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Abstract—Channel polarization is a method of constructing
capacity achieving codes for symmetric binary-input discrete
memoryless channels (B-DMCs) [1]. In the original paper, the
construction complexity is exponential in the blocklength. In
this paper, a new construction method for arbitrary symmetric
binary memoryless channel (B-MC) with linear complexity in
the blocklength is proposed. Furthermore, new upper bound and
lower bound of the block error probability of polar codes are
derived for the BEC and arbitrary symmetric B-MC, respectively.

I. I NTRODUCTION

Channel polarization, introduced by Arıkan [1], is a method
of constructing capacity achieving codes for symmetric binary-
input discrete memoryless channels (B-DMCs). Polar codes
which are realized by channel polarization require only low
encoding and decoding complexity for achieving capacity.
Furthermore, it was shown by Arıkan and Telatar [2] that the
block error probability of polar codes isO(2−Nβ

) for any
fixedβ < 1

2 , whereN is the blocklength. It is significantly fast
since the block error probability of low-density parity-check
(LDPC) codes is polynomial inN [3]. However, in [1], code
construction with polynomial complexity is introduced only
for the binary erasure channel (BEC). The main result of this
paper is to show code construction withO(N) complexity for
arbitrary symmetric binary-input memoryless channel (B-MC).
Furthermore, a new upper bound and a lower bound of the
block error probability of polar codes are derived for the BEC
and arbitrary symmetric B-MC, respectively. In Section II,
channel polarization and polar codes introduced in [1] are
described. In Section III, the construction method for arbitrary
symmetric B-MC is shown. In Section IV, a lower bound
of the block error probability of polar codes is derived for
arbitrary symmetric B-MC. In Section V, a new upper bound
of the block error probability of polar codes over the BEC is
derived. In Section VI, some techniques for tightening bounds
are discussed. In Section VII, numerical calculation results are
compared with numerical simulation results. Finally, thispaper
is concluded in Section VIII.

II. PRELIMINARIES

A. Channel polarization

Let the blocklengthN be an integer power of 2. In [1],
Arıkan discussed channel polarization on the basis of anN ×

N matrix GN , which he called the generator matrix, defined
recursively as

G2n := R2n (F ⊗ G2n−1) , G2 := F :=

[

1 0
1 1

]

where⊗ denotes Kronecker product and whereR2n denotes
the so-called reverse shuffle matrix, which is a permutation
matrix.

For a given B-MCW : {0, 1} → Y, a log-likelihood ratio
(LLR) log(W (y | 0)/W (y | 1)) of W is a sufficient statistic
for estimating inputx ∈ {0, 1} given outputy ∈ Y. Hence,
we can associate toW a B-MC W ′ : {0, 1} → R with the
LLR of W as its output, andW ′ has the same performance
as W under maximum a posteriori (MAP) decoding. In this
paper, we deal with symmetric B-MCs defined as follows.

Definition 1. A B-MCW : {0, 1} → Y is said to be symmetric
if its associated B-MCW ′ : {0, 1} → R introduced above
satisfiesW ′(y | 0) = W ′(−y | 1).

Let I(W ) denote the capacity between the input and the output
of a symmetric B-MCW .

We consider communication over a symmetric B-MCW :
{0, 1} → R. Let uN

1 = (u1, u2, . . . , uN) denote anN -
dimensional row vector, and letuj

i = (ui, ui+1, . . . , uj) be a
subvector ofuN

1 . Let us consider a vector channelWN (yN
1 |

uN
1 ) := WN (yN

1 | uN
1 GN ), with input uN

1 ∈ {0, 1}N

and outputyN
1 ∈ RN , which is obtained by combiningN

parallel B-DMCsWN (yN
1 | xN

1 ) :=
∏N

i=1 W (yi | xi) via the
operationxN

1 = uN
1 GN , which should be performed in the

modulo-2 arithmetic. We define subchannelsW
(i)
N as

W
(i)
N (yN

1 , ui−1
1 | ui) :=

1

2N−1

∑

uN
i+1

WN (yN
1 | uN

1 ).

