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Abstract— Polar codes were recently introduced by Arikan.
They achieve the capacity of arbitrary symmetric binary-input
discrete memoryless channels under a low complexity sucsage .
cancellation decoding strategy. The original polar code austruc- aen
tion is closely related to the recursive construction of Res
Muller codes and is based on the2 x 2 matrix [}9]. It was
shown by Arikan and Telatar that this construction achievesan
error exponent of 1, i.e., that for sufficiently large blocklengths
the error probability decays exponentially in the square rmt
of the length. It was already mentioned by Arikan that in
principle larger matrices can be used to construct polar cods. A
fundamental question then is to see whether there exist mates
with exponent exceeding%. We first show that any ¢ x ¢ matrix
none of whose column permutations is upper triangular polaizes
symmetric channels. We then characterize the exponent of av@n
square matrix and derive upper and lower bounds on achievald % We show that this exponent can be improved by considering
exponents. Using these bounds we show that there are no matels  |arger matrices. In fact, the exponent can be made arlptrari
of size less thanl5 with exponents exceeding%. Further, we give  |gse tol by increasing the size of the matrix.

a general construction based on BCH codes which for large: Finall . licit tructi f a familv of

achieves exponents arbitrarily close tol and which exceeds% |r_1a Y We_ give an explicit cons _ruc ion or a tfamily 0_

for size 16. matrices, derived from BCH codes, with exponent approaghin
1 for large ¢. This construction results in a matrix whose

exponent exceeds for ¢ = 16.

bity — W —

Fig. 1. The transfornz®™ is applied and the resulting vector is transmitted
through the channélv’.

|. INTRODUCTION

Polar codes, introduced by Arikan in [1], are the first Il. PRELIMINARIES
provably capacity achieving codes for arbitrary symmetric |n this paper we deal exclusively witlymmetricchannels:
binary-input discrete memoryless channels (B-DMC) with lo - pefinition 1: A binary-input discrete memoryless channel
encoding and decoding complexity. The polar code constryg-pmMcC) W : {0,1} — ) is said to be symmetric if there

tion is based on the following observation: Let exists a permutatiomr : Y — Y such thatr = 7! and
10 W(yl0) = W (n(y)|1) forally € ).
G = [ 11 } - (1) Let W : {0,1} — Y be a symmetric binary-input discrete

memoryless channel (B-DMC). Lé{1V) € [0, 1] denote the

Apply the transformGS"™ (where ‘™" denotes then'® mutual information between the input and outputVf with

Kronecker power) to a block ofV = 2" bits and transmit uniform distribution on the inputs. Also, 1€(W) € [0, 1]

the output through independent copies of a B-DMIC (see denote the Bhattacharyya parameter 10f, i.e., Z(W) =

Figure 1). Asn grows large, the channels seen by individudf_, .y, /W (y|0)W (y|1).

bits (suitably defined in [1]) stampolarizing they approach Fix an ¢ > 3 and an/ x ( invertible matrix G with

either a noiseless channel or a pure-noise channel, whergries in {0,1}. Consider a randont-vector U{ that is

the fraction of channels becoming noiseless is close to theiformly distributed over{0,1}*. Let X{ = U{G, where

symmetric mutual informatiod (V). the multiplication is performed over GF(2). Also, I&Y be
It was conjectured in [1] that polarization is a general phéhe output of¢ uses of W with the input X{. The channel

nomenon, and is not restricted to the particular transftioma betweenU{ andY is defined by the transition probabilities

G$™. In this paper we first give a partial affirmation to this ¢

conjecture. In particular, we consider transformationghef 1,0\ A

form G®" whereG is an/ x ¢ matrix for ¢ > 3 and provide Wil ) E (ile:) HW (G- @)

necessary and sufficient conditions for suGk to polarize

symmetric B-DMCs. Define W : {0, 1} — Jié x {0,1}*~! as the channel with
For the matrixGy it was shown by Arikan and Telatar [2]Input Wiy OUtDUt(yl’ u;~') and transition probabilities

that the block error probablhty for polar coding and SUGHES i

cancellation decoding i©(2-2" )for any fixeds3 < %, where we )(yl’ i) = 2@ 1 Z We(yt |ud), ®)

2" is the blocklength. In this case we say tliat hasexponent Ui
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and letZ(® denote its Bhattacharyya parameter, i.e., We start by claiming that any invertibl0, 1} matrix G
_ _ can be written as a (real) sud = P + P/, whereP is a
AR \/W(l (yf, i OWO (yf, ui™t (1), permutation matrix, and”’ is a {0,1} matrix. To see this,
yhui™ consider a bipartite graph o®/ nodes. Thel left nodes
_correspond to the rows of the matrix and theight nodes
FOT."“ = 1let Wk {0,1} — Y* denote the B-DMC with correspond to the columns of the matrix. Connect left node
transition probabilities i to right nodej if G;; = 1. The invertibility of G implies

k that for every subset of rowR the number of columns which
Wb |2) = T W (s | ). contain non-zero elements in these rows is at lé&st By
j=1 Hall's Theorem [3, Theorem 16.4.] this guarantees thatether
Also let 7@ - (0,1} — Y* denote the B-DMC with is am:_;\tchmg b_etween the left and the nght nodes of the graph
and this matching represents a permutation. Thereforgrfpr
transition probab|l|t|es _ : . . .
invertible matrixG, there exists a column permutation so that
WO (yf |uy) = el—‘ Z Wyt | 0071, uf). (4) all diagonal elements of the permuted matrix aré\ote that
20— : the transition probabilities defining/ (V) are invariant (up to a
i+1

permutation of the outputg;) under column permutations on
Observation 2:Since W is symmetric, the channelﬂ{(i> G. Therefore, for the remainder of this section, and without
and W are equivalent in the sense that for any fixéd® loss of generality, we assume th@thas1s on its diagonal.

