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Abstract—This work considers the behavior of the degree paper are information-theoretic bounds which hold under ML
distributions of capacity-approaching low-density parity-check decoding or any sub-optimal decoding algorithm. Although t
(LDPC) code ensembles via linear programming (LP) bounds. geqree distributions of the parity-check nodes are oftériose
These LP bounds are information-theoretic, and they apply ¢ b | | t | dthe i larity oftefe
finite-length LDPC codes and to the asymptotic case of an infite e regular (or a m0§ regu ar), an e. Irregularity o e_ rs
block length. Analytical solutions of these bounds are givein {0 the degree distributions of the variable nodes, this i no
closed form, and the bounds are compared for the BEC with necessarily the case for capacity-approaching ensentfbbes.
some specific degree distributions of capacity-achievingguences example, [7, Section VI] introduces some capacity-achigvi
of LDPC code ensembles. These LP bounds are shown 10 begaquences of accumulate-repeat-accumulate code ensemble
informative and are easy to calculate. Due to space limitatins, - .
the derivation of the LP bounds is outlined, and the reader is for the BEC'_Wh'Ch also pOSS(_i'SS a bounded ‘?Omp"?x'ty per
referred to the full paper version [9] for complete proofs and information bit under BP decoding; they are designed in a way
further discussions. where the degree distributions of the LDPC code ensembles

Index Terms—Degree distributions, linear programming, low- after a proper graph reduction (as explained !n [7, Sectipn |
density parity-check (LDPC) codes, memoryless binary-inpt are self-matched and are both Irregular. The Irregulalﬁme
output-symmetric (MBIOS) channels. parity-check degree distributions in the design of LDPCesod

appears to be useful in various cases under BP decoding (see,

[. INTRODUCTION e.g. [1. 3], 6], and [10D).
Low-density parity-check (LDPC) codes form a class ofj.

powerful error-correcting codes which are efficiently eded

and decoded with low-complexity algorithms. In this paper, ] ] o
the following question is addressed: This section provides LP bounds on the degree distributions

Question: How do the degree distributions of capacitypf LDPC_ code ensembles. Due to space limitations, the proofs
approaching LDPC code ensembles behave as a functionff outlined here, and the reader is referred to [9] for full
the achievable gap (in rate) to capacity ? proofs and further dlsgussmns. Thes_e_ bounds are fornuijlate

Consider the case where the transmission takes place dieerms of the target bit error probability and the gap (ireya
a memoryless binary-input output-symmetric (MBIOS) charf® capacity required to achieve this target. T_he followirfgy L
nel. The behavior of the degree distributions of capacitpOunds refer to the node and edge perspectives of the degree
approaching LDPC code ensembles is addressed in the fifitributions, and they provide upper bounds on the fractio
paper version [9] via the derivation of some informatior®f €dges or nodes up to a degreewherek is a positive
theoretic bounds. The bounds are expressed in terms of ¥igger. The LP bounds that are introduced in this section
gap (in rate) to capacity with a target bit (or block) erropold under ML declodlng, ar_wd they are therefore general in
probability. These linear programming (LP) upper bounds ¢fms of the decoding algorithm. These LP bounds apply to
the degree distributions of LDPC code ensembles are gendt3fe-length LDPC code ensembles, and also to the asyrsptot
with respect to the decoding algorithm, and they also hotd f§25€ of an infinite block length. Analytical solutions of ke

ensembles of finite-length codes or for the asymptotic caseld® Pounds are provided in closed form, and these bounds
an infinite block length. are also compared with some capacity-achieving sequeffices o

In this context, two LP problems are formulated in [1] fol-PPC code ensembles for the BEC under BP decoding. In the
optimizing the degree distributions of finite-length LDP@je Continuation to this section, we denote

