
ar
X

iv
:0

90
1.

18
53

v2
  [

cs
.IT

]  
28

 J
an

 2
00

9

Binary Causal-Adversary Channels
M. Langberg

Computer Science Division
Open University of Israel

Raanana 43107, Israel
mikel@openu.ac.il

S. Jaggi
Department of Information Engineering

Chinese University of Hong Kong
Shatin, N.T., Hong Kong

jaggi@ie.cuhk.edu.hk

B. K. Dey
Department of Electrical Engineering

Indian Institute of Technology Bombay
Mumbai, India, 400 076

bikash@ee.iitb.ac.in

Abstract— In this work we consider the communication of
information in the presence of a causal adversarial jammer.
In the setting under study, a sender wishes to communicate
a message to a receiver by transmitting a codewordx =
(x1, . . . , xn) bit-by-bit over a communication channel. The
adversarial jammer can view the transmitted bits xi one at
a time, and can change up to ap-fraction of them. However,
the decisions of the jammer must be made in anonline or
causal manner. Namely, for each bitxi the jammer’s decision
on whether to corrupt it or not (and on how to change it) must
depend only onxj for j ≤ i. This is in contrast to the “classical”
adversarial jammer which may base its decisions on its complete
knowledge ofx. We present a non-trivial upper bound on the
amount of information that can be communicated. We show
that the achievable rate can be asymptotically no greater than
min{1 − H(p), (1 − 4p)+}. Here H(.) is the binary entropy
function, and (1 − 4p)+ equals 1 − 4p for p ≤ 0.25, and 0
otherwise.

I. I NTRODUCTION

Consider the following adversarial communication sce-
nario. A sender Alice wishes to transmit a messageu to a
receiver Bob. To do so, Alice encodesu into a codeword
x and transmits it over abinary channel. The codeword
x = x1, . . . , xn is a binary vector of lengthn. However,
Calvin, a malicious adversary, can observex and corrupt up
to a p-fraction of then transmitted bits,i.e., pn bits.

In the classical adversarial channel model, e.g., [4], it is
usually assumed that Calvin has full knowledge of the entire
codewordx, and based on this knowledge (together with the
knowledge of the code shared by Alice and Bob) Calvin can
maliciously plan what error to impose onx. We refer to
such an adversary as anomniscientadversary. For binary
channels, the optimal rate of communication in the presence
of an omniscient adversary has been an open problem in
classical coding theory for several decades. The best known
lower bound is given by the Gilbert-Varshamov bound [10],
[18], which implies that Alice can transmit at rate1−H(2p)
to Bob. Conversely, the tightest upper bound was given by
McEliece et al. [12], and has a positive gap from the lower
bound for allp ∈ (0, 1/4) (see Fig. 1).

In this work we initiate the analysis of coding schemes
that allow communication against certain adversaries thatare
weaker than the omniscient adversary. We consider adver-
saries that behave in acausalor onlinemanner. Namely, for
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grants.
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Fig. 1. Bounds on capacity of the adversarial channel. The bold line in
purple is our upper bound ofmin{1−H(p), (1− 4p)+}.

each bitxi, we assume that Calvin decides whether to change
it or not (and if so, how to change it) based on the bitsxj ,
for j ≤ i alone,i.e., the bits that he has already observed. In
this case we refer to Calvin as acausaladversary.

Causal adversaries arise naturally in practical settings,
where adversaries typically have noa priori knowledge of
Alice’s messageu. In such cases they must simultaneously
learn u based on Alice’s transmissions, and jam the corre-
sponding codewordx accordingly. Thiscausalityassumption
is reasonable for many communication channels, both wired
and wireless, where Calvin is not co-located with Alice. For
example consider the scenario in which the transmission of
x = x1, . . . , xn is done duringn channel uses over time,
where at timei the bit xi is transmitted over the channel.
Calvin can only corrupt a bit when it is transmitted (and
thus its error is based on its view so far). To decode the
transmitted message, Bob waits until all the bits have arrived.
As in the omniscient model, Calvin is restricted in the number
of bits pn he can corrupt. This might be because of limited
processing power or limited transmit energy.

Recently, the problem of codes against causal adversaries
was considered and solved by the authors [6] forlarge-
q channels, i.e., channels where Alice’s codewordx =
x1, . . . , xn is considered to be a vector of lengthn over a
field of “large” sizeq. Eachsymbolxi may represent a large
packet of bits in practice. Calvin is allowed to arbitrarily
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corrupt ap-fraction of the symbols, rather than bits. A tight
characterization of the rate-region for various scenariosis
given in [6], and computationally efficient codes that achieve
these rate-regions are presented. However, the techniques
used in characterizing the rate-region of causal adversaries
over large-q channels do not work over binary channels.
This is because each symbol in a large-q channel can contain
within it a “small” hash that can be used to verify the symbol.
This is the crux of the technique used to achieve the lower
bounds in [6]. We currently do not know how to extend this
method to binary channels. Conversely, for upper bounds,
the geometry of the space of length-n codewords over large-
q alphabets is significantly different than that corresponding
to binary alphabets. For instance, for large-q channels the
volume of ann-sphere of radiusαn (0 ≤ α ≤ 1) overFq is
∼ qnα, This leads to simpler bounds for large-q channels.