there exists a permutatiorhifl : V¢ — Y* such that The following lemma gives necessary and sufficient condi-
tions for (5) to be satisfied.
WO (yf ui™ u,;) = W(Z (7, i- V() | ug). Lemma 3 (Channel Transformation for Polarizing Matrices):

Finally, let (Y denote the mutual mformatlon between thé‘et W be a symmetric B-DMC.
input and output of channél’ (). SinceG is invertible, it is (i) If G is not upper triangular, then there exists @aifor
easy to check that which W& = W* for somek > 2.
, (i) If Gis upper triangular, theW () = W forall 1 < i < /.
Zl(i) — 2I(W). Proof: Let the number of 1s in the last row 6f be k.
_ Clearly W = Wk, If k > 2 thenG is not upper triangular

) _ and the first claim of the lemma holds. #f= 1 then
We will useC to denote a linear code adain(C) to denote

its minimum distance. We letgs, ..., gx) denote the linear Gy, =0, forall 1 <k <. (7
code generated by the vectogs,...,gr. We let dg(a,b)
denote the Hamming distance between binary vect@sdb.
We also letdy (a,C) denote the minimum distance between gy (¢~ z)(
vectora and a code, i.e., dy(a,C) = mingcc di(a,¢).

One can then write

Y1, ul ! | we—i)

*F Z Wg(yﬂu{)

[1l. POLARIZATION Uit
We say thaiG is a polarizing matrix if there exists an e~ _ _1 Privet — Ut = ot
{1,....¢} for which 201 HZ M = U=l
Up_jp1oUe
WO (i |ui) = Qyac) H W (y; | ui) (5) Pr(Yy =y | Y =y UL = ]
Vg X Wl
for some andA C {1,...,¢} with |[A| = k, k > 2, and a !
probability distribution@ : Y14l — [0, 1]. R
In words, a matrixG is polarizing if there exists a bit which -Pr [Yg =y | Y =9 U = ]
“sees” a channel whosk outputs are equivalent to those of W .
k independent realizations of the underlying channel, wsere — Z e-1( |“ )
the remaining’ — k outputs are independent of the input to the ug i
channel. The reason to call suclizdpolarizing” is that, as we . ZPY[Y@ =y Yle—l _ yf—17 Ut = u!]

will see shortly, a repeated application of such a transédion
polarizes the underlying channel. 1 .
Recall that by assumptiofl is symmetric. Hence, by = 2@-1[ (e 0) + W (ye | 1)] Z Wi ( luy ™).

Up

Observation 2, equation (5) implies ug i
(@), 0 ,i—1 _ Q(yac) . Therefore,Y; is independent of the inputs to the channels
W,y s 2i—1 [, 1 @) ). ©) W= fori=1,...,¢— 1. This is equivalent to saying that

jea channels¥ (M, ... W1 are defined by the matrig‘—1),

an equivalence we will denote by = W*. Note that where we defin&?‘~%) as the(¢ —i) x (¢ —i) matrix obtained
W® =Wk implies 1) = [(W*) and Z() = Z(WF). from G by removing its last rows and columns. Applying



the same argument @~ and repeating, we see thatGf Proof: For any polarizing transformatio&, Lemma 3

is upper triangular, then we haw& (") = T for all i. On the implies that there exists anc {1, ..., ¢} andk > 2 for which

other hand, ifG is not upper triangular, then there existsian 70 — (W) (12)

for which G*~%) has at least two 1s in the last row. This in '

turn implies thati () = W* for somek > 2. m This implies that for the tree process defined above, we have
Consider the recursive channel combining operation given

in [1], using a transformatiod:. Recall thatn recursions of

this construction is equivalent to applying the transfaior® 5y somek > 2. Moreover by the convergence ifi' of I,

. - 1
I,11 = I(WF) with probability at Ieastz,

A,GE" to Uf" where, A, : {1,....0"} — {1,....0"} is a e haveE[|L,,+1 — I,,|]] == 0. This in turn implies
permutation defined analogously to the bit-reversal opmrat 1
in [1]. E[lns1 = Inl] = SE[(I(Wy) = I(Wa)] 0. (13)

Theorem 4 (Polarization of Symmetric B-DMC$iven a
symmetric B-DMCW and an¢ x ¢ transformationz, consider
the channelgV (i = {1,...,¢"}, defined by the transfor-
mation 4,,G®".

() If G is polarizing, then for any > 0

It is shown in Lemma 33 in the Appendix that for any
symmetric B-DMCW,,, if I(W,,) € (6,1 —4) for somed > 0,
then there exists an(d) > 0 such that/(WF) — 1(W,,) >
n(d). Therefore, convergence in (13) impliés € {0,1} w.p.
1. The claim on the probability distribution @f, follows from

i |{i e{l,....0"}: I(WD) e (61— 5)}| Ly the fact thaf{ ,,} is a martingale, i.eE[I] = E[Iy] = I(W).
n— o0 /o - n
(8) Proof of Theorem 4:Note that for any» the fraction in (8)
{ie {1 oy Z(WDY e (5,1 6)}| is equal toPr[I,, € (J,1 —¢)]. Combined with Lemma 6, this
im A 7 : =0. implies (8).