Let UN
1 ∈ {0, 1}N andY N

1 ∈ RN be random variables which
follow the joint probabilityWN (yN

1 | uN
1 )/2N . The mutual

informationI(UN
1 ; Y N

1 ) is split by applying the chain rule, as

I(UN
1 ; Y N

1 ) =

N
∑

i=1

I(Ui ; Y N
1 | U i−1

1 )

=

N
∑

i=1

I(Ui ; Y N
1 , U i−1

1 ) − I(Ui ; U i−1
1 )
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=

N
∑

i=1

I(Ui ; Y N
1 , U i−1

1 ) =

N
∑

i=1

I(W
(i)
N ). (1)

Arıkan proved the channel polarization property, which states
that every term in the last line of (1) takes a value near
zero or one, and that sinceI(UN

1 ; Y N
1 ) = NI(W ), the

approximate numbers of those terms which take values near
one and zero areNI(W ) and N(1 − I(W )), respectively.
This property suggests the following approach to designinga
capacity-achieving error-correcting code: Pick up elements of
uN

1 which correspond to those subchannels with high mutual
information I(W

(i)
N ), and use them as the information bits.

Non-information bits inuN
1 are clamped to prespecified values.

The values of the non-information bits are assumed to be all-
zero in this paper, since they do not affect performance of
resulting codes if the transmitting channel is symmetric [1].
Instead of choosing subchannels with high mutual information
I(W

(i)
N ), Arıkan considered another strategy of construction:

choosing subchannels with low Bhattacharyya parameters,
which is mentioned later in this section.

B. Decoding

Arıkan considered successive cancellation (SC) decoding in
order to achieve capacity with low complexity. In SC decoding,
decoding results for the non-information bits are set to0. The
information bits are decoded sequentially in the ascending
order of their indices, via maximum likelihood (ML) decoding
of the channelW (i)

N . More precisely, the decoding result ofi-
th bit is

Ûi(y
N
1 , ûi−1

1 ) = argmax
ui=0,1

W
(i)
N (yN

1 , ûi−1
1 | ui). (2)

If the two likelihood values are equal, the decoder determines
0 or 1 with probability 1/2.

C. Upper bound of performance and construction

When a setI ⊆ {1, 2, . . . , N} of indices of the information
bits is fixed, the block error event, denoted byE , of the
resulting code with SC decoding is a union overI of the
eventsBi,N that the first bit error occurs at thei-th bit. One
has

Bi,N = { uN
1 , yN

1 , cN
1 | ûi−1

1 = ui−1
1 , Ûi(y

N
1 , ûi−1

1 ) 6= ui }

= { uN
1 , yN

1 , cN
1 | ûi−1

1 = ui−1
1 , Ûi(y

N
1 , ui−1

1 ) 6= ui }

⊆ { uN
1 , yN

1 , cN
1 | Ûi(y

N
1 , ui−1

1 ) 6= ui } =: Ai,N

where cN
1 ∈ {0, 1}N denoteN independent fair coin flips,

with ci being used as the decoding result ofui if the two
likelihood values forui are equal. In [1],P (Ai,N ) is upper
bounded by the Bhattacharyya parameter,

Z
(i)
N :=

∑

yN
1

,ui−1

1

√

W
(i)
N

(

yN
1 , ui−1

1 | 0
)

W
(i)
N

(

yN
1 , ui−1

1 | 1
)

.