In this work we initiate the study of binary causal-
adversary channels, and present two upper bounds on their
capacity:1 − H(p), and (1 − 4p)+. The upper bound of
1 −H(p) is very “natural”. Namely, it is not hard to verify
that if Calvin attacks Alice’s transmission by simulating the
well-studied Binary Symmetric Channel [4], he can force a
communication rate of no more than1 − H(p). The upper
bound of(1− 4p)+ presented in this work is non-trivial for
both its implications and its proof techniques. The bound
demonstrates that at least for some values ofp, the achievable
rate is bounded away from1 − H(p). For p ∈ (p0, 0.5),
1 − 4p is strictly less than1 − H(p) (herep0 is the value
of p satisfying H(p) = 4p, and can be computed to be
approximately0.15642 . . .). In fact for p ∈ (0.25, 0.5) our
bound implies that no communication at positive rate is
possible, which is much stronger than the result obtained
by the upper bound of1 − H(p) (see Fig. 1). Our proof
techniques include a combination of tools from the fields
of Extremal Combinatorics (e.g. Turán’s theorem [17]), and
classical Coding Theory (e.g. the Plotkin bound [14], [2]).

II. M ODEL

For any integeri let [i] denote the set{1, . . . , i}. LetR ≥ 0
be Alice’s rate. An (n,Rn)-code C is defined by Alice’s
encoder and Bob’s corresponding decoder, as below.
Alice: Alice’s messageu is assumed to be a random variable
U with entropyRn, over alphabetU . We consider two types
of encoding schemes for Alice.

For deterministic codes, Alice’s messageU is assumed to
be uniformly distributed overU = [2Rn]. Her deterministic
encoderis a deterministic functionfD(.) that maps every
u in [2Rn] to a vectorx(u) = (x1, . . . , xn) in {0, 1}n.
Alice’s codebookX is the collection{x(u)} of all possible
transmitted codewords.

More generally, Alice and Bob may useprobabilistic
codes. For such codes, the random variableU corresponding
to Alice’s messagepU may have an arbitrary distribution
pU (with entropyRn) over an arbitrary alphabetU . Alice’s
codebookX is an arbitrary collection{X (u)} of subsets of
{0, 1}n. For each subsetX (u) ⊂ X , there is a corresponding

codeword random variableX(u) with codeword distribution
pX(u) over X (u). For any valueU = u of the message,
Alice’s encoder choses a codeword fromX (u) randomly
from the distributionpX(u). Alice’s message distributionpU ,
codebookX , and all the codebook distributionspX(u) are all
known to both Bob and Calvin, but the values of the random
variablesU and X(.) are unknown to them. IfX (u) =
{x(u, r) : r ∈ Λu}, then the transmitted codewordX(U) has
the probability distribution given byPr[X(U) = x(u, r)] =
pU (u)pX(u)(x(u, r)). Let p be the overall distribution of
codewordsx = x(u, r) of Alice. It holds thatp(x(u, r)) =
pU (u)pX(u)(x) andp(x) =

∑

U pU (u)pX(u)(x).
Calvin/Channel: Calvin possessesn jamming functionsgi(.)
andn arbitrary jamming random variablesJi that satisfy the
following constraints.
Causality constraint:For eachi ∈ [n], the jamming function
gi(.) mapsxi = (x1, . . . , xi) and Ji = (J1, . . . ,Ji) to an
element of{0, 1}.
Power constraint:The number of indicesi ∈ [n] for which
the value ofgi(.) equals1 is at mostpn. That is, for all
xn,Jn,

∑

i gi(x
i,Ji) ≤ pn.

Theoutputof the channel is the set of bitsyi = xi⊕gi(x
i,Ji)

for i = 1, . . . , n.
Bob: Bob’s decoderis a (potentially) probabilistic function
h(.) of the received vectory. It maps the vectorsy =
(y1, . . . yn) in {0, 1}n to the messages inU .
Code parameters: Bob is said to make adecoding error
if the messageu′ he decodes differs from the message
u encoded by Alice. Theprobability of error for a given
messageu is defined as the probability, over Alice, Calvin
and Bob’s random variables, that Bob makes a decoding
error. The probability of error of the codeC is defined as
the average over allu ∈ U of the probability of error for
messageu.

We define two types of rates and corresponding capacities.
The rateR is said to beweakly achievableif for every

ε > 0, δ > 0 and every sufficiently largen there exists an
(n, (R − δ)n)-code that allows communication with proba-
bility of error at mostε. The supremum overn of the weakly
achievable rates is called theweak capacityand is denoted
by Cw.

The rateR is said to bestrongly achievable1 if for every
δ > 0, ∃α > 0 so that for sufficiently largen there
exists an(n, (R−δ)n)-code that allows communication with
probability of error at moste−αn. The supremum overn of
the strongly achievable rates is called thestrong capacityand
is denoted byCs.
Remark: Since a rate that is strongly achievable is always
weakly achievable but the converse is not true in general,
Cw ≥ Cs.