9) For any B-DMCQ, I(Q) and Z(Q) satisfy [1]

(i) If G is not polarizing, then for alh andi € {1,...,¢"} QP +2(Q) <1,
I(Q)+ Z(Q) > 1.

orem 4 folVhen(Q) takes on the valué or 1, these two inequalities
imply that Z (@) takes on the valug or 0, respectively. From
Lemma 6 we know thafI,} converges tol,, w.p. 1 and
I, € {0,1}. This implies that{Z,,} converges w.pl to a
random variableZ,, and

0 w.p.I(W),
Zoo =
(20) {1 w.p.1—I(W).

[{ic{1,....07}: Z(W®W) € (a,b)}| This proves the first part of the theorem. The second part
Pr[Z(Wy) € (a,0)] = { o } " follows from Lemma 3, (ii). [

(11) Remark 7:Arikan’s proof for part (i) of Theorem 4 with
G = G4 proceeds by first showing the convergence &f, },
instead of{I,}. This is accomplished by showing that for

IWDy = 1(w), Z2(W9) = 2z(Ww).
In [1, Section 6], Arikan proves part (i) of The
G = G>. His proof involves defining a random variablg,
that is uniformly distributed over the stV ()}¢", (where
¢ = 2 for the caseG = G>), which implies

Pr[I(W,) € (a,b)] = [{i € {1, --vf"}énf(W(“) € (a,b)}|’

Following Arikan, we define the random variabl&,, €
{W®}E” for our purpose through a tree procgss,,;n >

0} with the matrixG, the resulting proces§Z,,} is a submartingale.
Such a property is in general difficult to prove for arbitrégy
Wo =W, On the other hand, the proce&s,} is a martingale for any
Wisr = W (Bns1), invertible matrixG, which is sufficient to ensure convergence.

Theorem 4 guarantees that repeated application of a po-

where {B,;n > 1} is a sequence of i.i.d. random variable$arizing matrix G polarizes the underlying channél, i.e.,
defined on a probability spacg?, F, ), and whereB,, is the resulting channel$V®), i € {1,...,¢"}, tend towards
uniformly distributed over the sefl, ..., ¢}. DefiningFy, = either a noiseless or a completely noisy channel. Lemma 6
{0,92} and F,, = 0(By,...,B,) for n > 1, we augment the ensures that the fraction of noiseless channels is ind€éd.
above process by the procesgds;n > 0} := {I(W,,);n > This suggests to use the noiseless channels for tranggnittin
0} and{Z,;n > 0} := {Z(W,,);n > 0}. It is easy to verify information while transmitting no information over the sgi
that these processes satisfy (10) and (11). channels [1]. Letd C {1,...,¢"} denote the set of channels

Observation 5:{(I,,, F,)} is a bounded martingale andiw (9 used for transmitting the information bits. Sin¢g?
therefore converges w.p. 1 and i&* to a random variable upper bounds the error probability of decoding bit with

I. the knowledge oft/; !, the block error probability of such
Lemma 6 [.): If G is polarizing, then a transmission scheme under successive cancellation elecod
can be upper bounded as [1]
)1 wp (W), i
* 710 wp.1—I(W). Pp < Z0. (14)

i€ A



Further, the block error probability can also be lower bathd The definition of exponent provides a meaningful perfor-
in terms of theZ()s: Consider a symmetric B-DMC with mance measure of polar codes under successive cancellation
Bhattacharyya parametéf, and let P. denote the bit error decoding. This can be seen as follows: Consider a métrix
probability of uncoded transmission over this channelslt with exponentE(G). Fix 0 < R < I(W) and 8 < E(G).
known that Definition 10 (i) implies that forn sufficiently large there

P, > 1(1 —V1-22). exists a setd of size ("R such that}",_ , Z(") < 2"

2 Using setA as the set of information bits, the block error

A proof of this fact is provided in the Appendix. Underprobability under successive cancellation decoditagcan be
successive cancellation decoding, the block error prdibabi bounded using (14) as
is lower bounded by each of the bit error probabilities over

. _ynB
the channel$V (). Therefore the former quantity can be lower Pp <27
bounded by Conversely, consideR > 0 and 8 > E(G). Definition 10 (ii)
1 - implies that forn sufficiently large, any se#d of size ("R
> —(1 =14/1—=(Z2@1)2). : n "
Pp 2 max 2(1 L= (Z0)) (15) will satisfy max;c4 Z(® > 2=¢"". Using (15) the block error

Both the above upper and lower bounds to the block errBfobability can be lower bounded as
probability look somewhat loose at a first look. However, as _mP
- . Pp >2 .
we shall see later, these bounds are sufficiently tight far ou
purposes. Therefore, it suffices to analyze the behavionef t |t turns out, and it will be shown later, that the exponent

ZWs. is independent of the chann&l. Indeed, we will show in
Theorem 14 that the exponeB{G) can be expressed as a
IV. RATE OF POLARIZATION function of thepartial distancesof G.
. . . _ Definition 11 (Partial Distances)Given an/ x ¢ matrix
For the matrixG, Arikan shows that, combined with suc G = [oF.. . ,gZT]T, we define thepartial distancesD;,

cessive cancellation decoding, these codes achieve ahirmmis .~ 1 7 as
block error probability for any rate strictly less thdiiv). PE L
Moreover, it is shown in [2] that whew,, approaches O it D; 2 dy(gi,(gis1, .- 90)), i=1
does so at a sufficiently fast rate: Dy 2 dir(ge,0)
. I - H ¢ = ag\ge, .
Theorem 8 ([2]): Given a B-DMCIV, the matrix(:; and Example 12:The partial distances of the matrix

el 1,

any 3 < 3,
g 1 00
lim Pr[Z, <272 = I[(W). F=1|1 0 1
A similar result for arbitraryG is given in the following 1 1 1
theorem.

