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Abstract— In this work we consider the communication of

. . . . . 1
information in the presence of acausal adversarial jammer.

In the setting under study, a sender wishes to communicate 0.9 1-4p 1
a message to a receiver by transmitting a codewordkx =

(z1,...,x,) bit-by-bit over a communication channel. The o8y ]
adversarial jammer can view the transmitted bits z; one at 07t 7
a time, and can change up to ap-fraction of them. However, N McEliece bound

the decisions of the jammer must be made in aronline or osr N i
causal manner. Namely, for each bitz; the jammer’'s decision o osf \ i
on whether to corrupt it or not (and on how to change it) must '

depend only onz; for j < 4. This is in contrast to the “classical” 041 ]
adversarial jammer which may base its decisions on its compte 0sl i
knowledge of x. We present a non-trivial upper bound on the

amount of information that can be communicated. We show 02 1

that the achievable rate can be asymptotically no greater tan
min{1 — H(p), (1 — 4p)*}. Here H(.) is the binary entropy
fUnCthn, and (1 - 4p)+ equals 1- 4p for p S 025' and 0 OO 0.05 0.1 0.15 0‘.2 0.25 0.3 0.35 0.4 0.45 0.5
otherwise. p >

01f SN

. NN

Gilbert-Varshamov bound ™
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I. INTRODUCTION ) ] ) o
Fig. 1. Bounds on capacity of the adversarial channel. THe le in

Consider the following adversarial communication Scurple is our upper bound afin{l — H(p), (1 — 4p)*}.
nario. A sender Alice wishes to transmit a messag® a
receiver Bob. To do so, Alice encodesinto a codeword each bitz;, we assume that Calvin decides whether to change
x and transmits it over @inary channel The codeword it or not (and if so, how to change it) based on the bijs
X = x1,...,2, iS @ binary vector of lengtm. However, for j < i alone,i.e., the bits that he has already observed. In
Calvin, a malicious adversary, can observand corrupt up this case we refer to Calvin ascausaladversary.

to ap-fraction of then transmitted bitsj.e., pn bits. . . . . .
. . .. Causal adversaries arise naturally in practical settings,
In the classical adversarial channel model, e.g., [4], it is

\Where adversaries typically have mopriori knowledge of

usually assumed that Calvin has full knowledge of the entqu. . .
Alice’s message:. In such cases they must simultaneously

codewordx, and based on this knowledge (together with thleearn based on Alice’s transmissions, and jam the corre-
knowledge of the code shared by Alice and Bob) Calvin can U ' J

maliciously plan what error to impose an We refer to sponding codewors accordingly. Thiscausalityassumption

o . is reasonable for many communication channels, both wired
such an adversary as amniscientadversary. For binary

. Lo and wireless, where Calvin is not co-located with Alice. For
channels, the optimal rate of communication in the presence . o . o
. example consider the scenario in which the transmission of
of an omniscient adversary has been an open problemin ) ! .
= x1,...,2T, IS done duringn channel uses over time,

. . X =
classical coding theory for several decades. The best knOWHere at time; the bit z, is transmitted over the channel.

lower bound is given by the Gilbert-Varshamov bound uOﬁalvin can only corrupt a bit when it is transmitted (and

[18], which implies that Alice can transmit at rate- 7(2p) thus its error is based on its view so far). To decode the

to Bo_b. Conversely, the tghtest upper bound was given lﬂ)émsmitted message, Bob waits until all the bits have edriv
McEliece et al. [12], and has a positive gap from the low

er . N L . .
bound for allp € (0, 1/4) (see FigCL). ,&s in the omniscient model, Calvin is restricted in the numbe

In this work we initiate the analysis of coding scheme%f bits pn he can corrupt. This might be because of limited

that allow communication against certain adversariesahat processing power or limited transmit energy.
weaker than the omniscient adversary. We consider adverRecently, the problem of codes against causal adversaries
saries that behave in@ausalor online manner. Namely, for was considered and solved by the authors [6] fage-

g channels i.e,, channels where Alice’s codeworsd =

OThe work of B. K. Dey was supported by Bharti Centre for Cominun x1,...,x, is considered to be a vector of Iengmhover a
cation in IIT Bombay, that of M. Langberg was supported intgar ISF fieid Of’ “|1<’21r e” sizeq. Eachsvmbolz: mav represent a large
grant 480/08, and that of S. Jaggi was partially supportedviBsCU-JL ) q. Yy L y rep 9