1This definition is motivated by the extensive literature on error exponents
in information theory – for large classes of information-theoretic problems,
e.g. [9], [5], the probability of error of the coding scheme is required to
decay exponentially in block length.



III. R ELATED WORK AND OUR RESULTS

To the best of our knowledge, communication in the
presence of a causal adversary has not been explicitly ad-
dressed in the literature (other than our prior work for causal
adversaries over large-q channels). Nevertheless, we note that
the model of causal channels, being a natural one, has been
“on the table” for several decades and the analysis of the
online/causal channel model appears as an open question in
the book of Csiszár and Korner [5] (in the section addressing
Arbitrary Varying Channels [1]). Various variants of causal
adversaries have been addressed in the past, for instance [1],
[11], [15], [16], [13] – however the models considered therein
differ significantly from ours.

At a high level, we show that for causal adversaries, for a
large range ofp (for all p > 0.25), the maximum achievable
rate equals that of the classical “omniscient” adversarial
model (i.e., 0). This may at first come as a surprise, as
the online adversary is weaker than the omniscient one,
and hence one may suspect that it allows a higher rate of
communication.

We have two main results. Theorem 1 gives an upper
bound on the weak capacityCw if Alice’s encoder is de-
terministic. Theorem 2 gives an upper bound on the strong
capacityCs in the more general case where Alice’s encoder
is probabilistic. Due to certain limitations of our proof
techniques, we do not present any bounds on the weak
capacity in the latter setting. The upper bound in both cases
equalsmin{1−H(p), (1− 4p)+}.

Theorem 1 (Deterministic encoder):For deterministic
codes,Cs ≤ Cw ≤ min{1−H(p), (1− 4p)+}.

Theorem 2 (Probabilistic encoder):For probabilistic
codes,Cs ≤ min{1−H(p), (1− 4p)+}.

We note that under a very weak notion of capacity in which
one only requires the success probability to be bounded
away from zero (instead of approaching1), the capacity of
the omniscient channel, and thus the binary causal-adversary
channel, approaches1−H(p). This follows by the fact that
for n sufficiently large andℓ ≥ 4 there exists(n,Rn) codes
which are(ℓ, pn) list decodablewith R = 1 − H(p)(1 +
1/ℓ) [7]. Communicating using an(ℓ, pn) list decodable
code allows Bob to decode a list of sizeℓ of messages
which includes the message transmitted by Alice. Choosing
a message uniformly at random from his list, Bob decodes
correctly with probability at least1/ℓ.

A. Outline of proof techniques

The upper bound of1−H(p) follows directly by describing
an attack for Calvin wherein he approximately simulates
a BSC(p) (Binary Symmetric Channel [4] with crossover
probability p). More precisely, for eachi ∈ [n] and any
sufficiently small ε > 0, Calvin flips xi with probability
p − ε until he runs out of his budget ofpn bit-flips. By
the Chernoff bound [3], with very high probability he does
not run out of his budget, and is therefore indistinguishable
from a BSC(p − ε). But it is well-known [4] that in this
case the optimal rate of communication from Alice to Bob

is 1 −H(p − ε). Taking the limit whenε → 0 implies our
bound.

The upper bound of(1 − 4p)+ is more involved. For the
case where Alice’s encoder is deterministic, the proof of
Theorem 1 has the following overall structure. Assume for
sake of contradiction that Alice attempts to communicate at
rate greater thanR = (1− 4p)+. To prove our upper bound
we design the followingwait-and-pushattack for Calvin.

Calvin starts by waiting for Alice to transmit approxi-
matelyRn bits. As Alice is assumed to communicate at rate
greater thanR, the set of Alice’s codewordsX ′ consistent
with the bits Calvin has seen so far is “large” with “high
probability”. Calvin constructsX ′ and chooses a codeword
x′ uniformly at random fromX ′. He then actively “pushes”
x in the direction ofx′ by flipping, with probability1/2,
each futurexi that differs fromx′

i. If Calvin succeeds in
pushingx to a word y roughly midway betweenx and
x′, a careful analysis demonstrates that regardless of Bob’s
decoding strategy, Bob is unable to determine whether Alice
transmittedx or x′ — causing a decoding error of1/2
in this case. So, to prove our bound, we must show that
with constant probability (independent of the block length
n) Calvin will indeed succeed in pushingx to y. Namely,
that Alice’s codewordx and the codeword chosen at random
by Calvinx′ are of distance at most2pn. Roughly speaking,
we prove the above by a detailed analysis of the distance
structure of the set of codewords in any code using tools
from extremal combinatorics and coding theory.

The case where Alice’s encoder may be randomized is
more technically challenging, and is considered in Theo-
rem 2. At a high level, the strategy of Calvin for a prob-
abilistic encoder follows that outlined for the deterministic
case. However, there are two main difficulties in its ex-
tended analysis. Firstly, the symmetry betweenx and x′

no longer exists. Namely, the fact that Bob may not be
able to distinguish which of the two were transmitted by
Alice does not necessarily cause a significant decoding error,
since the probability ofx′ being transmitted by Alice may
well be significantly smaller than the probability thatx
was transmitted. Secondly, the fact that bothx andx′ may
correspond to the same messageu places the entire scheme
in jeopardy. As it now no longer matters if Bob decodes to
x or x′, in both cases the decoded message will be that sent
by Alice.