areD; = 1,D2 = 1,D3 = 3.
In order to establish the relationship betwe#(dz) and the
partial distances off we consider the Bhattacharyya parame-
tersZ() of the channel$V (V). These parameters depend@n
lim Pr[Z, < 2—4”] = I(W). as well as orlV. The exact relationship with respect B is
Proof Idea: For any polarizing matrix it can be shown thaflifficult to compute in general. However, there are suffitien
: o -« tight upper and lower bounds on t#&?"s in terms ofZ (W)
Zni1 < (Z, with probability 1 and thatZ, ., < Z2 with “9ntupp *
probability at leastl /¢. The proof then follows by adapting he Battacharyya parameter @f. o
the proof of [2, Theorem 3]. - Lemma 13 (Bhattacharyya Parameter and Partial Distance):
The above estimation of the probability is universal and [€°F any symmetric BE'DMO/V and any? x ¢ matrix G with
independent of the exact structure@fWe are now interested Partial distanceq Di};_,
in.a more precise estimate of this propability. The .resu1ts i Z(W)Pi < 70 < 2=l 7 (W)Ds. (16)
this section are the natural generalization of those in [2].
Definition 10 (Rate of Polarization)For any B-DMC W
with 0 < I(WW) < 1_, we W.i|| say that an/ x £ matrix G (i) _ Z \/W(i)(yf,ui_l |0)W(i)(y{,u§_1 1)
has rate of polarizatioB(G) if L
(i) For any fixeds < E(G),

Theorem 9 (Universal Bound on Rate of Polarization):
Given a symmetric B-DMOV, an/ x ¢ polarizing matrixG,
and anyg < #,

Proof: To prove the upper bound we write

£ i
Yi,uq

liminf Pr[Z, < 270" = 1(W).

n—oo yf-,ulf]
(i) For any fixeds > E(G), Z We(y! |u1i—1’ 0, Uf+1)Wg(yf |u§_1, 1’wf+1)
" vl wt
1imianr[Zn > 2_6 [j] = 1. i+1 Wit
. n—00 1 — -
For convenience, in the rest of the paper we refeE(iG) as < 51 Z Z Wyt | ul 7O’vi+l)
e

the exponent of the matrig. ylal™t vl wl



: \/Wf(y{ |u§_l, 17wf+1)'

(17) Genie
X i—1
Let ¢ = (ulfl,O,vf_‘_l)G ande; = (ul™*)1 ,wiq)G. Let 07 uip P
So(S1) be the set of indices where both and ¢, are equal , it
to 0(1). Let S¢ be the complement of, U S;. We have i W, 1 Receiver —— i,
|S¢| = dp(co,c1) > D;.

Now, (17) can be rewritten as ,
Fig. 2. Genie-aided channéV.”.

i 1
ARES 5T oo > T wwlo [T wiy
vl why )yt ui=t €S jes
independent copy dfl/, and smce the weight af; is equal to
H W(y; |0)W (y;]1) D;, the resulting channéV is equivalent taD, independent
jese copies ofW. Hence,Z") = Z(W)P:.
<1 > ZPi . , -
Tt L Lemma 13 shows that the link betweert?) and Z(W) is
VWit given in terms of the partial distances 6f. This link is
=2f~igDs, sufficiently strong to completely characterizg).

Theorem 14 (Exponent from Partial Distance§or any
symmetric B-DMCW and any{ x ¢ matrix G with partial
distances( D, }¢_,, the rate of polarizatio&(G) is given by

For the lower bound oa?(l first note that by Observation
2, we haveZ (W®) = (W ) Therefore it suffices to show
the claim for the channdlV (. LetG = [¢7,...,g}]". Then

using (2), (3) and (4)W(® can be written as 1
=3 ; log, D;. (21)
W (yf |u;) = > H W(yelze)  (18) Proof: The proof is similar to that of [2, Theorem 3.
zfeA(u;) k=1 We highlight the main idea and omit the details.
wherez! € A(u;) C {0,1}¢ if and only if for someu’, , € First note that by Lemma 13 we havg > Z . Let
{0,110~ =|{1 <j <n:Bj;=1}|. We then obtain
7, > ZHiDi i ZE(Zi mj logy Di). (22)
o5 = uig; + Z Ujgj. (19) The exponent ofZ on the right-hand side of (22) can be
j=it1 rewritten as
Consider the cod€g;1,. .. ,gg> and IethZi+1 ajg; be a g2imiloge Di — ()2 T log, Di
codeword satlsfylngiH(gl,Z i+195) = D;. Due to the
linearity of the code(g;1 .fgg> one can equivalently say By the law of large numbers, for any> 0,
thatz{ € A(u;) if and only if mi 1] _
. ERiE
0 _
vy = ui(gi + Z ajgi) + Z U595 (20)  \ith high probability forn sufficiently large. This proves part
g=itl g=itl (i) of the definition ofE(G), i.e., for anys > 1 3, log, D
/A , L 0 A n
Now let 9 = 9% §J:z+1 ajg; and G lim Pr(Z, >2""] = 1.
of,....gF |, q"; ,ng,...,gl] . Equations (19) and (20) n—00

show that the channeld ) defined by the matrice§ andG’  The proof for part(i) of the definition follows usmg similar

are equivalent. Note th&!’ has the property that the Hammmgarguments as above, and by noting tAat< 2/~ BJZ J The
weight of g/ is equal toD;. =

