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Abstract—This work considers the behavior of the degree
distributions of capacity-approaching low-density parity-check
(LDPC) code ensembles via linear programming (LP) bounds.
These LP bounds are information-theoretic, and they apply to
finite-length LDPC codes and to the asymptotic case of an infinite
block length. Analytical solutions of these bounds are given in
closed form, and the bounds are compared for the BEC with
some specific degree distributions of capacity-achieving sequences
of LDPC code ensembles. These LP bounds are shown to be
informative and are easy to calculate. Due to space limitations,
the derivation of the LP bounds is outlined, and the reader is
referred to the full paper version [9] for complete proofs and
further discussions.

Index Terms—Degree distributions, linear programming, low-
density parity-check (LDPC) codes, memoryless binary-input
output-symmetric (MBIOS) channels.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes form a class of
powerful error-correcting codes which are efficiently encoded
and decoded with low-complexity algorithms. In this paper,
the following question is addressed:

Question: How do the degree distributions of capacity-
approaching LDPC code ensembles behave as a function of
the achievable gap (in rate) to capacity ?

Consider the case where the transmission takes place over
a memoryless binary-input output-symmetric (MBIOS) chan-
nel. The behavior of the degree distributions of capacity-
approaching LDPC code ensembles is addressed in the full
paper version [9] via the derivation of some information-
theoretic bounds. The bounds are expressed in terms of the
gap (in rate) to capacity with a target bit (or block) error
probability. These linear programming (LP) upper bounds on
the degree distributions of LDPC code ensembles are general
with respect to the decoding algorithm, and they also hold for
ensembles of finite-length codes or for the asymptotic case of
an infinite block length.

In this context, two LP problems are formulated in [1] for
optimizing the degree distributions of finite-length LDPC code
ensembles whose transmission takes place over a BEC, and
also a convex optimization problem is formulated in [2] for
optimizing the degree distributions of LDPC code ensembles
with the goal of obtaining a good tradeoff between perfor-
mance and decoding complexity. It is noted that the LP-based
optimizations in [1] and [2] hold under belief propagation (BP)
decoding, whereas the LP bounds which are derived in this

paper are information-theoretic bounds which hold under ML
decoding or any sub-optimal decoding algorithm. Although the
degree distributions of the parity-check nodes are often set to
be regular (or almost regular), and the irregularity often refers
to the degree distributions of the variable nodes, this is not
necessarily the case for capacity-approaching ensembles.For
example, [7, Section VI] introduces some capacity-achieving
sequences of accumulate-repeat-accumulate code ensembles
for the BEC, which also possess a bounded complexity per
information bit under BP decoding; they are designed in a way
where the degree distributions of the LDPC code ensembles
after a proper graph reduction (as explained in [7, Section II])
are self-matched and are both irregular. The irregularity of the
parity-check degree distributions in the design of LDPC codes
appears to be useful in various cases under BP decoding (see,
e.g., [1], [3], [6], and [10]).

II. LP BOUNDS ON THE DEGREE DISTRIBUTIONS OFLDPC
CODE ENSEMBLES

This section provides LP bounds on the degree distributions
of LDPC code ensembles. Due to space limitations, the proofs
are outlined here, and the reader is referred to [9] for full
proofs and further discussions. These bounds are formulated
in terms of the target bit error probability and the gap (in rate)
to capacity required to achieve this target. The following LP
bounds refer to the node and edge perspectives of the degree
distributions, and they provide upper bounds on the fraction
of edges or nodes up to a degreek where k is a positive
integer. The LP bounds that are introduced in this section
hold under ML decoding, and they are therefore general in
terms of the decoding algorithm. These LP bounds apply to
finite-length LDPC code ensembles, and also to the asymptotic
case of an infinite block length. Analytical solutions of these
LP bounds are provided in closed form, and these bounds
are also compared with some capacity-achieving sequences of
LDPC code ensembles for the BEC under BP decoding. In the
continuation to this section, we denote

g1 , E[tanh2(L/2)]

=

∫ ∞

0

a(l)(1 + e−l) tanh2

(

l

2

)

dl (1)

whereL is a random variable which refers to the log-likelihood
ratio (LLR) at the channel output, given that the binary input
symbol to the channel is zero, the symbolE denotes the
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statistical expectation with respect toL, anda designates the
symmetric probability density function(pdf) of L (i.e., for an
MBIOS channel, the equalitya(l) = el a(−l) holds for l ∈ R

[8, Chapter 3]). Hence,g1 in (1) is a parameter which only
depends on the MBIOS communication channel (but not on
the code ensemble).