To overcome these difficulties, we describe a more intricate
analysis of Calvin’s attack. Roughly speaking, we prove that
a “large” subsetX ′′ of X ′ behaves “well”. Anyx′ chosen
uniformly at random fromX ′, with “significant” probability,
is in X ′′, and has three properties corresponding to those
when Alice uses a deterministic encoder. That is,x′ is
sufficiently close to x as desired, it has approximately the
same probability of transmission thatx does (thus preserving
the needed symmetry), and it also corresponds to a message
that differs from that corresponding tox. All in all, we
show that the above three properties hold with probability
1/poly(n), which suffices to bound the strong capacity of



the channel at hand (but not the weak capacity).
In case of a randomized encoder of Alice, we assume that

the messages may have nonuniform distribution, and also any
message is encoded into one of a set of possible codewords as
per some probability distribution in that set. One may think
of various other ways of encoding, for example the following,
to confuse Calvin. But as we discuss in the next paragraph,
such schemes are also covered in our setup.

Multiple codebooks:In this scheme, Alice maintains a
set of codesC1, C2, . . . , CL. For transmitting a messageu,
she randomly selects the codeCi with probability qi. If the
set of messages isU = {1, 2, . . . ,M} with a probability

distribution given bypi
△
= Pr{u = i}, and the codeCr

contains the codewords{x(u, r) | u = 1, 2, . . . ,M}, then
in our setup, the corresponding codebook for the messageu
will be X (u) = {x(u, r) | r = 1, 2, . . . , L}. This codebook
may have less thanL codewords due to common codewords
in the original codes. The induced probability distribution in
this codebook ofu is given byPr{x|u} =

∑

r:x(u,r)=x
qr.

If Alice picks a code and uses it to encode several
messages, even then she does not gain anything. First, if
she uses the same code to encode too many messages (and
calvin knows the encoding scheme, as assumed), then both
Bob and Calvin will know the code used after receiving or
‘reading’ some codewords. On the other hand, if a randomly
chosen code is used only to encode a block of few messages
this is equivalent to using a longer (‘superblock’) code in
our setup. The only difference is that the probability of error
analysed in our set up is the probability of error in decoding
the ‘superblocks’ rather than the smaller blocks/codewords.

The proofs of the upper bounds corresponding to1−H(p)
have already been sketched in Section III-A. Hence we only
provide proofs of the upper bounds corresponding to(1 −
4p)+ in Theorems 1 and 2.

IV. PROOF OFTHEOREM 1

Let R = (1− 4p)+ + ε for someε > 0. Let log(.) denote
the binary logarithm, here and throughout. By assumption for
deterministic codes, Alice’s message spaceU is of size2Rn.
Here we assume for that2Rn in an integer. This implies that
the setX of Alice’s transmitted codewords is of size2Rn. 2

We now present Calvin’s attack. We show that for any
fixed ε > 0, regardless of Bob’s decoding strategy, there
is a decoding error with constant probability (namely, the
error probability is independent ofn). Calvin’s attack is in
two stages. First Calvinpassivelywaits until Alice transmits
ℓ = (R − ε/2)n bits over the channel. Letxℓ ∈ {0, 1}ℓ be
the value of the codeword observed so far. He then considers
the set of codewords that are consistent with the observedxℓ.
Namely, Calvin constructs the setX |xℓ = {x = x1, . . . , xn ∈

2In fact, X may be smaller, however we note that for codes of optimal
rate, |X | is of sizeexactly2Rn. If |X | < 2Rn, then for some transmitted
codewordx at least two messagesu and u′ must both be encoded tox.
On receivingx, Bob’s probability of error is maximal – it is at least1/2.
Therefore changing the codebook so as to encodeu′ as somex′ /∈ X cannot
increase the probability of decoding error.

X | x1, . . . , xℓ = xℓ}. He then chooses an elementx′ ∈ X|xℓ

uniformly at random. In the second stage, Calvin follows a
random bit-flip strategy. That is, for each remaining bitx′

i of
x′ that differs from the corresponding bitxi of x transmitted,
he flips the transmitted bit with probability1/2, until he has
either flippedpn bits, or until i = n.

We analyze Calvin’s attack by a series of claims. We first
show that with high probability (w.h.p.) the setX |xℓ is large.

Claim 4.1: With probability at least1 − 2−εn/4, the set
X|xℓ is of size at least2εn/4.

Proof: The number of messagesu for which X|xℓ(u)

is of size less than2εn/4 is at most the number of distinct
prefixesxℓ times2εn/4, which in turn is at most2ℓ+εn/4 =
2(R−ε/4)n.

Now assume that the messageu is such that its correspond-
ing setX |xℓ(u) is of size at least2εn/4. We now show that this
implies that the transmitted codewordx and the codewordx′

chosen by Calvin are distinct and ofsmallHamming distance
apart with a positive probability (independent ofn).