grants. packet of bits in practice. Calvin is allowed to arbitrarily


http://arxiv.org/abs/0901.1853v2

corrupt ap-fraction of the symbols, rather than bits. A tighttodeword random variablX (u) with codeword distribution
characterization of the rate-region for various scenaisos py,) over X'(u). For any valueU = u of the message,
given in [6], and computationally efficient codes that achie Alice’s encoder choses a codeword frafti(u) randomly
these rate-regions are presented. However, the technigfres the distributiorpx .. Alice’s message distributiopy,
used in characterizing the rate-region of causal advesarcodebookt’, and all the codebook distributiops (., are all
over largeq channels do not work over binary channelknown to both Bob and Calvin, but the values of the random
This is because each symbol in a latggehannel can contain variablesU and X(.) are unknown to them. If¥(u) =
within it a “small” hash that can be used to verify the symbokx(u, r) : r € A, }, then the transmitted codewok{U) has
This is the crux of the technique used to achieve the lowtre probability distribution given byr[X(U) = x(u,r)] =
bounds in [6]. We currently do not know how to extend thigy (u)px () (x(u,7)). Let p be the overall distribution of
method to binary channels. Conversely, for upper boundsidewordsx = x(u,r) of Alice. It holds thatp(x(u,r)) =
the geometry of the space of lengtheodewords over large- py (u)px () (x) andp(x) = > pu(u)px () (X).

q alphabets is significantly different than that correspogdi Calvin/Channel: Calvin possessesjamming functiong; ()

to binary alphabets. For instance, for largehannels the andn arbitrary jamming random variablgs that satisfy the
volume of ann-sphere of radiusin (0 < o < 1) over Fy is  following constraints.

~ ¢"*, This leads to simpler bounds for largeshannels.  caysality constraintFor eachi € [n], the jamming function
In this work we initiate the study of binary causal—gi(.) mapsx’ = (z1,...,2;) andJ* = (Jy,...,J;) to an
adversary channels, and present two upper bounds on thgdment of{0,1}.

capacity: 1 — H(p), and (1 — 4p)". The upper bound of po 0 constraint:The number of indices ¢ [n] for which

1 — H(p) is very “natural’. Namely, it is not hard to verify the value ofg;(.) equalsl is at mostpn. That is, for all

that if Calvin attacks Alice’s transmission by simulatiriget X 37, S gi(xt, 3) < pn. '

well-studied Binary Symmetric Channel [4], he can force ?h’eou,t uzoflthevchan_nel is the set of bits — @0 (x!. Ji

communication rate of no more than— H(p). The upper o P s = ziDgi (x", J')

bound of (1 — 4p)™ presented in this work is non-trivial for fori=1,...,n. . ) o )

both its implications and its proof techniques. The bourfd°P: Bob's decoderis a (potentially) probabilistic function

demonstrates that at least for some values, dfie achievable 7:(-) of the received vectoy. It maps the vectory =

rate is bounded away from — H(p). For p € (pg,0.5), (¥1:---¥n)in {0,1}" to the messages .

1 — 4p is strictly less thanl — H(p) (herepy is the value Code parameters: Bob is said to make aecoding error

of p satisfying H(p) = 4p, and can be computed to beif the messageu’ he decodes differs from the message

approximately0.15642 .. ). In fact for p € (0.25,0.5) our u encoded by Alice. Theprobability of error for a given

bound implies that no communication at positive rate i®essage: is defined as the probability, over Alice, Calvin

possible, which is much stronger than the result obtain@®d Bob’s random variables, that Bob makes a decoding

by the upper bound of — H(p) (see Fig[dl). Our proof error. The probability of error of the code is defined as

techniques include a combination of tools from the field&ie average over alk € U of the probability of error for

of Extremal Combinatorics (e.g. Turan’s theorem [17])d anmessage:.

classical Coding Theory (e.g. the Plotkin bound [14], [2]). We define two types of rates and corresponding capacities.
The rate R is said to beweakly achievablef for every

e >0, d > 0 and every sufficiently large there exists an
For any integef let [i] denote the seftl, ..., i}. LetR >0 (n, (R — §)n)-code that allows communication with proba-

be Alice’s rate. An (n, Rn)-codeC is defined by Alice’s bility of error at most=. The supremum ovet of the weakly

encoder and Bob’s corresponding decoder, as below.  achievable rates is called theeak capacityand is denoted

Alice: Alice’s message: is assumed to be a random variablgy C¥.

U with entropy Rn, over alphabel{. We consider two types  The rateR is said to bestrongly achievablkif for every

of encoding schemes for Alice. _ § > 0, 3o > 0 so that for sufficiently largen there
For deterministic codesAlice’s messagdl is assumed 0 gxists an(n, (R — §)n)-code that allows communication with

be uniformly distributed ove/ = [2"]. Her deterministic pronanility of error at most—*". The supremum over of

encoderis a deterministic functiorfp(.) that maps every the strongly achievable rates is called gt@ng capacityand

u in [277] to a vectorx(u) = (w1,...,2n) In {0,1}". s denoted byC*.

