 =uy ,Ui(y;, 47 ") #ui b tree graphs, so that they can be evaluated via density @wolut
- {UN N N | i1 = g0t U,( N ui—l) #u;} The Tanner graph of a polar code for= 3 is shown in Fig[1L.
1:Y1,C 1 1 Vil Uy i 2 - T
- {uN N N | U-( N ul’l) i} = A Let us consideri-th step of SC decoding. Sincg™ " have
=1 a Wit ir =N been either determined as non-information bits or decoded
wherecY ¢ {0,1}" denote N independent fair coin flips, in previous steps, the edges incident to these variablesnode
with ¢; being used as the decoding result«f if the two are eliminated. Since.Y, do not affect the characteristics

likelihood values foru; are equal. In[[1],P(A; ~) is upper of the channeW](Vi), the degree-3 check nodes connected to

bounded by the Bhattacharyya parameter, them do not work in this stage. Hence, these check nodes and
@ ) — ) — the edges incident to them are eliminated. Similarly, dege
Iy = Z \/WN (1, ui™ [O) Wy (¥ uy " [ 1), check nodes incident to undetermined degree-1 variablesnod
YV it are also eliminated recursively. The resulting decodirapr

for u; is tree-like, as shown in Figl 1. Hence, the ML decision

) (2) can be implemented by BP decoding on the tree graph. The

P(&) = ZP(BZ',N) < ZP(Az'.,N) < 5 Z ZJ(\Z,'). (3) Pprobability P(A;) is therefore regardpd as the error probability
et T et of the root node of the tree graph via BP decoding, where leaf

Hence, the block error probability is upper bounded as



nodes have messages of the channel. Assume that the bitley complexity of code construction, not only for the BEC
expansion of(i — 1) is b, ... b1, then nodes at depthof the but also for an arbitrary symmetric B-MC, i®(N). To
tree graph are check nodes and variable nodés # 0 and see this, lety(/N) denote the complexity of calculation of

b; = 1, respectively, as shown in Fiﬁﬂ.l ‘ {a%y}i=1,...n Where the complexities of computations ef
An LLR for i-th bit, defined asLEf,) (y{v,ﬂj_l) := and® are considered to be constant. Then, it is evaluated as
log(W (u,ai™" | 0)/W(y¥,ai™" | 1)) is calculated N N N
recursively as X(N)=N+X(§)=N+§+Z+'“+1=O(N)-
LD (N 422y Since the complexity of selecting th¥ R-th smallestP(A;)
_ -1 () ; N/2 ~2i—2 . ~2i—2 is O(N) even in the worst casel[4], the complexity of code
= 2tanh™ " (tanh (L, (v, e " DU, _)/2) construction isO(N).
><tanh(Lgf,)/g(yﬁ/QH,aff;r")/2)) We would like to note that largetV requires higher-

precision representation of messages for reliable SC degod

L(gi)( N 21y = 70 (N 42i2) and _density evolutiop computations_,. In this regard, the -com
N = EN2WUNj2 Ue plexity of SC decoding discussed inl [1] and the complexity
+ (—l)ﬁziflL%)/Q(yiV/g,ﬁfij © a2 of construction mentioned above should be understood as

) _ referring to the number of the arithmetics of LLRs in BP and
where 47 . and a3, denote subvectors which consist ohe number of the convolution operations in density evouti
elements ofa; with even and odd indices, respectively, angespectively, not mentioning their precision. In practiese of
where® denotes modulo-2 addition. The above updating rulggite-sized binning in density evolution may lead to impsec
are originally derived by Arikari [1]. upper bounds of the block error probabilities, which, hoerev

It is well known in the field of LDPC codes that the erroktjl| provide upper bounds relevant to SC decoding with the

probability of the root node of a tree graph after messagg@me quantization as the binning scheme.
passing decoding is calculated via density evolution. For

the analysis of the error probability of symmetric chanpels!V. L OWER BOUND OF THE BLOCK ERROR PROBABILITY
without loss of generality, it is assumed that the all-zero FOR ARBITRARY SYMMETRIC B-MC

message is transmitted. The following theorem for symmetri To the authors’ knowledge, no lower bound of the block
B-MC is a consequence of a well-known resultlin [3] and alsérror probability of polar codes has been known. In this
obtained for the BEC by Arikan [1]. section, we introduce a lower bound for a given choice of

Theorem 1. For a symmetric B-MC which has a density; information bitsZ. We use the following fundamental lemma.

of LLR, it holds thatP(A;) = ¢(a%;) where Lemma 1. U,y B = Ujeq As -
E(a) i lim </_Ea(a:)d$+ l/+€a(a:)dx), Proof: The (Elir_(elctionglis trivial. Assume an event
e—+0 \ J_o 2J . belongs toA;. If 4]~ = u] ", v belongs toB;. Otherwise,v
_ _ _ ‘ _ _ belongs toB; for somej < ¢ which belongs tdr. [ |
ajy =aly xaly, asy =ay®ak, a;=aw Recalling€ = (J,.; B;, it immediately follows thai(£) =