Claim 4.2: Conditioned on Claim 4.1, with probability at
least ε

64p , x 6= x′ anddH(x,x′) < 2pn− εn/8.
Proof: Consider the undirected graphG = (V , E) in

which the vertex setV consists of the setX|xℓ and two
nodes are connected by an edge if their Hamming distance
is less thand = 2pn − εn/8. An independent setI in G
corresponds to a subset of codewords in{0, 1}n that are all
(pairwise) at distance greater thand.

Since the codewords inX|xℓ all have the same prefixxℓ,
one may consider only the suffix (of lengthn− ℓ = 4pn−
εn/2) of the codewords inX|xℓ . Here we assumep ≤ 0.25,
minor modifications in the proof are needed for largerp. The
set of vectors defined by the suffixes in an independent set
I of G now corresponds to a binary error-correcting code
of length 4pn − εn/2, with |I| codewords and minimum
distanced.

By Plotkin’s bound [2] there do not exist binary error cor-
recting codes with more than 2d

2d−(4pn−εn/2) +1 codewords.
ThusI, any maximal independent set inG, must satisfy

|I| ≤
2(2pn− εn/8)

2(2pn− εn/8)− 4pn+ εn/2
+ 1 =

16p

ε
(1)

By Turán’s theorem [17], any undirected graphG of size
|V| and average degree∆ has an independent set of size
at least|V|/(∆ + 1). This, along with (1) implies that the
average degree of our graphG satisfies

|V|

∆+ 1
≤ |I| ≤

16p

ε

This in turn implies that

∆ ≥
ε|V|

16p
− 1 ≥

ε|V|

32p

The second inequality is for large enoughn, since|V| is of
size at least2Rn. To summarize the above discussion, we
have shown that our graphG has large average degree of
size ∆ ≥ ε|V |

32p . We now use this fact to analyze Calvin’s
attack.



By the definition of deterministic codes, any codeword in
X is transmitted with equal probability. Also, by definition
both x (the transmitted codeword) andx′ (the codeword
chosen by Calvin) are inV = X |xℓ . Hence bothx andx′ are
uniform in X |xℓ . This implies that with probability|E|/|V|2

the nodes corresponding to codewordsx andx′ are distinct
and connected by an edge inG. This in turn implies that with
probability |E|/|V|2, x 6= x′ and dH(x,x′) < 2pn − εn/8,
as required. Now

|E|

|V|2
=

∆|V|

2|V|2
≥

ε

64p

Conditioned on Claim 4.2, Calvin’s codewordx′ is
very close to Alice’s transmitted codewordx. Specifically,
dH(x,x′) ∈ (0, 2pn − εn/8). We now show that if Calvin
follows the random bit-flip strategy, from Bob’s perspective
(w.h.p.), bothx or x′ were equally likely to have been
transmitted by Alice.

We first show that during Calvin’s random bit-flip process,
w.h.p., Calvin does not “run out” of his budget ofpn bit flips.

Claim 4.3: Conditioned on Claim 4.2, with probability at
least1− 2−Ω(ε2n)

dH(x,y) ∈

(

d

2
−

εn

16
,
d

2
+

εn

16

)

. (2)

Proof: The expected number of locations flipped by
Calvin isd/2 ≤ pn−εn/16. Assume thatd/2 = pn−εn/16
(for smaller values ofd the bound is only tighter). By Sanov’s
theorem [4, Theorem 12.4.1], the probability that the number
of bits flipped by Calvin deviates from the expectationd/2
by more thanεn/16 is at moste−Ω(ε2n2/d) ≤ e−Ω(ε2n) for
large enoughn.

It should be noted thatd/2 + εn/16 ≤ pn, and so
dH(x,y) ≤ d/2 + εn/16 implies that the number of bits
flipped by Calvin does not exceedpn. Since Calvin possibly
flips only the bits ofx which differ from the corresponding
bits in x′, (2) also implies

dH(x′,y) ∈

(

d

2
−

εn

16
,
d

2
+

εn

16

)

. (3)

We conclude by proving that if the number of bits flipped
by Calvin lies in the range(d/2−εn/16, d/2+εn/16), then
indeed Bob cannot distinguish between the case in whichx

or x′ were transmitted.
Claim 4.4: Conditioned on Claim 4.3 Bob makes a de-

coding error with probability at least1/2.
Proof: By Bayes’ Theorem [8], if Bob receivesy,

the a posteri probability that Alice transmittedx, denoted
p(x|y), equalsp(y|x)p(x)/p(y). Herep(x) is the probability
(over her encoding strategy) that Alice transmitsx, p(y|x)
is the probability (over Calvin’s random bit-flipping strategy)
that Bob receivesy given that Alice transmitsx, andp(y)
is the resulting probability that Bob receivesy. Similarly,

p(x′|y) = p(y|x′)p(x′)/p(y). Taking the ratio and noting
that for deterministic codesp(x) = p(x′), we have

p(x|y)/p(x′|y) = p(y|x)/p(y|x′). (4)

Since Calvin’s random bit-flip strategy involves him flip-
ping bits of x (which are different from the corresponding
bits of x′) with probability 1/2, for all y satisfying (2), the
probabilitiesp(y|x) andp(y|x′) are equal. This observation
and (4) together implyp(x|y) = p(x′|y). Thus, Bob cannot
distinguish whetherx or x′ were transmitted. Namely, on the
pair of events in which Alice transmitsx and Calvin chooses
x′ and in which Alice transmitsx′ and Calvin choosesx, no
matter which decoding process Bob uses, he will have an
average decoding error of at least1/2. This suffices to prove
our assertion.