LP BOUNDS ON THE DEGREE DISTRIBUTIONS OEDPC
CODE ENSEMBLES

ensembles whose_ trgnsmission take_s place over a BEC, and g1 2 Eftanh?(L/2)]

also a convex optimization problem is formulated in [2] for oo I

optimizing the degree distributions of LDPC code ensembles = / a(l)(1 4 e7!) tanh? (5) dl Q)
0

with the goal of obtaining a good tradeoff between perfor-

mance and decoding complexity. It is noted that the LP-basetierel is a random variable which refers to the log-likelihood
optimizations in [1] and [2] hold under belief propagati®P) ratio (LLR) at the channel output, given that the binary inpu
decoding, whereas the LP bounds which are derived in tligmbol to the channel is zero, the symi®ldenotes the



statistical expectation with respect fg anda designates the
symmetric probability density functiofpdf) of L (i.e., for an
MBIOS channel, the equality(l) = €' a(—1) holds forl € R
[8, Chapter 3]). Hencey, in (1) is a parameter which only

depends on the MBIOS communication channel (but not on

the code ensemble).

In the following, we consider ensembles of binary LDPC

codes. Following standard notation, et and p; denote the
fraction of edges attached, respectively, to variable aarityp
check nodes of degréel et A; andI'; denote, respectively, the
fraction of variable and parity-check nodes of degie@he
LDPC code ensemble is characterized by a trifle, p),
wheren designates the block length of the codes, afd) =
S it andp(z) £ Y, piai~! represent, respectively, the
left and right degree distributions from the edge perspecti
Equivalently, this ensemble is also characterized by tipdetr
(n,A,T) where A(z) £ >, A2* and I'(z) £ Y, Tyat
represent, respectively, the left and right degree distidns
from the node perspective.

The following LP bounds are separated into four categories:

e LP1: 'LP1’ forms an LP upper bound on the degree
distribution of the parity-check nodes for LDPC code en-
sembles whose transmission takes place over an MBIOS
channel, and le€ designate the channel capacity in bits
per channel use. The first version of this bound gives an
upper bound on the fraction of parity-check nodes up to
an arbitrary degreé (wherek > 1 is an integer) as a
function of the achievable rate (and its fraction from the

channel capacity) with a given bit error probabilii.
From [9], the following optimization problem follows:

k
maximize Y TI';, k=1,2,...
i=1
subject to
S 1-g? Ctha(Pb)
S i) = e
SIi=1
=1
;>0, i=1,2,...

where the optimization variables af&;};>1, and k is
a parameter. The functioh,, which appears in the first

inequality constraint of the LP1 bound, designates the

binary entropy function, i.e.,
ha(z) = —zlogy(x) — (1 — ) log, (1 — ),

and g; is introduced in (1).

0<z<1

Outline of the proof:

Let us assume in the following that the transmission of
a binary linear block code takes place over an MBIOS
channel. LetL designate the LLR at the channel output,

given that the channel input is zero, and detlesignate
the probability density functiopdf) of L.

Let us consider a binary linear block codeof length
n and rate R, and let X and Y be the transmitted

that the codewords @f have no bits which are set a-priori

to zero. We first assume that the caties represented by

a parity-check matri¥{ which is full rank (i.e., the rows

of H are linearly independent). For an arbitrary full-rank
parity-check matrix of a binary linear block code let

I';, designate the fraction of the parity-checks involving
k variables, and lel'(z) = Y, I'yz®. The following
lower bound on the conditional entropy of the transmitted
codeword, given the received sequence at the channel
output, holds (see [11]):

HX]Y) 1-R <~ _T(g)
il Sull BV A ~
n zR-C+ 2ln2 ;p@p—l)

2
where

w2 [Taw e (Ha pen. @

The above lower bound on the conditional entropy in (2)
holds for any representation of the code by a full-rank
parity-check matrix. Note that the derivation of the lower
bound in (2) relies on the assumption that the parity-
check matrix is full rank. Though it seems like a feasible
requirement for specific binary linear block codes, this
poses a problem when considering ensembles of LDPC
codes. In the latter case, a parity-check matrix which
corresponds to a randomly chosen bipartite graph with
a given pair of degree distributions may not be full rank.
To this end, the following lemma is provided in [9]:
Lemma 1: For (regular/ irregular) ensembles of binary
LDPC codes, the inequality in (2) stays valid for every
code from the ensemble with the following modifications:

— The rateR of the code is replaced with the design
rate (Rq) of the ensemble.