Hence, the block error probability is upper bounded as

P (E) =
∑

i∈I

P (Bi,N ) ≤
∑

i∈I

P (Ai,N ) ≤
1

2

∑

i∈I

Z
(i)
N . (3)
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Fig. 1. The decoding tree forn = 3, i = 4. A binary expansion of(i − 1)
is 011. Bits0 and1 in the expansion correspond to check nodes and variable
nodes, which are described as filled squares and filled circles, respectively.
Dashed nodes and edges have already been determined to0 or 1 and thus
eliminated. Thin nodes and edges are not useful for decodingfor the fourth bit
since thin degree-3 check nodes are connected to a unknown variable node.
The leaf nodes are given messages from a channel.

The equality is due to disjointness of{Bi,N}. The first
inequality follows from the above-mentioned inclusion relation
betweenAi,N andBi,N . The last inequality is valid for arbi-
trary symmetric channels [3]. In particular,Z

(i)
N = 2P (Ai,N )

if and only if the channel is the BEC. Arıkan proposed a
method of designing a code in which one choosesI that
minimizes the rightmost side of (3), and called the resulting
code a polar code. In this paper, we propose an alternative code
construction strategy in whichP (Ai,N ) is directly evaluated,
instead of Z

(i)
N , and I that minimizes

∑

i∈I
P (Ai,N ) is

chosen. We call the codes resulting from our strategy polar
codes as well.

In the rest of this paper, we use the notationsAi and
Bi instead ofAi,N and Bi,N , respectively, by dropping the
blocklengthN , when it is evident from the context.

III. C ONSTRUCTION OFPOLAR CODES

We show in this section that{P (Ai)} are regarded as decod-
ing error probabilities of belief propagation (BP) decoding on
tree graphs, so that they can be evaluated via density evolution.
The Tanner graph of a polar code forn = 3 is shown in Fig. 1.
Let us consideri-th step of SC decoding. Sinceui−1

1 have
been either determined as non-information bits or decoded
in previous steps, the edges incident to these variable nodes
are eliminated. SinceuN

i+1 do not affect the characteristics
of the channelW (i)

N , the degree-3 check nodes connected to
them do not work in this stage. Hence, these check nodes and
the edges incident to them are eliminated. Similarly, degree-3
check nodes incident to undetermined degree-1 variable nodes
are also eliminated recursively. The resulting decoding graph
for ui is tree-like, as shown in Fig. 1. Hence, the ML decision
(2) can be implemented by BP decoding on the tree graph. The
probabilityP (Ai) is therefore regarded as the error probability
of the root node of the tree graph via BP decoding, where leaf



nodes have messages of the channel. Assume that the binary
expansion of(i − 1) is bn . . . b1, then nodes at deptht of the
tree graph are check nodes and variable nodes ifbt = 0 and
bt = 1, respectively, as shown in Fig. 11.

An LLR for i-th bit, defined asL
(i)
N (yN

1 , ûi−1
i ) :=

log(W
(i)
N (yN

1 , ûi−1
1 | 0)/W

(i)
N (yN

1 , ûi−1
1 | 1)) is calculated

recursively as

L
(2i−1)
N (yN

1 , û2i−2
1 )

= 2 tanh−1(tanh(L
(i)
N/2(y

N/2
1 , û2i−2

1,e ⊕ û2i−2
1.o )/2)

× tanh(L
(i)
N/2(y

N
N/2+1, û

2i−2
1,e )/2))

L
(2i)
N (yN

1 , û2i−1
1 ) = L

(i)
N/2(y

N
N/2+1, û

2i−2
1,e )

+ (−1)û2i−1L
(i)
N/2(y

N/2
1 , û2i−2

1,e ⊕ û2i−2
1,o )

where ûi
1,e and ûi

1,o denote subvectors which consist of
elements ofûi

1 with even and odd indices, respectively, and
where⊕ denotes modulo-2 addition. The above updating rules
are originally derived by Arıkan [1].

It is well known in the field of LDPC codes that the error
probability of the root node of a tree graph after message
passing decoding is calculated via density evolution. For
the analysis of the error probability of symmetric channels,
without loss of generality, it is assumed that the all-zero
message is transmitted. The following theorem for symmetric
B-MC is a consequence of a well-known result in [3] and also
obtained for the BEC by Arıkan [1].