Thus a decoding error happens if the con-
ditions of Claims 4.1, 4.2, 4.3 and 4.4 are
all satisfied. This happens with probability at
least

(

1− 2−εn/4
)

(

ε
64p

)(

1− 2−Ω(ε2n)
)

(

1
2

)

≥
(

1
2

)

(

ε
64p

)

(

1
2

) (

1
2

)

≥ ε
512p for large enoughn.

�

V. PROOF OFTHEOREM 2

We start by proving the following technical Lemma that we
use in our proof. Letq be an arbitrary probability distribution
over an index setI = {1, . . . , k}. Let A1, . . . ,Ak be
arbitrary discrete random variables with probability distribu-
tions q1, . . . , qk over alphabetsA1, . . . ,Ak respectively. Let
ki = |Ai|. LetA be a random variable that equals the random
variableAi with probabilityq(i). Then the following Lemma
describing an elementary property of the entropy function
H(.) is useful in the proof of Theorem 2.

Lemma 5.1:The entropies ofA,A1, . . . ,Ak andq satisfy
H(A) ≤

∑k
i=1 q(i)H(Ai)+H(q), with equality if and only

if for each i, i′ for which bothq(i) and q(i′) are positive it
holds thatPrqi,qi′ [Ai = Ai′ ] = 0.

Proof: For anya ∈ A, the probabilityPr{A = a} =
p(a) of occurrence ofa, equals

∑

i:a∈Ai
q(i)qi(a). Hence

H(A) = −
∑

a∈
S

i
Ai

p(a) log(p(a))

≤ −
k

∑

i=1

ki
∑

j=1

q(i)qi(j) log(q(i)qi(j)) (5)

=

k
∑

i=1

ki
∑

j=1

q(i) (qi(j) log(qi(j)))

+

k
∑

i=1

ki
∑

j=1

qi(j) (q(i) log(q(i)))

=

k
∑

i=1

q(i)H(Ai) +H(q).

Here (5) follows from Jensen’s inequality, e.g. [4], with
equality if and only if for each positivePr{A = a}, there is
a uniquei such thatq(i)qi(j) > 0 (hereai(j) = a).



We now turn to prove Theorem 2. Recall our notation: let
U be the random variable corresponding to Alice’s message
and pU its distribution (with entropyRn). Throughout we
assume the message setU (the support ofU) is at most
of size 2n. Let X be Alice’s codebook.X is a collection
{X (u)} of subsets of{0, 1}n. For each subsetX (u) ⊂ X ,
there is a corresponding codeword random variableX(u)
with codeword distributionpX(u) overX (u). For any value
U = u of the message, Alice’s encoder choses a codeword
from X (u) randomly from the distributionpX(u). Alice’s
message distributionpU , codebookX , and all the codebook
distributionspX(u) are all known to both Bob and Calvin,
but the values of the random variablesU and X(.) are
unknown to them. IfX (u) = {x(u, r) : r ∈ Λu}, then the
transmitted codewordX(U) has the probability distribution
given byPr[X(U) = x(u, r)] = pU (u)pX(u)(x(u, r)). Let
p the the overall distribution of codewordsx = x(u, r)
of Alice. It holds that p(x(u, r)) = pU (u)pX(u)(x) and
p(x) =

∑

U pU (u)pX(u)(x).
For any ε > 0, let R = (1 − 4p)+ + ε. We start

by specifying Calvin’s attack. Calvin uses a very similar
attack to the one described in the proof of Theorem 1.
That is, Calvin firstpassivelywaits until Alice transmits
ℓ = (R − ε/2)n bits over the channel. Letxℓ ∈ {0, 1}ℓ

be the value of the codeword observed so far. He then
considers the set of codewordsx(u, r) consistentwith the
observedxℓ. Here and throughout this section, we denote
codewords by their corresponding messageu and indexr
in X (u). As it may be thatx(u, r) is exactly the same
codeword asx(u′, r′), the sets in the definitions to follow
and in this section are in a sensemultisets. Namely, Calvin
constructs the setX|xℓ = {x(u, r) = x1, . . . , xn ∈ X |
x1, . . . , xℓ = xℓ}. Let p(xℓ) = p(X|xℓ) be the probability,
under the probability distributionp, corresponding to the
event that Calvin observesxℓ in the firstℓ transmissions. Let
pU|

x
ℓ

and pX(u)|
x
ℓ

be the probability distributionspU and
pX(u) also respectively conditioned on the same event. Calvin
then chooses an elementx′(u′, r′) ∈ X |xℓ with probability3

pU|
x
ℓ
(u′)pX(u′)|

x
ℓ
(x′(u′, r′)). In the second stage he then

follows exactly the samerandom bit-flip strategyas in the
proof of Theorem 1.