Uicz Ai) holds. The eventg.A;} are easier to deal with

: . P(
and \_Nhere* qnd den(_)te the convolutions Of LLR de|_15|t¥han {B,}. Several bounds which use probabilities concerning
functions, which are defined inl[3], corresponding to vatab {A;} are considered in what follows

and check nodes, respectively. First, via Boole’s inequality, the following lower bound is
On the basis of the availability aP(.4;)s assured by Theo- obtained for anyS C 7
rem[1, we propose the following code construction procedure

ChooseZ which minimizes p <U Ai) > p <U Ai)
(4)

ZP(AZ-), = =]

<t >3 PU) - Y PAN4). (5)
subject to|Z| = NR. The block error probability of the =5 (i,§)€S2,i<j
resulting codes also decays IiI@(TNB) for any 3 < 1

a2 2 Maximization of the lower bound5) with respect &is
as in [2], since the upper bound of the block error probapilityigic,i¢ since it is equivalent to the Max-Cut problem, whic

given in terms of Bhattacharyya parameters|in [2], is al§Q Np_nard [5]. However, without strict optimization, onanc

an upper bou_nd of the block error probability of the codesyiin practically accurate lower bounds for some rates and
constructed via the proposed method. channels

Inl _[1],dcomplex1|ty of Ci'de const[rur(]:tlon onlthe BECh'S In order to obtain the lower bound](5), evaluations of
explained asO(N log N). However, eoreni]1 states t abrobabilities of intersections of twod;s are required. For

Lin counting the depth we omit nodes in the tree with degreeeaitise this purpose, we introduce a method which we call jtb'lﬂ_t
messages of BP are passed through such nodes unprocessed. density evolutionLet (X;,Y7) and (X.,Y3) denote pairs



of random variables which independently follawz, y) and
b(z,y), respectively. The convolutiomxx b is defined as the
joint density function of messagéeX,Y) whereX = X;+ X,
andY = Y; + Y5. Similarly, the convolutionsax®b is
defined as the joint density function of messag€sY’) where
X = X; + X, andY = 2tanh™'(tanh(Y;/2) tanh(Y5/2)).
The other convolutions @x b anda b are also defined in
the same way.

Theorem 2. For a symmetric B-MC which has a density;
of LLR, the joint density}/ of LLR for i-th bit and j-th bit
after BP decoding is calculated recursively as

21,2j ,J i, 24,25—1 ,J

N T AN KAy, N Tay *-aN’
2:—1,25 _ _1,9 1,7 2¢1—1,25— 1 z]
By T Tay Bray, Ay ay B ay,

ai(z,y) = d(z — y)aw (z)
whered(z) denotes the Dirac delta function.
The probabilitiesP(A; N A;), P(A; N A;j), P(A; N.A$) and

P P70, 1) = pi (0, 1) + 2p} (0, PR (1,1),
SN PN, 0) = pi/ (1,007 + 2p3 (1,0)p (1,1),
paw A1) = pR (1,1)2,
gév_l’Zj_l(O,O) =1— pgﬁvlzj 1(0 1)
=y YT L0) = P (L),
py(0,0) = ¢, pyt(0,1) =0,
p%yl(lvo) =0, p%71(17 1) =1-c¢

and wheréj, (x) denotes the Dirac delta function of unit mass
at infinity.

Higher-order joint probabilities such a3(A4; N.A; N Ay)
are calculated recursively by tracking real vectors of an
appropriate dimension in a way similar to that described in
Corollary[].

Complexity of computations (as measured in numbers of

P(A N AS) are calculated by appropriate integrations of thggnvolution operations) of aH”s is O(N?) as N increases.
joint density a%/. Extensions of joint density evolution to Similarly, complexity of computaﬂons of al-joint densities

higher order joint distributions are also possible strdimh
wardly.

ay’""*s is O(N*) as N increases. On the other hand, the
complexity grows exponentially ig since the dimension of

For the BEC, density evolution has only to evolve exthe densities is.

pectations of erasure probabilities [3]. Correspondinglint

density evolution for the BEC is much simpler than that for a

general symmetric B-MC, as follows.