Theorem 1. For a symmetric B-MC which has a densityaW

of LLR, it holds thatP (Ai) = E(ai
N ) where

E(a) := lim
ǫ→+0

(
∫ −ǫ

−∞

a(x)dx +
1

2

∫ +ǫ

−ǫ

a(x)dx

)

,

a
2i
2N = a

i
N ⋆ a

i
N , a

2i−1
2N = a

i
N � a

i
N , a

1
1 = aW

and where⋆ and � denote the convolutions of LLR density
functions, which are defined in [3], corresponding to variable
and check nodes, respectively.

On the basis of the availability ofP (Ai)s assured by Theo-
rem 1, we propose the following code construction procedure:
ChooseI which minimizes

∑

i∈I

P (Ai), (4)

subject to |I| = NR. The block error probability of the
resulting codes also decays likeO(2−Nβ

) for any β < 1
2

as in [2], since the upper bound of the block error probability,
given in terms of Bhattacharyya parameters in [2], is also
an upper bound of the block error probability of the codes
constructed via the proposed method.

In [1], complexity of code construction on the BEC is
explained asO(N log N). However, Theorem 1 states that

1In counting the depth we omit nodes in the tree with degree 2, because
messages of BP are passed through such nodes unprocessed.

the complexity of code construction, not only for the BEC
but also for an arbitrary symmetric B-MC, isO(N). To
see this, letχ(N) denote the complexity of calculation of
{ai

N}i=1,...,N where the complexities of computations of⋆
and� are considered to be constant. Then, it is evaluated as

χ(N) = N + χ

(

N

2

)

= N +
N

2
+

N

4
+ · · · + 1 = O(N).

Since the complexity of selecting theNR-th smallestP (Ai)
is O(N) even in the worst case [4], the complexity of code
construction isO(N).

We would like to note that largerN requires higher-
precision representation of messages for reliable SC decoding
and density evolution computations. In this regard, the com-
plexity of SC decoding discussed in [1] and the complexity
of construction mentioned above should be understood as
referring to the number of the arithmetics of LLRs in BP and
the number of the convolution operations in density evolution,
respectively, not mentioning their precision. In practice, use of
finite-sized binning in density evolution may lead to imprecise
upper bounds of the block error probabilities, which, however,
still provide upper bounds relevant to SC decoding with the
same quantization as the binning scheme.

IV. L OWER BOUND OF THE BLOCK ERROR PROBABILITY

FOR ARBITRARY SYMMETRIC B-MC

To the authors’ knowledge, no lower bound of the block
error probability of polar codes has been known. In this
section, we introduce a lower bound for a given choice of
information bitsI. We use the following fundamental lemma.

Lemma 1.
⋃

i∈I
Bi =

⋃

i∈I
Ai .

Proof: The direction⊆ is trivial. Assume an eventv
belongs toAi. If ûi−1

1 = ui−1
1 , v belongs toBi. Otherwise,v

belongs toBj for somej < i which belongs toI.
RecallingE =

⋃

i∈I
Bi, it immediately follows thatP (E) =

P (
⋃

i∈I
Ai) holds. The events{Ai} are easier to deal with

than{Bi}. Several bounds which use probabilities concerning
{Ai} are considered in what follows.

First, via Boole’s inequality, the following lower bound is
obtained for anyS ⊆ I

P

(

⋃

i∈I

Ai

)

≥ P

(

⋃

i∈S

Ai

)

≥
∑

i∈S

P (Ai) −
∑

(i,j)∈S2,i<j

P (Ai ∩ Aj) . (5)

Maximization of the lower bound (5) with respect toS is
difficult since it is equivalent to the Max-Cut problem, which
is NP-hard [5]. However, without strict optimization, one can
obtain practically accurate lower bounds for some rates and
channels.