In the following, we consider ensembles of binary LDPC
codes. Following standard notation, letλi and ρi denote the
fraction of edges attached, respectively, to variable and parity-
check nodes of degreei. LetΛi andΓi denote, respectively, the
fraction of variable and parity-check nodes of degreei. The
LDPC code ensemble is characterized by a triple(n, λ, ρ),
wheren designates the block length of the codes, andλ(x) ,
∑

i λix
i−1 andρ(x) ,

∑

i ρix
i−1 represent, respectively, the

left and right degree distributions from the edge perspective.
Equivalently, this ensemble is also characterized by the triple
(n, Λ, Γ) where Λ(x) ,

∑

i Λix
i and Γ(x) ,

∑

i Γix
i

represent, respectively, the left and right degree distributions
from the node perspective.

The following LP bounds are separated into four categories:

• LP1: ’LP1’ forms an LP upper bound on the degree
distribution of the parity-check nodes for LDPC code en-
sembles whose transmission takes place over an MBIOS
channel, and letC designate the channel capacity in bits
per channel use. The first version of this bound gives an
upper bound on the fraction of parity-check nodes up to
an arbitrary degreek (wherek ≥ 1 is an integer) as a
function of the achievable rate (and its fraction from the
channel capacity) with a given bit error probabilityPb.
From [9], the following optimization problem follows:

maximize
k
∑

i=1

Γi, k = 1, 2, . . .

subject to






























∞
∑

i=1

{[

1 − h2

(

1−g
i
2
1

2

)]

Γi

}

≤ ε C+h2(Pb)
1−(1−ε)C

∞
∑

i=1

Γi = 1

Γi ≥ 0, i = 1, 2, . . .

where the optimization variables are{Γi}i≥1, and k is
a parameter. The functionh2, which appears in the first
inequality constraint of the LP1 bound, designates the
binary entropy function, i.e.,

h2(x) = −x log2(x) − (1 − x) log2(1 − x), 0 ≤ x ≤ 1

andg1 is introduced in (1).

Outline of the proof:
Let us assume in the following that the transmission of
a binary linear block code takes place over an MBIOS
channel. LetL designate the LLR at the channel output,
given that the channel input is zero, and leta designate
the probability density function(pdf) of L.
Let us consider a binary linear block codeC of length
n and rateR, and let X and Y be the transmitted
codeword and received sequence, respectively. Assume

that the codewords ofC have no bits which are set a-priori
to zero. We first assume that the codeC is represented by
a parity-check matrixH which is full rank (i.e., the rows
of H are linearly independent). For an arbitrary full-rank
parity-check matrix of a binary linear block codeC, let
Γk designate the fraction of the parity-checks involving
k variables, and letΓ(x) ,

∑

k Γkxk. The following
lower bound on the conditional entropy of the transmitted
codeword, given the received sequence at the channel
output, holds (see [11]):

H(X|Y)

n
≥ R − C +

1 − R

2 ln 2

∞
∑

p=1

Γ(gp)

p(2p − 1)
(2)

where

gp ,

∫ ∞

0

a(l)(1 + e−l) tanh2p

(

l

2

)

dl, p ∈ N. (3)

The above lower bound on the conditional entropy in (2)
holds for any representation of the code by a full-rank
parity-check matrix. Note that the derivation of the lower
bound in (2) relies on the assumption that the parity-
check matrix is full rank. Though it seems like a feasible
requirement for specific binary linear block codes, this
poses a problem when considering ensembles of LDPC
codes. In the latter case, a parity-check matrix which
corresponds to a randomly chosen bipartite graph with
a given pair of degree distributions may not be full rank.
To this end, the following lemma is provided in [9]:
Lemma 1: For (regular/ irregular) ensembles of binary
LDPC codes, the inequality in (2) stays valid for every
code from the ensemble with the following modifications:

– The rateR of the code is replaced with the design
rate (Rd) of the ensemble.

– The sequence{Γk} refers to the degree distribution
of the parity-check nodes of the ensemble (where the
representation of a code by a parity-check matrix,
with the given degree distribution, possibly includes
some linearly dependent rows).
Proof: See [9, Appendix I].

The derivation of the first inequality constraint in the LP1
problem relies on the extension of the validity of (2) to
the case where the parity-check matrix is not necessarily
full rank, as given in Lemma 1, and it also relies on
the inequalitygp ≥ (g1)

p which holds for everyp ≥ 1
(this inequality follows directly from Jensen’s inequality).
Finally, its proof is completed by relying on the power
series expansion of the binary entropy function

h2(x) = 1 −
1

2 ln 2

∞
∑

p=1

(1 − 2x)2p

p(2p − 1)
, 0 ≤ x ≤ 1

and the Fano inequality, from which it follows that

H(X|Y)

n
≤ h2(Pb).