Corollary 1. For the BEC with erasure probability,

ay (z,9) = ! (0,0)3(x)5 () + P! (0,1)3(2)d00 ()
+ 7 (1,0)8sc (1)5(y) + P (1, 1)doo ()00 (9)

where
pox” (0,0) = py/ (0,0)%,
Pas (0,1) = pk7(0,1)2 + 2p%7(0,0)p% (0, 1),
pan’ (1,0) = pi/ (1,0)* + 2p3/ (0,0)p (1, 0),
pon(1,1) = 1= p37(0,0)
— Py (0,1) — P37 (1,0),
paRP710,0) = p%/ (0,0)2 4 2p%7 (0,0)p% (0, 1),
poxe1(0.1) = pi/ (0, 1)%,
ST L) = p (1,1)% + 2 (1, 1)pR (0,1),
o (1,0) = 1= p3R¥71(0,0)
— P TH0,1) = P (1, 1),
2 1%7(0,0) = pi/(0,0)? + 2p% (0,0)p% (1,0),
ov 7 (1,0) = p/ (1,007,
o P (1,1) = P (1,1)% + 2p% (1, 1)pR (1, 0),
on 7(0,1) =1 pay ¥(0,0)

2i—1,2j 2i—1,2j
— Pan J(lvo)_pQN 7(111)’

V. NEW UPPER BOUND OF THE BLOCK ERROR
PROBABILITY FOR THEBEC

The upper bound{4) of the block error probability of polar
codes may Yield poor results. In particular, it exceeds @& n
the capacity, as observed inl [1] for the BEC. In this section,
a new upper bound which does not exceed one is derived for
the BEC. For the BEC, covariances among complements of
{A;}, denoted by{.A¢}, are always positive.

Lemma 2. For the BEC,P((,c7 A¢) > [l;cz P(AS), for
anyZ C {1,...,N}.

Outline of proof: An event A is expressed as
N, {eix € F}, wheree;;, is an error pattern of erasure
messages farth bit, and wheref is a set of indices of erasure
messages. [ |
Using this property, the block error probability is upper
bounded simply byt —[],.; P (Af). Furthermore, it is more
accurately upper bounded by

1=TIP (41 4) (6)

i€l

where p(i) € Z corresponds to a parent node 4f in a
spanning tree of a perfect graph which has nodes correspond-
ing to indices inZ. P(AF | A7) is calculated via joint
density evolution. In order to t|ghten the upper bouhtl (6),
the maximum weight directed spanning tree should be chosen
from the perfect directed graph whose edges have weights
P(AF | A%), wherei andj are sink and source nodes of the
directed edge, respectively, like Chow-Liu tréé [6].



VI. TECHNIQUES FOR TIGHTENING BOUNDS

In this section, some techniques for obtaining tighter lsun
of P({J;c7 Ai) are shown. The first one is applicable to polar

codes over the BEC. In this case, the LLZE%)(y{V,ﬂ;_l)

for i-th bit in SC decoding, when the all-zero information is
transmitted, is either zero or infinity. Let; be the event that
the LLR fori-th bit is zero. We consider the events of erasufe
{A;} rather than{.A;} for simplicity. We first define partial

ordering on{1,...,2"}.

Definition 2. For i,5 € {1,...,2"}, i < j if and only if¢-th
bit of binary expansion of — 1 is one whert-th bit of binary
expansion of — 1 is one for anyt € {1,...,n}.

§imulations +

The following theorem is useful for reducing time complgxit 05 0.6
of calculations of the bounds. €
Lemma 3. j < i <= A] C Aj. Fig. 2. Calculation results of upper boun@@ (4, (6) and oiveund [5).

. Rate is0.5. Blocklength is1024.
Proof: If a variable node outputs an erased message, a

check node with the same input as the variable node outputs

an erased message. Hence i€ A; thenv € Aj. The proof pounds. Although we optimized the upper boufld (6) and the

Theorem 3. The block erasure probability of polar codes of!0S€ to the upper bound feibelow0.4. Our new upper bound

information bitsZ is P({J, . ;.7 A}) whereM (Z) denotes the 1S always smaller than and closer to the simulation results,
set of minimal eIementszedf \(Nl>th Zrespect to<. whereas the union bound exceddwhene > 0.407.

Proof: From LemmdB| ;.7 A; = Ui e z) A n VIIl. CONCLUSION AND FUTURE WORKS
From this Theorem, we have only to consider the set of The construction method of polar codes for symmetric B-
minimal elementsM (Z) for the block erasure probability MCs with complexityO (V) is shown. New upper and lower
of polar codes over the BEC, which can be used to tight&ounds for the block error probability of particular polades

bounds. and the method of joint density evolution are derived. The
For polar codes over a general symmetric B-MC, theethod and the bounds are also applicable to generalizad pol
following result similar to Theorer] 3 is obtained. codes|[7].

Computing higher-order joint distributions and deriving
other bounds (e.g., Boole’s inequality with higher-oragnts)
P(Ageif1,0 U Udgi(iynyn) = 1—(1 — P(Aiy100-))2  are future works.

Proof is omitted for lack of space. Although the joint proba- ACKNOWLEDGMENT
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more efficiently via density evolution for depth-— k) trees
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