Alice’s codebook¥ is the collection{x(u)} of all possible Remark: Since a rate that is strongly achievable is always

transmitted codeword_s. .. . weakly achievable but the converse is not true in general,
More generally, Alice and Bob may usgrobabilistic v > oS

codes For such codes, the random variaklecorresponding

to Alice’s messagepy may have an arbitrary distribution

pU (With entropan) over an arbitrary alphab@t. Alice’s %This definition is motivated by the extensi_ve IiteraFure oeexponents
debookX is an arbitrar COllGCtiOF[X( )} of subsets of in information theory — fgr large classes of |nf0r_mat|0|e>mret|c_pro_blems,

coae y u ~' e.g. [9], [5], the probability of error of the coding schenserequired to

{0,1}™. For each subset(u) C X, there is a correspondingdecay exponentially in block length.
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[1l. RELATED WORK AND OUR RESULTS is 1 — H(p — ¢). Taking the limit whens — 0 implies our

To the best of our knowledge, communication in th8ound. . _
presence of a causal adversary has not been explicitly adThe upper bqund ofl — 419)“.“ IS more_lr!vqlved. For the
dressed in the literature (other than our prior work for eausc@se where Alice’'s encoder is deterministic, the proof of
adversaries over larggehannels). Nevertheless, we note thatheoremllL has the following overall structure. Assume for
the model of causal channels, being a natural one, has p&ake of contradiction that Alice attempts to communicate at
“on the table” for several decades and the analysis of tféf€ greater tham — (1 —4p)™. To prove our upper bound
online/causal channel model appears as an open questioM'hdesign the followingvait-and-pushattack for Calvin.
the book of Csiszar and Korner [5] (in the section addregsin Calvin starts by waiting for Alice to transmit approxi-
Arbitrary Varying Channels [1]). Various variants of caisanately in bits. As Alice is assumed to communicate at rate
adversaries have been addressed in the past, for instancegfeater than, the set of Alice’s codewordg” consistent
[11], [15], [16], [13] — however the models considered thiere With th_e_ bits Calyln has seen so far is “large” with “high
differ significantly from ours. probqbll|ty”. Calvin constructst’ and choosgs a codeword

At a high level, we show that for causal adversaries, for’® uniformly at random fromy”. He then actively “pushes”
large range o (for all p > 0.25), the maximum achievable X in the direction ofx’ by flipping, with probability1/2,
rate equals that of the classical “omniscient” adversari@hch futurez; that differs fromz;. If Calvin succeeds in
model {.e, 0). This may at first come as a surprise, aBushingx to a wordy roughly midway betweenx and
the online adversary is weaker than the omniscient Or?é/’, a careful analysis demonstrates that regardless of Bob'’s
and hence one may suspect that it allows a higher rate ggcoding strategy, Bob is unable to determine whether Alice
communication. transmittedx or x’ — causing a decoding error of/2

We have two main results. Theordm 1 gives an uppg} this case. So, to prove our bound, we must show that
bound on the weak capacitg® if Alice’s encoder is de- with constant probability (independent of the block length
terministic. Theoreni]2 gives an upper bound on the strofig Calvin will indeed succeed in pushing to y. Namely,
capacityC® in the more general case where Alice’s encoddhpat Alice’s codewordk and the codeword chosen at random
is probabilistic. Due to certain limitations of our proofdy Calvinx’ are of distance at mogpn. Roughly speaking,
techniques, we do not present any bounds on the we4R Prove the above by a detailed analysis of the distance
capacity in the latter setting. The upper bound in both casgi§ucture of the set of codewords in any code using tools

equalsmin{1 — H(p), (1 — 4p)*}. from extremal combinatorics and coding theory.

Theorem 1 (Deterministic encoderfor  deterministic ~ The case where Alice’s encoder may be randomized is
codes,C® < C¥ < min{1 — H(p), (1 — 4p)*}. more technically challenging, and is considered in Theo-
Theorem 2 (Probabilistic encoderor  probabilistic r€M[2. At a high level, the strategy of Calvin for a prob-

codes,C® < min{1 — H(p), (1 — 4p)*}. abilistic encoder follows that outlined for the determiius

We note that under a very weak notion of capacity in whicf@se- However, there are two main difficulties in its ex-
one only requires the success probability to be boundi&hded analysis. Firstly, the symmetry betweerand x’
away from zero (instead of approachimy the capacity of N0 longer exists. Namely, the fact that Bob may not be
the omniscient channel, and thus the binary causal-adyersable to distinguish which of the two were transmitted by
channel, approachds— H(p). This follows by the fact that Alice does not necessarily cause a significant decoding,erro
for n sufficiently large and’ > 4 there existgn, Rn) codes Since the probability ok’ being transmitted by Alice may
which are (¢, pn) list decodablewith R = 1 — H(p)(1 + Well be significantly smaller than the probability that
1/¢) [7]. Communicating using ar(/,pn) list decodable Was transmitted. Secondly, the fact that battand x’ may
code allows Bob to decode a list of siZeof messages correspond to the same messagplaces the entire scheme
which includes the message transmitted by Alice. Choosiffyieopardy. As it now no longer matters if Bob decodes to
a message uniformly at random from his list, Bob decod&s0or x’, in both cases the decoded message will be that sent

correctly with probability at least //. by Alice.
] ) To overcome these difficulties, we describe a more intricate
A. Outline of proof techniques analysis of Calvin’s attack. Roughly speaking, we prove tha