For a detailed proof of the LP1 bound, the reader is
referred to the derivation of [9, Eq. (61)].

From the standard transition from the degree distributions
from the node perspective to degree distributions from the
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edge perspective (see [8]), the following equality holds:

Γi =
ρi

i

(

∞
∑

j=1

ρj

j

)−1

.

The substitution of this equality in the first constraint
of the above LP bound gives the following optimization
problem for the degree distribution of the parity-check
nodes from the edge perspective (i.e., we get an upper
bound on the fraction of edges which are connected to
parity-check nodes up to degreek ≥ 1):

maximize
k
∑

i=1

ρi, k = 1, 2, . . .

subject to


































∞
∑

i=1

{[

1 − h2

(

1−g
i
2
1

2

)]

ρi

i

}

≤ ε C+h2(Pb)
1−(1−ε)C

∞
∑

i=1

ρi

i

∞
∑

i=1

ρi = 1

ρi ≥ 0, i = 1, 2, . . .

where the optimization variables are{ρi}i≥1. These two
LP bounds are valid under ML decoding (hence, they also
hold under any other decoding algorithm). These bounds
hold for finite-length codes and also for the asymptotic
case of an infinite block length. Based on strong duality
for LP problems (which holds unless the primal and the
dual LP problems are both not feasible [4]), an analytical
solution of the LP1 bound is given in [9, Appendix VII].
This bound is also tightened in [9, Appendix VII] for the
BEC, followed by its analytical solution.

• LP2: ’LP2’ provides a universal LP upper bound on the
degree distribution of the parity-check nodes for LDPC
code ensembles as a function of the required achievable
rate (and its fractionε from the channel capacity) with
a required bit error probabilityPb. This bound gets the
form:

maximize
k
∑

i=1

ρi, k = 1, 2, . . .

subject to






























∞
∑

i=1

{[

1 − h2

(

1−C
i
2

2

)]

ρi

i

}

≤ ε C+h2(Pb)
1−(1−ε)C

∞
∑

i=1

ρi

i

∞
∑

i=1

ρi = 1

ρi ≥ 0, i = 1, 2, . . .

where the optimization variables are{ρi}i≥1, and the
bound holds under the same conditions as in the previous
item. However, the LP2 bound is universal in the sense
that it holds for all MBIOS channels which exhibit a
given capacityC. The LP2 bound follows from the same
reasoning which leads to the LP1 bound with the addi-
tional property which states thatg1 ≥ C for all MBIOS
channels with capacityC, and this inequality holds with
equality for a BEC. The LP2 bounds from the node

and edge perspectives are similar to the corresponding
formulations of the LP1 bound, except of the replacement
of g1 in the LP1 bounds with the channel capacityC.
Hence, their analytical solution is similar to the LP1
bound, except of this simple replacement.

• LP3: ’LP3’ provides an LP upper bound on the degree
distribution of the variable nodes (from the edge perspec-
tive) for LDPC code ensembles whose transmission takes
place over an MBIOS channel. This bound provides an
upper bound on the fraction of edges which are connected
to variable nodes up to degreek for a parameterk ≥ 2,
and it is expressed in terms of the required achievable rate
(and its gap to capacity) with a given bit error probability
Pb. This LP bound gets the following form (see [9]):

maximize
k
∑

i=2

λi, k = 2, 3, . . .

subject to






































∞
∑

i=2

λi

i
≤

ln
(

1
g1

)

2(1−C)(1+ εC
1−C ) ln

(

1

1−2h
−1
2

(

1−C−h2(Pb)
1−(1−ε)C

)

)

∞
∑

i=2

λi = 1

λi ≥ 0, i = 2, 3, . . .

where the optimization variables are{λi}i≥2. The bound
is valid under ML decoding (or any other decoding
algorithm). It holds for finite block-length as well as in
the asymptotic case where we let the block length tend to
infinity. The first inequality constraint in the LP3 bound
follows from the improved lower bound on the average
degree of the variable nodes, as given in [9, Theorem 1],
and the other two constraints are trivial.