We will now consider a channeW( where a genie pro-

constan‘~5i can be taken care of using the bootstrapplng

argument of [2]. [ |
i) : . .
vides extra information to the decoder Singe? is degraded Example 15:For the matrixF’ considered in Example 12,

with respect to the genie-aided chanmﬁgl), and since the | Love

ordering of the Bhattacharyya parameter is preserved under

degradation, it suffices to find a genie-aided channel fockvhi E(F) = l(logg 1+logz 1+ logs3) = =

z8 = z(w)Ps, 3
Consider a genie which reveals the hifs ; to the decoder

(Figure 2). With the knowledge o&fH the decoder’s task

reduces to finding the value of any of the transmitted bits For the matrixGs, we haveE(Gy) = % Note that for the

x; for which g;; = 1. Since each bit:; goes through an case of2 x 2 matrices, the only polarizing matrix i§5. In

V. BOUNDS ON THEEXPONENT



order to address the question of whether the rate of potariza where the last equality follows from
can be improved by considering large matrices, we define

o min >dH(gk,c+gk+1) > o min >dH(gk,c)

c PN (! 54 PERERY!

EZ é max E(G) (23) Ik+2 ge 9k+1:9k+2 ge
Ge{0,1}6x¢ = Dy > Dyy41.

Theorem 14 facilitates the computation®fby providing an  Therefore,D; D; ., > D;.D;.1, which proves the first claim.
expression folE(G) in terms of the partial distances @f. The second claim follows from the inequality, ., > Dy >

Lemmas 16 and 18 below provide further simplification foD,,, = Dj.. |
computing (23). Corollary 19: In the definition ofE, (23), the maximization
Lemma 16 (Gilbert-Varshamov Inequality for Linear Codegn be restricted to the matricéswhich satisfyD; < Dy <

Let C be a binary linear code of lengthanddmin(C) = d;. ... < Dy.

Let g € {0,1}* and letdy(g,C) = dy. Let C be the linear

code obtained by adding the vectgrto C, i.e.,C = (g,C).

Thendmin(C') = min{dy, ds}. . . .
Proof: SinceC' is a linear code, its codewords are of the The following lemma provides a lower bound Bnby using

Gilbert-Varshamov type construction.
form wherec € C,a € {0, 1}. Therefore a .
ctag ¢ @ €{0.1} Lemma 20 (Gilbert-Varshamov Bound):

A. Lower Bound

dmin(C/) = meiél{min{dH(O, ¢),dy(0,c+9)}} L
c 51 =
— min{min{dx (0,)}, min{dn (g.)}} B2 7D log D
= min{dy,d>}. where
- ) D=1/, i
Corollary 17: Given a set of vectorg,, .. ., g with partial Di = max{ D Z (j) <2 (24)
diStanCESDj = dH(gj7<gj+17'-'7gk>)! .] - 1,---,k, the X . J=0 . T T
minimum distance of the linear coder, .. ., gx) is given by ~ Proof: We will construct a matrd; = [g;,....g; ],
min® (D). with partial distanced; = D;: Let S(c, d) denote the set of
J=1%"J inary vectors with Hamming distance at maektfrom ¢ €

The maximization problem in (23) is not feasible in practic? v
even for¢ > 10. The following lemma allows to restrict this 0,1} ie.,
maximization to a smaller set of matrices. Even though the S(e,d) = {z € {0,1}' : dg(z,c) < d}.
maximization problem still remains intractable, by worgin " _ _ _ N
on this restricted set, we obtain lower and upper bounds & construct the"” row of G with partial distanceD;, we

Ey. will find a v € {0,1}* satisfyingdg (v, (git1,.-.,9¢)) = D;
Lemma 18 (Partial Distances Should Decreaskeyt ¢ = and setg; = v. Such av satisfiesv ¢ S(c, D; — 1) for all
gF ... gf". Fix k € {1,...,0} and let ¢ = ¢E€ (git1,---,9¢) and exists if the set$(c, D; — 1)_,_c €
97 .. gF 19T ... gF]T be the matrix obtained fron@ by <gi4-r1,-...zgg> do not cover{0,1}*. The latter condition is
swappinggy, andg,. 1. Let {D;}._, and{D/}’_, denote the Satisfied if
. ; : . .
EJhagEal distances of7 and G’ respectively. If Dy > D1, | Uectorssogn S(e, Dy — 1)) < Z 1S(e, D; — 1)

() E(G') = E(G),

D;—1
(i) Dy,, > Dj. _ori Y () “o
Proof: Note first thatD;, = D; if i ¢ {k,k + 1}. Y
Tr)er(/afore, to prove the first claim,_it suffices to show th:%hiCh is guaranteed by (24) =
DiiDigs1 2 DD To that end, write The solid line in Figure 3 shows the lower bound of Lemma
D}, = dy(grs1, Gk, Geras - - G0)), 20 . The bound exceed} for ¢ = 85, suggesting that the
Dy, = di(gies (Grsrs - - -+ 92)) exponent can be improved by considering large matrices. In
, ’ T fact, the lower bound tends tbwhen ¢ tends to infinity:
D1 = da(grs (grr2, -+ 90)), Lemma 21 (Exponeritis Achievable):lim,_. . E, = 1.
Diy1 = du(grt1, (Gr+2:- - -, ), Proof: Fix a € (0, 3). Let{D;} be defined as in Lemma
, . . 20. It is known (cite something here) thd?p,, in (24)
ang obfserve thab, ;. , 12), Dy 5|ch <gk+2’t' -d795> is a sub- satisfieslimy—.oc Do > ¢h™'(a), whereh(-) is the binary
code Of(gx+1,---,g¢). Dy can be computed as entropy function. Therefore, there exists &) < oo such
) ) ) that for all¢ > ¢y (a) we haveD,¢ > £¢h~'(a). Hence, for
mm{ min  dp(grt1,¢),  min dy (g, e+ gk)}é > () we can write
CE(Gk+25--,92) CE(GR+25e-,90) =
=min{Dyy1, min  dy(gr,c+ gri1)}
CE(Grt2,---9¢ E¢ >

|
-

é ~
Z log, D;
= D1, =lal]
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Example 23 (Sphere Packing Boundpplying the sphere
T packing bound forl(¢,¢ — i+ 1) in Lemma 22, we get
0.5t L 1& .
E, < 7 ; log, D;, (27)

0.4} where

1P5+]

D; =max{ D : Z (><2Z !