In order to obtain the lower bound (5), evaluations of
probabilities of intersections of twoAis are required. For
this purpose, we introduce a method which we call thejoint
density evolution. Let (X1, Y1) and (X2, Y2) denote pairs



of random variables which independently followa(x, y) and
b(x, y), respectively. The convolutiona ⋆⋆ b is defined as the
joint density function of messages(X, Y ) whereX = X1+X2

and Y = Y1 + Y2. Similarly, the convolutionsa ⋆�b is
defined as the joint density function of messages(X, Y ) where
X = X1 + X2 and Y = 2 tanh−1(tanh(Y1/2) tanh(Y2/2)).
The other convolutionsa �⋆ b anda �� b are also defined in
the same way.

Theorem 2. For a symmetric B-MC which has a densityaW

of LLR, the joint densityai,j
N of LLR for i-th bit and j-th bit

after BP decoding is calculated recursively as

a
2i,2j
2N = a

i,j
N ⋆ ⋆ a

i,j
N , a

2i,2j−1
2N = a

i,j
N ⋆ � a

i,j
N ,

a
2i−1,2j
2N = a

i,j
N � ⋆ a

i,j
N , a

2i−1,2j−1
2N = a

i,j
N � � a

i,j
N ,

a
1
1(x, y) = δ(x − y)aW (x)

whereδ(x) denotes the Dirac delta function.

The probabilitiesP (Ai ∩Aj), P (Ac
i ∩Aj), P (Ai ∩Ac

j) and
P (Ac

i ∩ Ac
j) are calculated by appropriate integrations of the

joint density a
i,j
N . Extensions of joint density evolution to

higher order joint distributions are also possible straightfor-
wardly.

For the BEC, density evolution has only to evolve ex-
pectations of erasure probabilities [3]. Correspondingly, joint
density evolution for the BEC is much simpler than that for a
general symmetric B-MC, as follows.

Corollary 1. For the BEC with erasure probabilityǫ,

a
i,j
N (x, y) = pi,j

N (0, 0)δ(x)δ(y) + pi,j
N (0, 1)δ(x)δ∞(y)

+ pi,j
N (1, 0)δ∞(x)δ(y) + pi,j

N (1, 1)δ∞(x)δ∞(y)

where

p2i,2j
2N (0, 0) = pi,j

N (0, 0)2,

p2i,2j
2N (0, 1) = pi,j

N (0, 1)2 + 2pi,j
N (0, 0)pi,j

N (0, 1),

p2i,2j
2N (1, 0) = pi,j

N (1, 0)2 + 2pi,j
N (0, 0)pi,j

N (1, 0),

p2i,2j
2N (1, 1) = 1 − p2i,2j

2N (0, 0)

− p2i,2j
2N (0, 1)− p2i,2j

2N (1, 0),

p2i,2j−1
2N (0, 0) = pi,j

N (0, 0)2 + 2pi,j
N (0, 0)pi,j

N (0, 1),

p2i,2j−1
2N (0, 1) = pi,j

N (0, 1)2,

p2i,2j−1
2N (1, 1) = pi,j

N (1, 1)2 + 2pi,j
N (1, 1)pi,j

N (0, 1),

p2i,2j−1
2N (1, 0) = 1 − p2i,2j−1

2N (0, 0)

− p2i,2j−1
2N (0, 1) − p2i,2j−1

2N (1, 1),

p2i−1,2j
2N (0, 0) = pi,j

N (0, 0)2 + 2pi,j
N (0, 0)pi,j

N (1, 0),

p2i−1,2j
2N (1, 0) = pi,j

N (1, 0)2,

p2i−1,2j
2N (1, 1) = pi,j

N (1, 1)2 + 2pi,j
N (1, 1)pi,j

N (1, 0),

p2i−1,2j
2N (0, 1) = 1 − p2i−1,2j

2N (0, 0)