• LP4: ’LP4’ provides a universal LP upper bound on
the degree distribution of the variable nodes for LDPC
code ensembles (from the edge perspective). It gets the
following form (see [9]):

maximize
k
∑

i=2

λi, k = 2, 3, . . .

subject to


































∞
∑

i=2

λi

i
≤

ln
(

1
C

)

2(1−C)(1+ εC
1−C ) ln

(

1

1−2h
−1
2

(

1−C−h2(Pb)
1−(1−ε)C

)

)

∞
∑

i=2

λi = 1

λi ≥ 0, i = 2, 3, . . .

where the optimization variables are{λi}i≥2. This bound
holds for all MBIOS channels with a given capacityC.
The only difference between the LP3 and LP4 bounds is
that the parameterg1 in the first inequality constraint of
the LP3 bound is replaced with the capacityC in the LP4
bound (similarly to the difference between the LP1 and
LP2 bounds).
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Analytical solutions for the LP1 and LP2 bounds: The
LP1 problem can be expressed in the following equivalent
form:

maximize
k
∑

i=1

ρi, k = 1, 2, . . .

subject to






































∞
∑

i=1

diρi ≤ 0

di , 1
i

[

1 − h2

(

1−g
i
2
1

2

)

− ε C+h2(Pb)
1−(1−ε)C

]

∞
∑

i=1

ρi = 1

ρi ≥ 0, i = 1, 2, . . .

An analytical solution for the LP1 bound is obtained in [9,
Appendix VII] (via the use of strong Lagrange duality).

In the following, the final solution of the LP1 bound is
presented. To this end, note that for indicesi large enough,
di < 0 and alsolimi→∞ di = 0. Let d∗ , mini≥1 di be
the minimal value of this sequence, and leti = l be the
corresponding index ofdi which achieves this minimal value
of the sequence{di}. Clearly, d∗ < 0. The resulting closed-
form solution for the LP1 bound gets the following form:

• For integer values ofk which satisfyk ≤ k0 where

k0 ,

2 ln





1

1−2h
−1
2

(

1−C−δ
1−(1−ε)C

)





ln
(

1
g1

) .

The LP1 upper bound is equal to− d∗

dk−d∗
.

• For values ofk larger than or equal tok0, the LP1 upper
bound is equal to 1 (hence, it becomes trivial).

A similar solution is obtained for the LP2 bound where the
only difference is thatg1 in the definition of the sequence
{di} is replaced by the channel capacityC. These analytical
solutions match the numerical solutions obtained via [5].

Example 1: [A comparison of the LP1 bound and
capacity-achieving LDPC code ensembles over the BEC]
In the following, we compare the LP1 bound for the BEC and
the degree distributions of two capacity-achieving sequences
of LDPC code ensembles under iterative message-passing
decoding.

The first capacity-achieving sequence for the BEC refers to
the heavy-tail Poisson distribution, and it was introducedin
[6, Section IV], [10] (see also [8, Problem 3.20]). The second
capacity-achieving sequence refers to the right-regular LDPC
code ensembles [10], based also on the analysis in the proof
of [9, Proposition 1].

This first capacity-achieving sequence is obtained via the
pair of degree distributions

λ̂α(x) = −
1

α
· ln(1 − x) =

1

α

∞
∑

i=1

xi

i

ρα(x) = eα(x−1) = e−α

∞
∑

i=0

αixi

i!

which satisfies the equalitŷλα(1 − ρα(1 − x)) = x for all
α > 0. Starting with the heavy-tail Poisson distribution as
above and proceeding along the lines in [8, Section 3.15],
the following two steps are performed for the construction of
capacity-approaching LDPC code ensembles for the BEC:

• The degree distribution̂λα(x) is truncated so that it
consists of the firstN terms of its Taylor series expansion
(up to and including the termxN−1).

• The truncated power serieŝλ(N)
α (x) is normalized so that

it is equal to 1 atx = 1. The left degree distribution (from

the edge perspective) is then equal toλ
(N)
α (x) =

λ̂(N)
α (x)

λ̂
(N)
α (1)

.

The right degree distribution,ρα(x), is not modified.
This procedure provides the following degree distributions:

λi =
1

H(N − 1) (i − 1)
, i = 2, 3, . . .N

ρi =
e−ααi−1

(i − 1)!
, i = 1, 2, . . . (4)

where H(k) ,
∑k

i=1
1
i

for k ≥ 1 is a truncated harmonic
sum. Straightforward calculus shows that the design rate of
the corresponding LDPC code ensemble is equal to

Rd(α, N) = 1 −
N H(N − 1) (1 − e−α)

(N − 1)α
. (5)

We need to determine the parametersα and N so that the
design rate in (5) forms (at least) a fraction1 − ε of the
capacity of the BEC. Letp designate the erasure probability
of the channel, and letr = (1− ε)(1− p) be the lower bound
on the required design rate. We need to chooseα and N to
satisfy the inequalityRd(α, N) ≥ r with vanishing bit erasure
probability under BP decoding. Similarly to the calculations
in [8, Example 3.88], the satisfiability of the inequality