— The sequencél’,} refers to the degree distribution
of the parity-check nodes of the ensemble (where the
representation of a code by a parity-check matrix,
with the given degree distribution, possibly includes
some linearly dependent rows).

Proof: See [9, Appendix I]. ]
The derivation of the first inequality constraint in the LP1
problem relies on the extension of the validity of (2) to
the case where the parity-check matrix is not necessarily
full rank, as given in Lemma 1, and it also relies on
the inequalityg, > (¢1)” which holds for every > 1
(this inequality follows directly from Jensen’s inequgit
Finally, its proof is completed by relying on the power
series expansion of the binary entropy function

1 (1 —22)%
=1- <z<
ho(z) =1 21112; o3p 1) 0<z<1
and the Fano inequality, from which it follows that
H(X|Y
HOY) )iy

For a detailed proof of the LP1 bound, the reader is
referred to the derivation of [9, Eq. (61)].

From the standard transition from the degree distributions

codeword and received sequence, respectively. Assume from the node perspective to degree distributions from the



edge perspective (see [8]), the following equality holds:

00 -1
Pi Pj
r=~— E - .
! <j—1 J )

The substitution of this equality in the first constraint
of the above LP bound gives the following optimization
problem for the degree distribution of the parity-check
nodes from the edge perspective (i.e., we get an upper
bound on the fraction of edges which are connected to
parity-check nodes up to degrée> 1):

k

maximize Y p;, k=1,2,...
i=1

subject to

where the optimization variables afg;};>1. These two

LP bounds are valid under ML decoding (hence, they also
hold under any other decoding algorithm). These bounds
hold for finite-length codes and also for the asymptotic
case of an infinite block length. Based on strong duality
for LP problems (which holds unless the primal and the
dual LP problems are both not feasible [4]), an analytical
solution of the LP1 bound is given in [9, Appendix VII].
This bound is also tightened in [9, Appendix VII] for the
BEC, followed by its analytical solution.

LP2: 'LP2’ provides a universal LP upper bound on the
degree distribution of the parity-check nodes for LDPC
code ensembles as a function of the required achievable
rate (and its fractiore from the channel capacity) with
a required bit error probability?,. This bound gets the
form:

k
maximize Y p;,
=1

k=1,2,...

subject to

(fon s

o0

2.

i=1

where the optimization variables afg;};>1, and the
bound holds under the same conditions as in the previous
item. However, the LP2 bound is universal in the sense
that it holds for all MBIOS channels which exhibit a
given capacityC. The LP2 bound follows from the same
reasoning which leads to the LP1 bound with the addi-
tional property which states thgt > C for all MBIOS
channels with capacity’, and this inequality holds with
equality for a BEC. The LP2 bounds from the node

and edge perspectives are similar to the corresponding
formulations of the LP1 bound, except of the replacement
of g1 in the LP1 bounds with the channel capaadity
Hence, their analytical solution is similar to the LP1
bound, except of this simple replacement.

o LP3: 'LP3’ provides an LP upper bound on the degree

distribution of the variable nodes (from the edge perspec-
tive) for LDPC code ensembles whose transmission takes
place over an MBIOS channel. This bound provides an
upper bound on the fraction of edges which are connected
to variable nodes up to degréefor a parametek > 2,

and it is expressed in terms of the required achievable rate
(and its gap to capacity) with a given bit error probability
PBy. This LP bound gets the following form (see [9]):

k
maximize Y X\;, k=2,3,...