The upper bound of— H (p) follows directly by describing a “large” subsett” of X’ behaves “well”. Anyx’ chosen
an attack for Calvin wherein he approximately simulatasniformly at random fromt”’, with “significant” probability,
a BSCp) (Binary Symmetric Channel [4] with crossoveris in X", and has three properties corresponding to those
probability p). More precisely, for eacli € [n] and any when Alice uses a deterministic encoder. That %8, is
sufficiently smalle > 0, Calvin flips x; with probability sufficiently closeto x as desired, it has approximately the
p — ¢ until he runs out of his budget gin bit-flips. By same probability of transmission thatdoes (thus preserving
the Chernoff bound [3], with very high probability he doeshe needed symmetry), and it also corresponds to a message
not run out of his budget, and is therefore indistinguishabthat differs from that corresponding t. All in all, we
from a BSCp — ¢). But it is well-known [4] that in this show that the above three properties hold with probability
case the optimal rate of communication from Alice to Bold/poly(n), which suffices to bound the strong capacity of



the channel at hand (but not the weak capacity). X | z1,...,2, = x'}. He then chooses an elemeanite x|«

In case of a randomized encoder of Alice, we assume thatiformly at random. In the second stage, Calvin follows a
the messages may have nonuniform distribution, and also aapdom bit-flip strategyThat is, for each remaining hit, of
message is encoded into one of a set of possible codewords’athat differs from the corresponding hif of x transmitted,
per some probability distribution in that set. One may thinke flips the transmitted bit with probability/2, until he has
of various other ways of encoding, for example the followingeither flippedpn bits, or untili = n.
to confuse Calvin. But as we discuss in the next paragraph\We analyze Calvin’s attack by a series of claims. We first

such schemes are also covered in our setup. show that with high probability (w.h.p.) the s&t.. is large.
Multiple codebooksin this scheme, Alice maintains a Claim 4.1: With probability at leastl — 275"/, the set

set of code<’y,Cs,...,Cy. For transmitting a message x|, is of size at leasps"/*.

she randomly selects the code with probability ¢;. If the Proof: The number of messagesfor which X[, (,)

set of messages & = {1,2,...,M} with a probability is of size less tha*"/* is at most the number of distinct

distribution given byp, £ Pr{u = i}, and the code, prefixesx’ times2/4, which in turn is at mosg/*e"/4 =

contains the codewordéx(u,r) | v = 1,2,..., M}, then 2(R=e/d)n, u

in our setup, the corresponding codebook for the message NOw assume that the messagis such that its correspond-
will be X(u) = {x(u,r) | r = 1,2,...,L}. This codebook "9 s_et)(|xz(u) is of size at leas?2="/*. We now show that this
may have less thah codewords due to common codeword§nPlies that the transmitted codewaxcand the codeworst’
in the original codes. The induced probability distributia ~ chosen by Calvin are distinct and shallHamming distance
this codebook ofu is given by Pr{x|u} = 3, (. »)—x @r- apart ywth a positive probability (.|ndepend_entm)‘. N

If Alice picks a code and uses it to encode several Claim 4.2: Conditioned on Claini4]1, with probability at
messages, even then she does not gain anything. First@Stsr;: x # X' anddp (x,x’) < 2pn —en/8. _
she uses the same code to encode too many messages (and”roof: Consider the undirected gragh = (,€) in
calvin knows the encoding scheme, as assumed), then b8fHch the vertex sed’ consists of the seft|. and two
Bob and Calvin will know the code used after receiving of°des are connected by an edge if their Hamming distance
‘reading’ some codewords. On the other hand, if a randonify €SS thand = 2pn —en/8. An independent sef in G
chosen code is used only to encode a block of few messa§@§€sponds to a subset of codewordg@n1}" that are all
this is equivalent to using a longer (‘superblock’) code ifPairwise) at distance greater than _
our setup. The only difference is that the probability oberr  Since the codewords i, all have the same prefix’,
analysed in our set up is the probability of error in decodir@’® may consider only the suffix (of length— ¢ = 4pn —
the ‘superblocks’ rather than the smaller blocks/codesord="/2) Of the codewords intl,.. Here we assumg < 0.25,