Recall that in the proof of Theorem 1, our goal was
to prove that with some constant probability, the distance
betweenx(u, r) andx′(u′, r′) is approximately2pn. Loosely
speaking, this allows the success of Calvin’s attack (i.e.,
imply a decoding error). Following the same outline of
proof, we now show that with probability1/poly(n) the
codewordx′(u′, r′) chosen by Calvin has the following three
properties:

• It’s corresponding message differs from that correspond-
ing to x(u, r) (i.e., u 6= u′).

• x′(u′, r′) is closeto x(u, r) and thus Calvin will be able

3This is one significant difference from the attack in the proof of
Theorem 1 – there Calvin chooses eachx

′ uniformly at random from the
corresponding consistent set.

to “push”x(u, r) to a codewordy at approximately the
same distance fromx(u, r) andx′(u′, r′).

• Given y, Bob is unable to distinguish whetherx(u, r)
or x′(u′, r′) was transmitted.

To this end, we partition the setX|xℓ into n2 disjoint subsets
X ij for i, j ∈ {1, 2, . . . , n}. Let p(X ij) be the probability
mass of X ij . Let pU|ij and pX(u)|ij be the probability
distributionspU and pX(u) respectively conditioned on the
event that Alice transmittedx(u, r) in X ij . The partition
X ij is obtained in two steps – first we partitionX|xℓ into n
subsetsX i, then we partition eachX i into n setsX ij . We
also use the probability distributionp(X i), pU|i andpX(u)|i

defined accordingly. All in all, we prove the existence of a
subsetX ij with the following properties

• H(pU|ij ) is “large”.
• p(X ij) is large with respect top(xℓ).
• For any x(u, r) ∈ X ij it holds that p(x(u, r)) has

approximately the same value.
• pU|ij is approximately uniform on its support.

Roughly speaking, proving these properties onX ij reduces
us to the case of a deterministic encoder (addressed in
Theorem 1) and allows us to complete our proof.

We now present our proof for the existence ofX ij as
specified above. We first show that with positive probability
the setX|xℓ hashigh entropy.

Claim 5.1: With probability at leastε/4, H(pU|
x
ℓ
) ≥

εn/4.
Proof: Let q be the probability distribution over{0, 1}ℓ

for which q(xℓ) = p(xℓ) for all possiblexℓ ∈ {0, 1}ℓ.
Let qxℓ be the probability distributionpU|

x
ℓ
. Now using

Lemma 5.1 we obtain

H(pU ) ≤
∑

xℓ

q(xℓ)H(pU|
x
ℓ
) +H(q). (6)

By our definitionsH(pU ) = Rn. Moreover,H(q) ≤ ℓ =
(R− ε/2)n (sinceq is defined over an alphabet of size2ℓ).
Thus (6) becomes

∑

xℓ

q(xℓ)H(pU|
x
ℓ
) ≥ Rn− (R− ε/2)n = εn/2.

As the average ofH(pU|
x
ℓ
) is at leastεn/2, thenH(pU|

x
ℓ
) ≥

εn/4 with probability at leastε/4 (by a Markov type inequal-
ity, here we use the fact thatH(pU|

x
ℓ
) ≤ n).

We now define the setsX i. For i = 1, . . . , n − 1, let X i

be the set of codewords inX|xℓ for which p(x(u, r))/p(xℓ)
is in the range(2−3i, 2−3i+3]. The setX n is defined to be
the set of codewords inX |xℓ for which p(x(u, r))/p(xℓ)
is in the range[0, 2−3n+3]. Let p(X i) be the probability
mass ofX i. Namelyp(X i) ≃ 2−3i|X i|p(x

ℓ). Let q be the
distribution over{1, 2, . . . , n} taking i w.p. p(X i)/p(x

ℓ).
Notice thatH(q) ≤ log(n) = o(n) (as its support is of size
n). Conditioning on Claim 5.1 and using Lemma 5.1 it can
be verified that

Claim 5.2:
∑

i

q(i)H(pU|i) ≥ H(pU|
x
ℓ
)−H(q) ≥ εn/8 (7)



Consider setsX i with (relative) massq(i) ≥ 1/n2. It holds
that

∑

i≤n−1;q(i)≥1/n2

q(i)H(pU|i) ≥ εn/16

The above follows from the fact that
∑

i≤n−1;q(i)≤1/n2 q(i)H(pU|i) + q(n)H(pU|i) ≤
∑

i≤n−1;q(i)≤1/n2 n/n2+2−n+3n ≤ 2 (for sufficiently large
n). Here we use the fact thatq(n) ≤ |X i|2

−3n+3.
We conclude the existence of a setX i such thatq(i) ≥

1/n2 andH(pU|i) ≥ εn/16. We now further partitionX i.
For j = 1, . . . , n−1, let X ij be the set of codewordsx(u, r)
in X i for which pU|i(u) is in the range(2−3j, 2−3j+3]. X in

is defined to be the set of codewordsx(u, r) in X i for
which pU|i(u) is in the range[0, 2−3n+3]. Let p(X ij) be the
probability mass ofX ij . Namelyp(X ij) ≃ 2−3i|X ij |p(x