. =2
subject to
i A< ln(i)
. v -
=2 2(1C)(1+IECC)ln( - 1jc—h,2(P) >
1=2hgy (m"—)
oo
S =1
i=2
AN >0, i=23,...

where the optimization variables af#; };>2. The bound

is valid under ML decoding (or any other decoding
algorithm). It holds for finite block-length as well as in
the asymptotic case where we let the block length tend to
infinity. The first inequality constraint in the LP3 bound
follows from the improved lower bound on the average
degree of the variable nodes, as given in [9, Theorem 1],
and the other two constraints are trivial.

e LP4: 'LP4’ provides a universal LP upper bound on

the degree distribution of the variable nodes for LDPC
code ensembles (from the edge perspective). It gets the
following form (see [9]):

k
maximize Y X\;, k=2,3,...
1=2
subject to
=2 2(1-C) (14 =% ) In 1
( )( +1—C) 172’1;1(%?552)))
=1
i=2
>0, i=2,3,...

where the optimization variables af®;},>2. This bound
holds for all MBIOS channels with a given capacity
The only difference between the LP3 and LP4 bounds is
that the parametey; in the first inequality constraint of
the LP3 bound is replaced with the capadityn the LP4
bound (similarly to the difference between the LP1 and
LP2 bounds).



Analytical solutions for the LP1 and LP2 bounds The which satisfies the equalityt, (1 — pa(1 — z)) = 2 for all
LP1 problem can be expressed in the following equivalent > 0. Starting with the heavy-tail Poisson distribution as

form: above and proceeding along the lines in [8, Section 3.15],
. the following two steps are performed for the constructiébn o
maximize > p;, k=1,2,... capacity-approaching LDPC code ensembles for the BEC:
subiect to i=1 o The degree distributiorf\a(x) is truncated so that it
JOO consists of the firstv terms of its Taylor series expansion
S dipi <0 (up to and including the term™~1).
i=1 B « The truncated power seriég (x) is normalized so that
di & 1|1 — (129l ) — cCtha(h) itis equal to 1 at- = 1. The left degree distribution (from
i =7 2 1—(1-¢)C . . ) AN (1)
o the edge perspective) is then equalxéﬁl (z) = W
;Pi =1 The right degree distributiom,, (), is not modified.
p_i >0, i=1,2,... This procedure provides the following degree distribusion
1 .
An analytical solution for the LP1 bound is obtained in [9, Ai = AN-1)G-1) '~ 2,3,...N

Appendix VII] (via the use of strong Lagrange duality). i
. . . . et
In the following, the final solution of the LP1 bound is pi =
presented. To this end, note that for indicelrge enough, (i =1

d; < 0 and alsolim;_.oc d; = 0. Let d* = min;>1 d; be where H(k) £ Y% | L for k > 1 is a truncated harmonic
the minimal value of this sequence, and fet= | be the sym. Straightforward calculus shows that the design rate of
Corresponding index Cﬂi which achieves this minimal Valuethe Corresponding LDPC code ensemble is equa' to
of the sequencéd;}. Clearly,d* < 0. The resulting closed- NH(N —1)(1— )

— —e

form solution for the LP1 bound gets the following form: Ry(a,N) =1

i=1,2,... @)

(5)

« For integer values of which satisfyk < ko where (N = D)o
We need to determine the parametersand N so that the
1 design rate in (5) forms (at least) a fractidn— ¢ of the
21n 172}1;]( :0:550) capacity of the BEC. Lep designate the erasure probability
ko & U _ of the channel, and let= (1 —¢)(1 — p) be the lower bound
1n(gi1) on the required design rate. We need to choesend N to
satisfy the inequalityRq(«, N) > r with vanishing bit erasure
The LP1 upper bound is equal tedkd%d*. probability under BP decoding. Similarly to the calculaso
« For values ofkt larger than or equal té,, the LP1 upper in [8, Example 3.88], the satisfiability of the inequality
_b(_)und is gqugl tol (_hence, it becomes trivial). X&N)(l) fOl pe () i
A similar solution is obtained for the LP2 bound where the 6] T — <e
only difference is thaty; in the definition of the sequence 1=Aa" (1) \ fy A/ (z) dz