The proofs of the upper bounds corresponding tof (p) minor mod|f|cat|on_s in the proof are ne_eded fpr largefhe
have already been sketched in SecEorlli-A. Hence we on}‘?t of vectors defined by the suffixes in an independent set
provide proofs of the upper bounds corresponding ito- of G now corresponds to a binary error-correcting code

4p)* in Theoremg1L ant 2. of length 4pn — en/2, with |Z| codewords and minimum
distanced.
IV. PROOF OFTHEOREM[I By Plotkin’s bound [2] there do not exist binary error cor-

i ; 2d
Let R = (1 —4p)™ + ¢ for somee > 0. Letlog(.) denote recting codes with more thag —Tipn—n/n + 1 codewords.

the binary logarithm, here and throughout. By assumption fghusI, any maximal independent set # must satisfy

deterministic codes, Alice’s message spacis of size27". 7] < 2(2pn —en/8) _ 16p (1)
Here we assume for thaf™ in an integer. This implies that ~ 2(2pn—en/8) — 4pn +en/2 €
the setX’ of Alice’s transmitted codewords is of si2é. i By Turan’s theorem [17], any undirected graghof size

We now present Calvin's attack. We show that for any| and average degreA has an independent set of size
fixed e > 0, regardless of Bob's decoding strategy, thergt least|V|/(A + 1). This, along with [1) implies that the
is a decoding error with constant probability (namely, thgverage degree of our graghsatisfies
error probability is independent of). Calvin’s attack is in V) 16p
two stages. First Calvipassivelywaits until Alice transmits — < 7| < —
¢ = (R — ¢/2)n bits over the channel. Let’ € {0,1}¢ be o o A+l c
the value of the codeword observed so far. He then considdf¥S in turn implies that
the set of codewords that are consistent with the obsexted < eV < eV

Namely, Calvin constructs the sét,: = {x = z1,..., 2, € Az 16p = 32

2|n fact, X may be smaller, however we note that for codes of optims;[_he second ";equahty is for I_arge enoughsm(_:e|v| I_S of
rate, | X| is of sizeexactly 25" If | X| < 2R”, then for some transmitted Siz€ at leas™". To summarize the above discussion, we
codewordx at least two messages and u’ must both be encoded to. have shown that our grap& haslarge average degree of
On receivingx, Bob’s probability of error is maximal — it is at lea$y2. ize A % his f | in®
Therefore changing the codebook so as to eneddes somex’ ¢ X cannot size 2 32p We now use this fact to analyze Calvin's
increase the probability of decoding error. attack.



By the definition of deterministic codes, any codeword ip(x’|ly) = p(y|x’)p(x’)/p(y). Taking the ratio and noting
X is transmitted with equal probability. Also, by definitionthat for deterministic codes(x) = p(x’), we have
both x (the transmitted codeword) and (the codeword x|y)/p(X|y) = p(y|x)/p(¥]x) (4)
chosen by Calvin) are iw = X|,.. Hence bothx andx’ are PRXYI/PRNY) = P /DY )-
uniform in X|,.. This implies that with probability|/[V|> ~ Since Calvin's random bit-flip strategy involves him flip-
the nodes corresponding to codewosdandx’ are distinct Ping bits ofx (which are different from the corresponding
and connected by an edgegn This in turn implies that with bits of x') with probability 1/2, for all y satisfying [2), the
probability [£|/|V[?, x # x’ and dy(x,x’) < 2pn — en/8, Pprobabilitiesp(y[x) andp(y|x') are equal. This observation

as required. Now and [4) together imply(x|y) = p(x'|y). Thus, Bob cannot
distinguish whethexk or x’ were transmitted. Namely, on the
ﬂ _ AlV| s & pair of events in which Alice transmits and Calvin chooses
V[2 2[V]2 ~ 64p x’ and in which Alice transmitg’ and Calvin chooses, no
- matter which decoding process Bob uses, he will have an

Conditioned on Claim[ 412, Calvin's codeworg’ is average d_ecodmg error of at ledg®2. This suffices to prove
our assertion. |

very close to Alice’s transmitted codewosd Specifically, Thus a decoding error happens if the con-

dp(x,x") € (0,2pn —_sn_/8). We now show that if CaIviq ditions of Claims [ZL, [412, (43 and[ %4 are
follows the random bit-flip strategy, from Bob’s perspeetlva" satisfied. This happens with probability at

(w.h.p.), bothx or x’ were equally likely to have been N o) /1

transmitted by Alice. least (1 — 27 ) (@) (1 —27% )) (5) =
We first show that during Calvin’s random bit-flip process(1) (@) (3) (3) = 513, for large enoughn.

w.h.p., Calvin does not “run out” of his budgetf bit flips. ]