λ̂
(N)
α (1)

1 − λ̂
(N)
α (1)

(

∫ 1

0
ρα(x) dx

∫ 1

0
λ̂

(N)
α (x) dx

− 1

)

≤ ε

implies this requirement, and straightforward algebra gives
(see [9, Example 6])

α =
H(N − 1)

1 − r
, N =

⌈

1 − r

εr

⌉

+ 1. (6)

In the following, we calculate the heavy-tail Poisson distribu-
tion in (4) with the choice of parameters in (6). The resulting
degree distribution of the parity-check nodes (from the edge
perspective) is compared with the LP1 bound for the BEC
where the analytical solution of this bound is given in [9,
Appendix VII].

Comparisons between the heavy-tail Poisson distribution
and the LP1 bound are shown in Figure 1. We note that
the LP1 bound is an upper bound on the parity-check degree
distribution which is valid under ML decoding (and hence, it
is general for any decoding algorithm), whereas the heavy-
tail Poisson distribution is designed to achieve a certain gap
to capacity under BP decoding. We also show in this figure
the fixed degree of the parity-check nodes for the right-
regular LDPC code ensemble; this calculation is done via [9,
Eqs. (112), (113) and (118)] where the right degree is equal to
aR = d 1

α
e + 1. Although the latter case corresponds to a step



5

2 4 6 8 10 12 14 16 18

10
−4

10
−3

10
−2

10
−1

10
0

LP1 bound Heavy−tail Poisson distribution

right−regular

Degree of parity−check nodes (k)

Σ i=
1

k
 ρ

i

5 10 15 20 25

10
−4

10
−3

10
−2

10
−1

10
0

LP1 bound
Heavy−tail Poisson

distribution

right−regular

Degree of parity−check nodes (k)

Σ i=
1

k
 ρ

i

Fig. 1. A comparison between the LP1 bound and the heavy-tailPoisson degree distribution in (4) and (6), and the parity-check degree distribution of the
right-regular LDPC ensemble (it is calculated via [9, Eqs. (112), (113) and (118)] where the right degree is equal toaR = d1/αe+1). This comparison refers
to a BEC whose capacity is one-half (upper plot) and three-quarters (lower plot) bits per channel use, and the setting where 99.9% of the channel capacity is
achieved under BP decoding with vanishing bit erasure probability. The stair functions correspond to the fraction of edges which are attached to parity-check
nodes whose degrees are at mostk for a positive integerk.

function, the degree where this function is switched from zero
to one provides an indication to the reasonable tightness ofthe
LP1 upper bound with respect to the value of the parity-check
degreek where this upper bound is close to 1.
Analytical solutions for the LP3 and LP4 bounds: As shown
in [9, Section V.C], the closed-form solution of the LP3 bound
is given by

min















1,
k ln
(

1
g1

)

2(1 − C)
(

1 + εC
1−C

)

ln

(

1

1−2h
−1
2

(

1−C−h2(Pb)
1−(1−ε)C

)

)















.

(7)
The closed form solution of the LP4 bound is the same as in
(7), except of replacing the parameterg1 by C.

Example 2 (LP3 bound): Consider LDPC code ensembles
whose design rate is one-half bit per channel use, and whose
transmission takes place over a BIAWGN channel. Lets as-
sume that we wish to find upper bounds on the fraction
of edges up to degreek (for a parameterk ≥ 2) for the
setting of a bit error probability of (at most)Pb = 10−10

under ML decoding (or any sub-optimal decoding algorithm)
at Eb

N0
= 0.188 dB. This implies a gap to capacity which is

equal toε = 1.42 × 10−4. From (7), we obtain the following
inequalities (which are also verified numerically via [5]):

λ2 ≤ 0.2683

λ2 + λ3 ≤ 0.4025

λ2 + λ3 + λ4 ≤ 0.5367

λ2 + λ3 + λ4 + λ5 ≤ 0.6709

λ2 + λ3 + λ4 + λ5 + λ6 ≤ 0.8051

λ2 + λ3 + λ4 + λ5 + λ6 + λ7 ≤ 0.9392

λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 ≤ 1.0000.

A comparison of these numerical results with those presented

in Fig. 1 for the same value ofEb
N0

shows a big difference be-
tween the two upper bounds on the sequences{λi} and{ρi}.
This difference is well expected in light of the bounds in [9,
Corollary 2] where for every finite degreei, the upper bounds
on λi andρi scale like 1

log 1
ε

and ε
log 1

ε

, respectively. We note
that this difference is not an artifact of the bounding technique,
as is demonstrated in [9, Proposition 1] for the BEC.
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