{d;} is replaced by the channel capacity These analytical jmplies this requirement, and straightforward algebraegiv
solutions match the numerical solutions obtained via [5].  (see [9, Example 6])

capacity-achieving LDPC code ensembles over the BEC] =T,

In the following, we compare the LP1 bound for the BEC anH] the following, we calculate the heavy-tail Poisson dlstr

the degree distributions of two capacity-achieving seqasn . . ) . , .
of LDIgC code ensembles underp iter)alltive mesgage?passﬁlﬁg in (4) with the choice of parameters in (6). The resgtin
egree distribution of the parity-check nodes (from theeedg

decoding. . . .
' i rspective) is compared with the LP1 bound for the BEC
The first capacity-achieving sequence for the BEC refers\%‘iere the analytical solution of this bound is given in [9,

the heavy-tail Poisson distribution, and it was introduaed

6, Section V], [10] (see also [8, Problem 3.20]). The satorf PPENdX VIl G .
E:apacity-achivlvi[ng]s(equence Eefers to the righ]t)-reguI[d?(l: Comparisons between the heavy-tail Poisson distribution

code ensembles [10], based also on the analysis in the pr Hfjl_tgf prl dbpund are sr;)owndln Flt%ure 1.' Wﬁ nﬁtg that
of [9, Proposition 1]. e ound is an upper bound on the parity-check degree

This first capacity-achieving sequence is obtained via tl.gfléStr'bUt'On which is valid .under MI.‘ decoding (and hence, it
pair of degree distributions is" general for any decoding algorithm), whereas the heavy-
tail Poisson distribution is designed to achieve a certaip g

Example 1. [A comparison of the LP1 bound and H(N —1) N F _r" 1 ®)

. 1 1 o= 2t to capacity under BP decoding. We also show in this figure
Aa() = T ‘(1 —2) = « Z i the fixed degree of the parity-check nodes for the right-
o =1 regular LDPC code ensembile; this calculation is done via [9,
pal@) = pole—1) _ —a Z O‘l’xz Egs. (112), (113) and (118)] where the right degree is equal t
= il ar = [1] + 1. Although the latter case corresponds to a step
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Fig. 1. A comparison between the LP1 bound and the heavyrt@gson degree distribution in (4) and (6), and the patigek degree distribution of the
right-regular LDPC ensembile (it is calculated via [9, E442), (113) and (118)] where the right degree is equalge= [1/«a] + 1). This comparison refers
to a BEC whose capacity is one-half (upper plot) and threstgrs (lower plot) bits per channel use, and the settingevB8.9% of the channel capacity is
achieved under BP decoding with vanishing bit erasure fmibitya The stair functions correspond to the fraction ofyed which are attached to parity-check
nodes whose degrees are at miedbr a positive integetk.

function, the degree where this function is switched fromozein Fig. 1 for the same value @% shows a big difference be-
to one provides an indication to the reasonable tightne#iseof tween the two upper bounds on the sequerdcg$ and{p;}.
LP1 upper bound with respect to the value of the parity-chedlis difference is well expected in light of the bounds in [9,
degreek where this upper bound is close to 1. Corollary 2] where for every finite degréethe upper bounds
Analytical solutions for the LP3 and LP4 bounds As shown on \; andp; scale like 1og1 + and @, respectively. We note

in [9, Section V.C], the closed-form solution of the LP3 bdunthat this difference is not an artifact of the bounding tégha,
is given by as is demonstrated in [9, Proposition 1] for the BEC.
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