Claim 4.3: Conditioned on Claini 412, with probability at

V. PROOF OFTHEOREM[Z
least1 — 2~2(=*n) 2

We start by proving the following technical Lemma that we
i (x,y) (gl _En gl 4 5_”) . @) use in our proof. Lety be an arbitrary probability distribution
’ 2 1672 16 over an index set/ = {1,...,k}. Let Ay,..., Ay be
arbitrary discrete random variables with probability disi-
Proof: The expected number of locations flipped byiONS a1, .- ., g Over alphabetsd,, ..., A, respectively. Let
Calvin isd/2 < pn—en/16. Assume thatl/2 = pn—en/16 ki = | A;]- Let_A be a ra_n_dom variable that equqls the random
(for smaller values of the bound is only tighter). By Sanov's VariableA; with probabilityq(i). Then the following Lemma
theorem [4, Theorem 12.4.1], the probability that the numb@escribing an elementary property of the entropy function

of bits flipped by Calvin deviates from the expectatigfe £ (-) is useful in the proof of Theorefd 2. .
by more tharen/16 is at moste—2(en?/d) < ,—Q*n) for Lemma 5.1:The entropies oA, Ay, ..., Ay andq satisfy

large enough. m H(A) <X q(i)H(A;)+ H(q), with equality if and only
It should be noted thatl/2 + en/16 < pn, and so if for eachi, 4’ for which bothq(i) and¢(i") are positive it

du(x,y) < d/2 + en/16 implies that the number of bits holds that_Prqivqw [Ai = Ay] = 0. .

flipped by Calvin does not exceedb. Since Calvin possibly Proof: For anya & A, the probabilityPr{A = a} =

flips only the bits ofx which differ from the corresponding P(@) Of occurrence ofi, equalsy_;. .. 4, 4(i)g;(a). Hence

bits in x’, (@) also implies H(A) = — Z p(a) log(p(a))
d en d en acl; A
du(x',y) € (5_1_6’§+1_6) : 3 Kk
. . L < - q(i)qi(7) log(q (i) (5)) (5)
We conclude by proving that if the number of bits flipped i=1 j=1
by Calvin lies in the rangéd/2 —en/16,d/2+en/16), then ks
indeed Bob cannot distinguish between the case in wkich = Z q(i) (g;(5) log(q:(5)))
or x’ were transmitted. i=1 j=1
Claim 4.4: Conditioned on Claini_4]3 Bob makes a de- koK
coding error with probability at leasit/2. +3 3 aili) (g(i) log(q(i)))
Proof: By Bayes’' Theorem [8], if Bob receiveg, i=1 j=1
the a posteriprobability that Alice transmitteck, denoted k
p(xly), equals(y|x)p(x)/p(y). Herep(x) is the probability = Z q(i)H (A;) + H(q).
(over her encoding strategy) that Alice transmitsp(y|x) i=1

is the probability (over Calvin’s random bit-flipping steaty) Here [B) follows from Jensen’s inequality, e.g. [4], with
that Bob receiveg given that Alice transmitx, andp(y) equality if and only if for each positiver{A = a}, there is
is the resulting probability that Bob receivgs Similarly, a unique: such thatg(i)g;(5) > 0 (herea;(j) = a). [ |



We now turn to prove Theoref 2. Recall our notation: let  to “push”x(u, r) to a codewordy at approximately the
U be the random variable corresponding to Alice’s message same distance from(u, ) andx’(u/, r’).
and py its distribution (with entropyRn). Throughout we o Giveny, Bob is unable to distinguish wheth&fw, r)
assume the message $ét(the support ofU) is at most or x'(u,r") was transmitted.
of size 2". Let X be Alice’s codebookX’ is a collection To this end, we partition the sét|,. into n? disjoint subsets
{X(u)} of subsets off0, 1}". For each subset'(u) C X, X,; fori,j € {1,2,...,n}. Let p(X,;) be the probability
there is a corresponding codeword random variakle:) mass of X';;. Let pul;, and px(y),, be the probability
with codeword distributiorpx(,) over X'(u). For any value distributionspy and px (. respectively conditioned on the
U = u of the message, Alice’s encoder choses a codewasdent that Alice transmitteck(u,r) in X;;. The partition
from X(u) randomly from the distributiorpx (.. Alice’s x;; is obtained in two steps — first we partitior,. into n
message distributiop;;, codebookt’, and all the codebook subsetst;, then we partition eact’; into n setsX;;. We
distributionspx () are all known to both Bob and Calvin,also use the probability distributignX’;), pu|; andpx ),
but the values of the random variabl&$ and X(.) are defined accordingly. All in all, we prove the existence of a
unknown to them. IfX(u) = {x(u,r) : r € A,}, then the subsetY;; with the following properties
transmitted codewor®X (U) has the probability distribution H(pyy,,) is “large”.

given by Pr(X(U) = x(u,7)] = pu(w)px)(x(u,7)). L&t px,.)is large with respect tp(x).