ℓ).
Let q′ be the distribution over{1, 2, . . . , n} taking j w.p.
p(X ij)/p(X i). Notice thatH(q′) ≤ log(n) = o(n) (as its
support is of sizen). As before, conditioning on Claim 5.2
and using Lemma 5.1 it can be verified that (for the indexi
specified above),

Claim 5.3:
∑

j

q′(j)H(pU|ij ) ≥ H(pU|i)−H(q′) ≥ εn/32 (8)

Again, consider setsX ij with massq′(i) ≥ 1/n2. It holds
that

∑

j≤n−1;q′(j)≥1/n2

q′(j)H(pU|ij ) ≥ εn/64

We conclude the existence of a setX ij such that

• H(pU|ij ) ≥ εn/64.
• p(X ij) ≥ p(xℓ)/n4.
• For any x(u, r) ∈ X ij it holds that p(x(u, r)) is

approximately2−3ip(xℓ).
• For anyx(u, r) ∈ X ij it holds thatpU|ij (u) is approx-

imately equal.

The setX ij is exactly what we are looking for. Roughly
speaking, by Claim 5.1, with probability at leastε/4 Calvin
views a prefixxℓ for whichH(pU|

x
ℓ
) ≥ εn/4. Conditioning

on this event, both Alice and Calvin choose codewords
x(u, r), x′(u′, r′) in X ij with probability at least1/n8.

We now sketch to remainder of the proof which closely
follows that of Theorem 1. We partitionX ij into groups
of messagesX ij(u) consisting of all codewords inX ij

corresponding tou. Recall that each codewordx(u, r) ∈ X ij

has approximately the same probabilityp(x(u, r)), and for
eachx(u, r) ∈ X ij it holds thatpU|ij (u) is approximately
the same value. This implies that each groupX ij(u) ⊆ X ij

has approximately the same size. Moreover, asH(pU|ij ) ≥

εn/64 it holds that there are at least2εn/64 non-empty
subsetsX ij(u) in X ij .

So, all in all, X ij has a very symmetric structure: it
includesmanygroups, each consisting of elements with the
same transmission probability, and each of approximately
the same size and mass (w.r.t.p). This reduces us to the
case considered in Theorem 1 in which our subsetX|xℓ

included many messages, each with the same probability,
details follow.

Consider the graphG = (V , E) in which the vertex setV
consists of the setX ij and two nodes are connected by an
edge if their Hamming distance is less thand = 2pn−εn/8.

Now, it is can be verified (using analysis almost identical
to that given in the proof of Theorem 1) that

1) With probability at least1 − 2−Ω(εn) the codewords
x(u, r) andx′(u′, r′) satisfy u 6= u′. Here one needs
to take into consideration the slight difference in the
group sizes and the probabilities for each codeword.

2) With probabilityΩ
(

ε
p

)

the vertices inG corresponding

to x(u, r) andx′(u′, r′) are connected by an edge.
3) During Calvin’s random bit-flip process, with high

probability of1− 2−Ω(ε2n), Calvin does not “run out”
of his budget ofpn bit flips.

4) Conditioning on the above, Bob cannot distinguish
between the case in whichx(u, r) or x′(u′, r′) were
transmitted.

5) Finally, on the pair of events in which Alice trans-
mits x(u, r) and Calvin choosesx′(u′, r′), and Alice
transmitsx′(u′, r′) and Calvin choosesx(u, r), no
matter which decoding process Bob uses, he has an
average decoding error that is bounded away from zero.
Here again we take into account the slight differences
betweenp(x(u, r)) andp(x′(u′, r′)).

To summarize, Calvin causes a decoding error with prob-
ability Ω(poly(ε)/poly(n)) = Ω(1/poly(n)) as desired. This
concludes our proof. �

VI. CONCLUSIONS

We analyze the capacity of the causal-adversarial channel
and show (for both deterministic and probabilistic encoders)
that the capacity is bounded by above bymin{1−H(p), (1−
4p)+}. For a large range ofp (for all p > 0.25), the
maximum achievable rate equals that of thestrongerclassical
“omniscient” adversarial model (i.e., 0).

Several questions remain open. In this work we do not
address achievability results (i.e., the construction of codes).
It would be very interesting to obtain codes for the causal-
adversary channel which obtain rate greater than that know
for the “omniscient” adversarial model (i.e., the Gilbert-
Varshamov bound) forp < 0.25). As we do not believe
that the upper bound of(1 − 4p)+ presented in this work
is actually tight, such codes, if they exist, may give a hint to
the correct capacity.

As done in our work on large alphabets [6], one may
also consider the more general channel model in which for
a delay parameterd ∈ (0, 1), the jammer’s decision on
the corruption ofxi must depend solely onxj for j ≤
i − dn. This might correspond to the scenario in which the
error transmission of the adversarial jammer is delayed due
to certain computational tasks that the adversary needs to
perform. The capacity of the causal channel with delay is an
intriguing problem left open in this work.
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