0.3

0 8 16 24 32 Note that for small values oi for which d(n, k) is known for

Fig. 3. The solid curve shows the lower bound Bpn as described by all k < n, the bound in Lemma 22 can be evaluated exaCtIy'

Lemma 20. The dashed curve corresponds to the upper boubdamtording

to Lemma 26. The points show the performance of the best eeatdbtained
by the procedure described in Section VI. C. Improved Upper Bound

Bounds given in Section V-B relate the partial distances
{D;} to minimum distances of linear codes, but are loose

%(1 - a)flOgZD"az] since they do not exploit the dependence among{the}.
1 th=(a) In order to improve the upper bound we use the following
> —(1—a)llog, ———= parametrization: Consider dnx ¢ matrix G = [¢1, ..., g7 ]".
¢ 1 Let
h™ (@)
=l-a+(1-a)log——, T, = {k:gix = L.gx = 0 forall j > i}
where the first inequality follows from Lemma 20, and the Si={k:3j>1st gy =1}

second inequality follows from the fact th&; < D, for

3 . and lett, = |T;|.

all 4. Therefore we obtain 1 Example 24:For the matrix
hmlnng 1—a Vace(0, 2) (25) 00 0 1
i |01 10
Also, sinceD; < /¢ for all 7, we haveE, < 1 for all /. Hence, 111 00
) 1 000

limsupE, < 1. (26)
£—o0 T, = {3} and S, = {1,2}.

Combining (25) and (26) concludes the proof. m Note thatl; are disjoint and; = Uj_;, T;. Therefore|S;| =
Zf:iﬂ t;. Denoting the restriction of; to the indices inS;
by g;s., we have

B. Upper Bound Y 9is:

D; =t; + si, (28)

Corollary 19 says that for ang; there exists a matrix with
Dy <--- < Dy that achieves the exponeRt. Therefore, 10 wheres; 2 dyy(g;s,, (g 9(it1)8:s- - -+ Ges;)). By a similar rea-
obtain upper bounds oE, it suffices to bound the exponenisoning as in the proof of Lemma 18, it can be shown that
achievable by this restricted class of matrices. The parti@ere exists a matrig; with
distances of these matrices can be bounded easily as shown
in the following lemma. 5i < du(95s,, (9G+1)8:> - -+ 9es;)) Vi <],

Lemma 22 (Upper Bound on Exponenbet d(n,k) de-
note the largest possible minimum distance of a b|nary coge E(G) —E
of lengthn and dimensiork. Then, -

P Therefore, for such a matri, we have (cf. proof of Lemma
EgS%ZlO&,d(Z,é—i%-l). 22)

=1 . . 4
Proof: Let G be an¢ x ¢ matrix with partial distances si < d(|Sil, € —i+1). (29)
{Di}{_, such thatE(G) = E,. Corollary 19 lets us assumeUsing the structure of the s&, we can bound; further:
without loss of generality thaD; < D,y; for all i. We Lemma 25 (Bound on Sub-distances):< L \J

therefore obtain Proof: We will find a linear combination of
. {9¢+1)s, ,...,ggs} whose Hamming distance tg;s, is at
D; = min D; = dmin({g;, ..., g¢) < d(0,0 —i+1), i
rgn>1? in({g 9¢)) ( i+1) most [‘S |. To this end definay = 27 —it1Q595s;, Where
where the second equality follows from Corollary 17. m @ € {0,1}. Also definew; = Z; —i+1 @595~ Noting

Lemma 22 allows us to use existing bounds on the minimuifat the setsl;s are disjoint withU_; ., 7; = S;, we have
distances of binary codes to bouRd du(gis,,w) = Zf:lﬂ du (gi;, wry ).



We now claim that choosing they;s in the order Example 27 (Chords fom = 5): For m = 5 the list of
Qit1,---,0p DY chords is given by

argmir}!je{o,l}dH(giTj,wj_lTj +Oéjngj), (30) C= {{0},{1,2,478,16}7{3,67127177 24},

_ . . 5,9,10,18,20}, {7, 14, 19, 25, 28},
we obtain dg(gis;,, w) < L%J. To see this, note that { ho }

by definition of the setsl; we havewr, = wjr;. Also {11,13,21,22,26}, {15, 23,27, 29,30} }.
observe that by the rule (30) for choosing;, we have ]
dr(gir;, wir;) < L‘L;‘J. Thus, Let C' denote the number of chords and assume that the
P chords are ordered according to their smallest element as in
_ _ ) Example 27. Letu(:) denote the minimal element of chord
dr(gis., w) j:zi;ldH(gZTj’wTj) i, 1 <i < C and leti(i) denote the number of elements in
y chordi. Note that by this convention(i) is increasing. It is
_ Z i (gir, , wyT, ) well known thatl < I(i) < m and thatl(:) must dividem.
S o Example 28 (Chords fom = 5): In Example 27 we have
’ C=711)=L12)=--=U7)=5=m, u(l) =0,
<y {@J < {I&IJ , p(2) =1, u(3) = 3, p(4) =5, u(5) =7, p(6) = 11, p(7) =
j=i+1 2 2 15. u
Consider a BCH code of lengthand dimensiorEjC:,C I(y) for
somek € {1,...,C}. Itis well-known that this code has mini-