− p2i−1,2j
2N (1, 0) − p2i−1,2j

2N (1, 1),

p2i−1,2j−1
2N (0, 1) = pi,j

N (0, 1)2 + 2pi,j
N (0, 1)pi,j

N (1, 1),

p2i−1,2j−1
2N (1, 0) = pi,j

N (1, 0)2 + 2pi,j
N (1, 0)pi,j

N (1, 1),

p2i−1,2j−1
2N (1, 1) = pi,j

N (1, 1)2,

p2i−1,2j−1
2N (0, 0) = 1 − p2i−1,2j−1

2N (0, 1)

− p2i−1,2j−1
2N (1, 0) − p2i−1,2j−1

2N (1, 1),

p1,1
1 (0, 0) = ǫ, p1,1

1 (0, 1) = 0,

p1,1
1 (1, 0) = 0, p1,1

1 (1, 1) = 1 − ǫ

and whereδ∞(x) denotes the Dirac delta function of unit mass
at infinity.

Higher-order joint probabilities such asP (Ai ∩ Aj ∩ Ak)
are calculated recursively by tracking real vectors of an
appropriate dimension in a way similar to that described in
Corollary 1.

Complexity of computations (as measured in numbers of
convolution operations) of allai,j

N s is O(N2) asN increases.
Similarly, complexity of computations of alls-joint densities
a

i1,...,is

N s is O(Ns) as N increases. On the other hand, the
complexity grows exponentially ins since the dimension of
the densities iss.

V. NEW UPPER BOUND OF THE BLOCK ERROR

PROBABILITY FOR THE BEC

The upper bound (4) of the block error probability of polar
codes may yield poor results. In particular, it exceeds one near
the capacity, as observed in [1] for the BEC. In this section,
a new upper bound which does not exceed one is derived for
the BEC. For the BEC, covariances among complements of
{Ai}, denoted by{Ac

i}, are always positive.

Lemma 2. For the BEC,P (
⋂

i∈I
Ac

i ) ≥
∏

i∈I
P (Ac

i ), for
any I ⊆ {1, . . . , N}.

Outline of proof: An event Ac
i is expressed as

⋂

k {ei,k * F}, where ei,k is an error pattern of erasure
messages fori-th bit, and whereF is a set of indices of erasure
messages.

Using this property, the block error probability is upper
bounded simply by1−

∏

i∈I
P (Ac

i ). Furthermore, it is more
accurately upper bounded by

1 −
∏

i∈I

P
(

Ac
i | Ac

p(i)

)

(6)

where p(i) ∈ I corresponds to a parent node ofAi in a
spanning tree of a perfect graph which has nodes correspond-
ing to indices inI. P (Ac

i | Ac
p(i)) is calculated via joint

density evolution. In order to tighten the upper bound (6),
the maximum weight directed spanning tree should be chosen
from the perfect directed graph whose edges have weights
P (Ac

i | Ac
j), wherei and j are sink and source nodes of the

directed edge, respectively, like Chow-Liu tree [6].



VI. T ECHNIQUES FOR TIGHTENING BOUNDS

In this section, some techniques for obtaining tighter bounds
of P (

⋃

i∈I
Ai) are shown. The first one is applicable to polar

codes over the BEC. In this case, the LLRL(i)
N (yN

1 , ûi−1
j )

for i-th bit in SC decoding, when the all-zero information is
transmitted, is either zero or infinity. LetA′

i be the event that
the LLR for i-th bit is zero. We consider the events of erasure
{A′

i} rather than{Ai} for simplicity. We first define partial
ordering on{1, . . . , 2n}.

Definition 2. For i, j ∈ {1, . . . , 2n}, i ≺ j if and only if t-th
bit of binary expansion ofj − 1 is one whent-th bit of binary
expansion ofi − 1 is one for anyt ∈ {1, . . . , n}.

The following theorem is useful for reducing time complexity
of calculations of the bounds.