D thg the overall distribution of codewords = x(u,r) « For anyx(u,r) € X;; it holds thatp(x(u,r)) has
of Alice. It holds thatp(x(u,r)) = pu(u)px)(x) and approximately the same value.
p(x) = > 14 pu(Wpx (u) (X)- * py|,; IS approximately uniform on its support.

For anye > 0, '?t R = (1 —4p)" + e We start poyghly speaking, proving these properties By} reduces
by specifying Calvin's attack. Calvin uses a very similajis t the case of a deterministic encoder (addressed in
attack to the one described in the proof of Theorgm ¥heorenflL) and allows us to complete our proof.
That is, Calvin firstpassivelywaits until Alice transmits  \\e now present our proof for the existence &f; as
(= (R —¢/2)n bits over the channel. Let® € {0,1}* gpecified above. We first show that with positive probability
be the value of the codeword observed so far. He thghe setx|,. hashigh entropy.

considers the set of codewordgu, ) consistentwith the  Cjaim 5.1: With probability at leastz/4, H(py,) >
observedx‘. Here and throughout this section, we denotg, /4. <0
codewords by their corresponding messagand indexr Proof: Let ¢ be the probability distribution ovefi0, 1}
in X(u). As it may be thatx(u,r) is exactly the same fo; which a(xt) = p(x*) for all possiblex’ € {0,1}".
codeword asx(v/,r’), the sets in the definitions to follow | ¢t 4 , be the probability distributiorp;, ,. Now using
and in this section are in a sensuiltisets Namely, Calvin | emmal[5]L we obtain *

constructs the set’|,.: = {x(u,7) = z1,...,2, € X | .

x1,...,mp = x'}. Let p(x*) = p(X|,¢) be the probability, H(py) <> a(x"YH(py) )+ H(q)- (6)
under the probability distributiom, corresponding to the x*

event that Calvin observes in the first/ transmissions. Let By our definitions H (py;) = Rn. Moreover,H(q) < { =
pU|, and DX (u)l be the probability distributiong;; and (R — £/2)n (sinceq is defined over an alphabet of si2é).
Px () @lso respectively conditioned on the same event. )EalvTﬂnus [6) becomes

then chooses an elemext(v’,r") € X|,. with probabilit ¢ B

pul, (W)px (), (X'(u',7")). In the second stage he then ;q(x JH(pu| ) = Rn— (R —¢/2)n = en/2.

follows exactly the sameandom bit-flip strategyas in the )
proof of TheorenflL. As the average oH(pU‘xl) is at leastn/2, thenH(pr) >

Recall that in the proof of Theorefd 1, our goal Wa§"/4 with probability at least /4 (by a Markov type inequal-

to prove that with some constant probability, the distand®> here we use the fact tha (py) ,) < n). u
betweenx(u, r) andx’(«/, ') is approximatel2pn. Loosely W& now define the setd’;. For: =1,...,n —1, let )gz
speaking, this allows the success of Calvin's attack (i.&€ the set of code?}/yord?lmyxg for which p(x(u, r))/p(x")
imply a decoding error). Following the same outline of N the range(2™", 277", The set’, is defined toébe
proof, we now show that with probability /poly(n) the the set of codeword?? W‘gﬂx@ for which p(x(u,7))/p(x’)
codewordx’ («/, ) chosen by Calvin has the following thredS In the range(0, 2~ "L Let g’_(Xi) bee the probability
properties: mass ofX';. Namelyp(&';) ~ 27%[X;|p(x"). Let ¢ be the
, , , distribution over{1,2,...,n} taking i w.p. p(X;)/p(x%).
« It's corresponding message differs from that corresponﬁ—otice thatH (q) < log(n) = o(n) (as its support is of size

ing to x(u,r) (i.e.,u 7 u). o n). Conditioning on Claini 5]1 and using Lemmal5.1 it can
o x'(u,r") is closeto x(u, ) and thus Calvin will be able o \arified that

Claim 5.2:
3This is one significant difference from the attack in the prad
Theoren(JL — there Calvin chooses eachuniformly at random from the Z q(i)H(py|,) > H(py|_,) —H(q) > en/8  (7)
corresponding consistent set. P *



Consider sets’; with (relative) masg(i) > 1/n%. It holds included many messages, each with the same probability,

that details follow.
Z q(i)H (py)|,) > en/16 Consider the graply = (V, ) in which the vertex sevV
i<n—1;q(i)>1/n2 consists of the sef’;; and two nodes are connected by an

The above follows from the fact thatedge if their Hamming distance is less thage- 2pn —en/8.