Combining (28), (29) and Lemma 25, and noting that the . :
invertibility of G implies 3" ¢; — ¢, we obtain the following: mum distance at leagt(k)+1. Further, the generator matrix of

Lemma 26 (Improved Upper Bound): this code is obtained by concatenating the generator reatric
P PP ' of two BCH codes of respective dimensiops,_, ., /(j) and

14 (k). This being true for allk € {1,...,C}, it is easy to
E, < emat??% 7 Zloge(ti + si) see that the generator matrix of thelimensional (i.e., rate 1)
==l BCH code, which will be the basis of our construction, has the
where property that its IasEjC: « L(7) rows form the generator matrix
< ¢ of a BCH code with minimum distance at leagtc) 4 1. This
5 = mm{b Z tjj,d( Z tj, 0 —i+ 1)} translates to the following lower bound on partial distance

. | =it j=itl o {D;}: Clearly, D; is least as large as the minimum distance
The bound given in the above lemma is plotted in Figure 3f the code generated by the ldst i + 1 rows of the matrix.

It is seen that no matrix with exponent greater thanan be Therefore, ifz_{“l I(y<l—i+1< Z.ka 1(j), then
found for ¢ < 10. - -

In addition to providing an upper bound %, Lemma Di > p(k) + 1.
26 narrows down the search for matrices which achi&ve The exponenk associated with these partial design distances
In particular, it enables us to list all sets of possible ipart can then be bounded as
distances with exponents greater th?nFor 11 < ¢ < 14,

c
an exhaustive search for matrices with a “good” set of plartia E > 1 Zl(i) logym 1 (u(i) + 1). (31)
distances bounded by Lemma 26 (of which there are 285) 2m —1 &

shows that no matrix with exponent greater tl"@ﬂxists. Example 29 (BCH Construction far= 31): From the list

of chords computed in Example 27 we obtain
VI. CONSTRUCTIONUSING BCH CODES

)
We will now show how to construct a matrix of dimension T logs;(2-4-6-8-12-16) ~ 0.526433.
¢ =16 with exponent exceed'”_b- In fact, we will show hOW An explicit check of the partial distances reveals that theva
to construct the best such matrix. More generally, we withgh inequality is in fact an equality -
how BCH codes give rise to “good matrices.” Our construction For largem, the bound in (3'1) is not convenient to work

of G consists of taking afix ¢ binary matrix whosé: last rows with. The asymptotic behavior of the exponent is however

form a generator matrix of &-dimensional BCH code. The gaqy o assess by considering the following bound. Note
partial distanceDy, is then at least as large as the minimurg o 1 u(i) (except fori = 1) can be an even number

distance 0f_th|s%-d|men§|ona_l code. . since otherwiseg:(i)/2, being an integer, would be contained
To describe the partial distances explicitly we make ug chord i, a contradiction. It follows that for the smallest

of the spectral view of BCH codes as sub-field sub-codgg,nent all chords (except chorimust be of lengthn and
of Reed-Solomon codes as described in [4]. We restrict olwaw(i) — 2i + 1. This gives rise to the bound

discussion to BCH codes of length= 2™ — 1, m € N.
Fix m € N. Partition the set of integerd), 1,...,2™ — 2} E > 1 (32)
into a setC of chords (2™ —1)log(2™ —1)

C=U"72{2% mod (2™ —1): ke N}. : <Zmlog(2k) + (2™ — 2 — am) log(2a + 2)) :
k=1




wherea = [LW*QJ. It is easy to see that a8 — oo the above obtain the matrix
exponent tends to 1, the best exponent one can hope for (cf.

1 0 00

Lemma 21). We have also seen in Example 29 thabfcr 5 01 0 1

we achieve an exponent strictly abo%e 00 1 1

Binary BCH codes exist for lengths of the forpf* — 1. 1 1 1 1

To construct matrices of other lengths, we w®rtening a - . .
9 9 e partial distances of this matrix afé, 2,2,4}. [ ]

standard method to construct good codes of smaller lengt xample 32 (Construction of Code with- 16): Starting

from an existing code, which we recall here: Given a code . . }
fix a symbol, say the first one, and divide the codewords in jth the 31 x 31 BCH m_atnx and repeatedly applymg the
ove procedure results in the exponents listed in Table |I.

two sets of equal size depending on whether the first sym
is a1l ora0. Choose the set having zero in the first symbol, | exponent| ¢ | exponent| ¢ | exponent| ¢ | exponent
and delete this symbol. The resulting codewords form a tineast | 0.52643 | 27 | 0.50836 | 23 | 0.50071 | 19 | 0.48742
code with both the length and dimension decreased by on&0 | 0.52205 | 26 | 0.50470 | 22 | 0.49445 | 18 | 0.48968
The minimum distance of the resulting code is at least aselarggg 8:2}22 3451 gjgggjg 3(1) gjigggg ig 8:;?;;2
as the initial distance. The generator matrix of the resglti

code can be obtained from the original generator matrix b TABLE I

removing a generator vector having a one in the first symbo{HE BEST EXPONENTS ACHIEVED BY SHORTENING THIBCH MATRIX OF
adding this vector to all the remaining vectors startinghveit
one and removing the first column.