Lemma 3. j ≺ i ⇐⇒ A′
i ⊆ A′

j .

Proof: If a variable node outputs an erased message, a
check node with the same input as the variable node outputs
an erased message. Hence ifv ∈ A′

i thenv ∈ A′
j . The proof

of the other direction is also obvious and is omitted.

Theorem 3. The block erasure probability of polar codes of
information bitsI is P (

⋃

i∈M(I) A
′
i) whereM(I) denotes the

set of minimal elements ofI with respect to≺.

Proof: From Lemma 3,
⋃

i∈I
A′

i =
⋃

i∈M(I) A
′
i.

From this Theorem, we have only to consider the set of
minimal elementsM(I) for the block erasure probability
of polar codes over the BEC, which can be used to tighten
bounds.

For polar codes over a general symmetric B-MC, the
following result similar to Theorem 3 is obtained.

Theorem 4. For integers0 ≤ k ≤ n, and0 ≤ i ≤ 2n−k − 1

P (A2ki+1,2n ∪· · ·∪A2k(i+1),2n) = 1− (1−P (Ai+1,2n−k))2
k

Proof is omitted for lack of space. Although the joint proba-
bility P (A2ki+1,2n ∪ · · · ∪ A2k(i+1),2n) can be calculated via
joint density evolution, Theorem 4 allows us to calculate it
more efficiently via density evolution for depth-(n− k) trees
and a few arithmetics.

From Theorem 4, one can efficiently obtain a tighter upper
bound than (4) by decomposing the block error event as
E =

⋃

i∈I
Ai =

⋃

j∈J
Cj , where eachCj is expressed as

A2ki+1,2n ∪· · ·∪A2k(i+1),2n . For example, if we chooseI =
{4, 6, 7, 8} as information bits for a polar code withN = 8,
one obtains an upper boundP (A4) + P (A6) + P (A7 ∪ A8),
which is tighter thanP (A4) + P (A6) + P (A7) + P (A8).

VII. N UMERICAL CALCULATIONS AND SIMULATIONS

In this section, numerical calculation results are compared
with numerical simulation results. Figure 2 shows calculation
results of the upper bounds (4), (6) and the lower bound (5) of
block erasure probability. Coding rate is0.5 and blocklength
is 1024. Only the minimal elements of information bits are
considered in view of Theorem 3 for calculation of these
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Fig. 2. Calculation results of upper bounds (4), (6) and lower bound (5).
Rate is0.5. Blocklength is1024.

bounds. Although we optimized the upper bound (6) and the
lower bound (5) only approximately, the lower bound is very
close to the upper bound forǫ below0.4. Our new upper bound
is always smaller than1 and closer to the simulation results,
whereas the union bound exceeds1 whenǫ > 0.407.

VIII. C ONCLUSION AND FUTURE WORKS

The construction method of polar codes for symmetric B-
MCs with complexityO(N) is shown. New upper and lower
bounds for the block error probability of particular polar codes
and the method of joint density evolution are derived. The
method and the bounds are also applicable to generalized polar
codes [7].

Computing higher-order joint distributions and deriving
other bounds (e.g., Boole’s inequality with higher-order terms)
are future works.
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[7] S. Korada, E. Şaşoğlu, and R. Urbanke, “Polar codes: characterization
of exponent, bounds, and constructions,” 2009. [Online]. Available:
http://arxiv.org/abs/0901.0536

http://arxiv.org/abs/0807.3917
http://arxiv.org/abs/0807.3806
http://arxiv.org/abs/0901.0536

	Introduction
	Preliminaries
	Channel polarization
	Decoding
	Upper bound of performance and construction

	Construction of Polar codes
	Lower bound of the block error probability for arbitrary symmetric B-MC
	New upper bound of the block error probability for the BEC
	Techniques for tightening bounds
	Numerical calculations and simulations
	Conclusion and future works
	References