: Now, it is can be verified (using analysis almost identical
Di<n—1; q()<1/m2 A(0)H (PU|n)+3 + a(mH(py),) = to that given in the proof of Theorel 1) that
D i<n—1iq(i)<1/n? n/n?+2 n < 2 (for sufficiently large : C _aen)

n). Here we use the fact thatn) < |;[2-3"+3. 1) With probab|II|tyl at/ Ieas_tl -2 / the codewords
We conclude the existence of a s&t such thatq(z') > x(u,r) andx'(u’, ') satisfy u # u’. Here one needs
1/n? and H(py,) > n/16. We now further partition’;. to take into consideration thg_ slight difference in the
Forj=1,... 7n’_ 1, let X';; be the set of codewords(u, r) group sizes and the probabilities for each codeword.

in X; for which py, (u) is in the rangg2=37,2-37+3]. x;, 2) With probabilityS2 (%) the vertices irg corresponding
is defined to be the set of codeword$u,r) in X, for to x(u,r) andx’(v’,r") are connected by an edge.
which py, (u) is in the rangg0, 273" *3]. Let p(X,;) be the ~ 3) During Calvin's random bit-flip process, with high
probability mass of;;. Namelyp(X';;) ~ 2~ 31|X” Ip(x*). probability of 1 — 22" Calvin does not “run out”
Let ¢’ be the distribution ovef1,2,...,n} taking j w.p. of his budget ofpn bit fllps.

p(Xi;)/p(X:). Notice thatH (¢') < log(n) = o(n) (as its  4) Conditioning on the above, Bob cannot distinguish
support is of sizen). As before, conditioning on Claifn 3.2 between the case in whida(u,r) or x'(u/,r") were
and using Lemmpa73Bl1 it can be verified that (for the index transmitted.
specified above), 5) Finally, on the pair of events in which Alice trans-

Claim 5.3: mits x(u, ) and Calvin chooses’(u/, '), and Alice

, transmits x’(v’, ') and Calvin chooses(u,r), no
Zq H(pu,;) 2 Hpuy,) = H(q') 2 en/32 (8) matter which decoding process Bob uses, he has an

average decoding error that is bounded away from zero.

Agaln consider setd’;; with massy'(¢) > 1/n”. It holds Here again we take into account the slight differences

that S EGu,) 2 o6l between(x(u,)) andp(x'(u'.1")). |
i<n—1ig ()>1/n? '_I'_o summarize, Calvin causes a decoding error with prob—
ability Q(poly(e)/poly(n)) = Q(1/poly(n)) as desired. This

We conclude the existence of a s€f; such that concludes our proof. m

o H(py,,) >en/64.

o p(Xiy) > p(xt)/nt. VI. CONCLUSIONS

o For any x(u,r) € Xj; it holds thatp(x(u,r)) is We analyze the capacity of the causal-adversarial channel
approximately2~3p(x). and show (for both deterministic and probabilistic encsjler

o Foranyx(u,r) € X; it holds thatpy,, (u) is approx- that the capacity is bounded by aboverhin{1— H (p), (1—
imately equal. 4p)*t}. For a large range of (for all p > 0.25), the

The setX;; is exactly what we are looking for. Roughlymaximum achievable rate equals that of sngerclassical
speaking, by Claini5l1, with probability at least4 Calvin  “omniscient” adversarial model.€., 0).
views a prefixx’ for which H(py, ,) > en/4. Conditioning  Several questions remain open. In this work we do not
on this event, both Alice and Calvin choose codewordgidress achievability results (i.e., the constructionanfes).
x(u,r), x'(u/,7") in X;; with probability at leastl /n®. It would be very interesting to obtain codes for the causal-

We now sketch to remainder of the proof which closelgdversary channel which obtain rate greater than that know
follows that of Theoreni]l. We partitioi’;; into groups for the “omniscient” adversarial model.€., the Gilbert-
of messagesY;;(u) consisting of all codewords int;; Varshamov bound) fop < 0.25). As we do not believe
corresponding ta.. Recall that each codewosdu, ) € X';;  that the upper bound ofl — 4p)™ presented in this work
has approximately the same probabilityx(u, r)), and for is actually tight, such codes, if they exist, may give a hint t
eachx(u,r) € X; it holds thatpy,, (u) is approximately the correct capacity.
the same value. This implies that each groupg (u) C X', As done in our work on large alphabets [6], one may
has approximately the same size. Moreover/&®y,,) > also consider the more general channel model in which for
en/64 it holds that there are at leag™/®* non-empty a delay parameterd € (0,1), the jammer’s decision on
subsetsY;; (u) in X;;. the corruption ofz; must depend solely om; for j <

So, all in all, X;; has a very symmetric structure: iti — dn. This might correspond to the scenario in which the
includesmanygroups, each consisting of elements with therror transmission of the adversarial jammer is delayed due
same transmission probability, and each of approximatdly certain computational tasks that the adversary needs to
the same size and mass (w.p). This reduces us to the perform. The capacity of the causal channel with delay is an
case considered in Theoreh 1 in which our sub%&t. intriguing problem left open in this work.
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