Now consider arf x ¢ matrix G,. Find the columnj with The 16 x 16 matrix having an exponerit51828 is

LENGTH 31.

the longest run of zeros at the bottom, andildie the last 1001 11 0000T1T1T1T1U0 17
row with a1 in this column. Then add thé&h row to all the 01 001 00T1UO0T1T1T1TUO0OTUO0OT1:1
rows with a1l in the jth column. Finally, remove thé&h row 00111 110071101110
and thejth column to obtain ai¢ — 1) x (¢ —1) matrix Gy_. 0101011010 10UO0UO0TUO0STU0
The matrixG,_, satisfies the following property. 1111 000O0O0OO0OT1TUO0T1T1TU0 1
Lemma 30 (Partial Distances after Shortenindg)et the 001 00101010O0O0T1T10
partial distances of7, be given by{D; < --- < D,}. Let 001 00O0OO0OO0OO0DT1TT1TT1TTO0TO0TO0OO0
Gy—1 be the resulting matrix obtained by applyingtheabove 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0
shortening procedure with th#gh row and thejth column. 111001 101O0O01O01O00
Let the partial distances ofi,—, be {D},...,D;_,}. We 10101011101 10101
have 11100 00O0OO0OO0O0O0O0DT1T1TO0T1TSF0O
1 0 01100001 O01 1011
1 1111 010O0O0O0OT1TUO0OT1TTQO0F®O0
Dy 2Dy, 1<k<i-—1 B3 110101 11101000001
D}, =Djy1, i<k<(—1. B4 |1010000101111100

Proof: Let G, = [¢f,....9f)" and G-y = [1 1 1 1 1 1 11 1111111 1]

9i".....g;_,"]" Fori < k, g is obtained by removing p,q partial  distances of this matrix are

the jth column ofg,;. Since all these rows have a zero i 16,8,8,8,8,6,6,4,4,4,4,2,2,2,2,1}. Using Lemma 26
the jth position their partial distances do not change, whig}ge observe that for the6 x 16 case there are onlyl other

in turn implies (34). N _ / possible sets of partial distances which have a better exgon
For k < 4, note that the minimum distance of the catle= than the above matrix. An exhaustive search for matrices wit

(9hs---+9;—1) is obtained by shortening = (gx,...,g¢). such sets of partial distances confirms that no such matrix
Therefore,D; > dmin(C ) > dmin(C) = Dj. B exists. Hence, the above matrix achieves the best possible
Example 31 (Shortening of Codefonsider the matrix ~ €xponent among all6 x 16 matrices. u
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o O O
—_ 0 = O O
[N eNel
_= =0 O O
— = = =

The partial distances of this matrix afe, 2,2,2,4}. Accord-
ing to our procedure, we pick thgrd column since it has a
run of three zeros at the bottom (which is maximal). We then
add the second row to the first row (since it also hasia In this section we prove the following lemma which is used
the third column). Finally, deleting colum# and row2 we in the proof of Lemma 6.

APPENDIX
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Lemma 33 (Mutual Information d’*): Let W be a sym- K, BSCs where the receiver has knowledge of the particular
metric B-DMC and letW* denote the channel BSC being used. Le{e;}X, and {Z;}X, denote the bit

error probabilities and the Bhattacharyya parameter of the
H W (y; | x).

If I(W) € (6,1 —¢) for somes > 0, then there exists an
n(8) > 0 such thatl(W*) — I(W) > n(é).

The proof of Lemma 33 is in turn based on the followin
theorem.

Theorem 34 ([5], [6] Extremes of Information Combining):
Let Wy,..., W, be k symmetric B-DMCs with capacities
I.,...,I, respectively. Leti*) denote the channel with
transition probabilities

y1|$

k
W® (yl | z) = H Wiyi|z).
i=1

Also let Wéé’c denote the channel with transition probabil-

ities
k
Weeewh | 2) = [ Wesaen (i | 2),

=1
where BS(C¢;) denotes the binary symmetric channel (BSd}]
with crossover probabilitye; € [0,3], & £ h™(1 — I)
whereh denotes the binary entropy function. Théaiy (%)) >

I(Weso)-

Remark 35:Consider the transmission of a single Bit
using £ independent symmetric B-DMCH/1, ..., W, with
capacitiesly, .. ., I. Theorem 34 states that over the class (ﬁ
all symmetric channels with given mutual informations, thg)
mutual information between the input and the output vedor i
minimized when each of the individual channels is a BSC.

Proof of Lemma 33:Let € € [0, 1] be the crossover proba-
bility of a BSC with capacityl (W ) i.e.,e=h"Y(1—-I(W)).
Note that fork > 2,

I(WF) > 1(W?) > I(W).
w?) >

[2]

[
[4]

By Theorem 34, we havé(
computation shows that

I(Wascre)) = 1+ h(2¢€) — 2h(e).

We can then write

I(Wgsce))- A simple

I(W*) = I(W) 2 I(Wgsey) — L(W)
I(WBSC(e)) I(Wasc(e))
= h(2€€) — h(e). (35)
Note thatZ(W) € (5,1 — 0) implies e € (¢(8), 5 — ¢(5))
where¢(d) > 0, which in turn impliesh(2e€) — h(e) > n(J)
for somen(d) > 0. [ |

Lemma 36:Consider a symmetric B-DM@. Let P. (W)
denote the bit error probability of uncoded transmissiodain
MAP decoding. Then,

P.(W) > 1(1 —V1=2Z(W)32).
Proof: One can check that the inequality is satisfied with
equality for BSC. It is also known that any symmetric B-
DMC W is equivalent to a convex combination of several, say

constituent BSCs. Ther). (W

) and Z(W

K
= § aiZl
=1

) are given by

K
= E Q€4
i=1

Yor someq; > 0, with Zfil «o; = 1. Therefore,

1= Z(W)?),

where the inequality follows from the convexity of the fuioct

x—1—+1—22forze(0,1).
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