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Abstract—Coop(;rat!qn between terminals hqs been proposed \N"
to improve the reliability and throughput of wireless commu- o s
nication. While recent work has shown that relay cooperatio hor

provides increased diversity, increased multiplexing gai over O

that offered by direct link has largely been unexplored. In tis
work we show that cooperative multiplexing gain can be achieed
by using a half duplex relay. We capture relative distances Fig. 1. Relay channel witf antennas at destination ai¥d— R proximity
between terminals in the high SNR diversity multiplexing tradeoff gainn.

(DMT) framework. The DMT performance is then characterized

for a network having a single antenna half-duplex relay betveen a

single-antenna source and two-antenna destination. Our gailts

show that the achievable multiplexing gain using cooperatin \yith the relay Iistening% of the time and transmittin@ of
can be greater than that of the direct link and is a function of the time can achieve tHex 2 MIMO DMT.

the relative distance between source and relay compared tdée
destination. Moreover, for multiplexing gains less than 1a simple These results lend fresh insight into the fundamental §imit

scheme of the relay listening 1/3 of the time and transmittig 2/3  of cooperative multiplexing in the half-duplex relay chahn
of the time can achieve the 2 by 2 MIMO DMT. We demonstrate the use of two key techniques that enable our

results.
I. INTRODUCTION

1) Distance between terminals: In most results it is seen
that relative distances between source, relay and des-
tination do not affect DMT performance of the relay
channel. Since DMT is calculated at high SNR the path
loss and therefore distances are not easily captured in
results. We overcome this apparent limitation by scaling
the average SNR’s of the various links differently.

Diversity multiplexing tradeoff (DMT)[[2] has been widely agirgﬁfsp;%icur; ﬁgtr\li(\;Sreksg;gce)mDe'\t/:-ly- framework by adding
used to analyze and compare the performance of cooperaé) MIMO with half duplex antenna: T'he min-cut capacity
tive schemes. DMT for the half-duplex single relay network bound has been used i [4'] to calculate an uoper
has been studied extensively in literature [[B][4][5]. Foet bound for DMT performance. Notice in FigJ 1 thpzft
case with single antennas at all terminals the 1 MISO the {S, R}, {D} CIlDJ'[ correspoﬁds 0 @ x 2 MIMO
DMT. bound has recently been showld [5] to b_e achievable. system with one source antenna that remains active only
In this paper we study the DMT for the multiple antenna for a fraction of total communication timeR(is half
half-duplex r_elay channel having:, n _and K antennas at, duplex). It was noted [4] that an upper bound for mutual
source, destination and relay respectively. This was stldi information across such a cut is hard to compute. Due
in [4] but results were shown only for the special case to this, DMT bounds have only been reported for the
m = n = 1. We calculate the maximum achievable DMT speciai case ofy — n — 1
forthem = 1,n =2,k = 1 configuration. In the process In Sec[II-Al we demonstrate a simple channel decom-
we also demonstrate techniques that enable results forajene osition that allows us to compute the cut-set DMT
m,n andk. m = 1,n = 2,k = 1 is the simplest configuration Eound for them — 1.m — 9 kp, | configuration
where relay cooperation provides additional multiplexgain The technique can be’ applied7 towards computing DMT
compared to direct link. We show that if source and relay are bounds for generah, n andk. Recent results i [7118]
relatively close to each other, cooperative multiplexiagngs show that a simple7 relayiné scheme called “duaﬁtize-
achievable even with half duplex relaying. Note that thé-ful map” can achieve a rate within constant gap of the cut-
duplex case has been studied ih [1]. Moreover, for multiplgx set capacity. In SGEIV we discuss this scheme and show
gains less than, if source-relay SNR (measured in dB) is at :

least two times the source-destination SNR a simple scheme that it achieves the cut-set DMT bound.

There is a growing interest in the design of cooperative
schemes that provide diversity and multiplexing gain fomeo
munication via wireless relays. Cooperative diversityersfto
the additional diversity gain (compared to direct link)esid
by cooperation. Similarly if a relay provides additionagdees
of freedom (compared to direct link) it is said to provide a
cooperative multiplexing gain [1].
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Proximity gain 18 - Theorem 3.1: The maximum achievable DMT for network
described in Sellll is given by,

RN min{y +2.4) ~3r  0<r<ln>1

é . ,
g iy d(r) = 2n—nr—1)/(n—r) 1<r<2-— %,77 >2
1 n— 5= 1<r<2-21<n<2
05 N B\ Q)
. . Corollary 3.2: For system model described in Set Il the
0 " tilexing Gan ) 2 rgaymum achievable multiplexing gaiti = inf,>o{r|d(r) =
0} Is,
Fig. 2. d(r) for various values of proximity gairy. « 1
rf=2—- - (2)
n
For a symmetrical geometry with all channels having the
Il. SYSTEM MODEL same degrees of freedomy (= 1) we getr* = 1 i.e.

cooperation doesn’t provide additional maximum muiltijirhex
gain. To enable higher multiplexing gain ti$e— R channel
Consider the system in Figl 1 with sourse relay R and (cooperation link) needs to have more degrees of freedom tha
destinationD having 1,1 and 2 antennas respectively. Letthe S — D channel (communication link).
Dy, j € {1,2} denote thejth antenna aD. The channel gain  Let dy«o(r) represent the DMT of thg x 2 MIMO channel.
for S — Ris hs,, gains forS — D; arehs; andR — Dj are  For finite 5 it can be seen thai(r) < dax2(r) with strict
hg;. All the channel gains are assumed to be flat fading haviigequality over a non-empty region of This suggests that
i.i.d. CN(0,1) distribution. We assume quasi-static fadingfor distributed antennas the finite capacity of the coopemat
i.e. once realized, channel gains remain unchanged for ¢teannel (S — R) poses a fundamental limitation on the
duration of the codeword and change independently betwegthievable DMT performance. It can easily be verified that,
codewords. Noise at all receivers is additive i.id\V(0,1)
and independent of all other variables in the system. Tritnsm Jm d(r) = daxa(r)
power atS and R is limited by an average power constraint.
Since noise power at receiver is normalized tdhe transmit Fig.[2 showsd(r) for several values of.
power constraint is specified by the average Signal to NoiseWWe prove Theorern 3.1 in two steps. In $ecTlI-A we show
Ratio (SNR).R is assumed to operate under a half-duplehat the cut-set DMT upper bound for network in Sec Il is
constraint. For simplicity it is assumed that transmissian given by [1). In SeETV we show that this bound is achievable.
S and R are synchronous at symbol level.

. A. Cut-Set DMT upper bound
We assume an asymmetrical network geome$nand R

are modeled to be close to each other as compar¢dt®}  Let f(0 < f < 1) denote a listen-transmit schedule for the
andD. S — D and R — D are assumed to have the sambBalf duplex relay.R listens for a fractionf (listening phase)
average SNR denoted by S — R on the other hand is Of total communication time and transmits for fractioh—
modeled to have SNR higher thanby a factorn on dB /) (cooperation phase). The two cuts of the netwGk =
scale, i.e. thes — R average SNR i$". The S — R channel {S,R},{D} andCs = {S}{R, D} are shown in FigLI3 for
(cooperation link) thus hag — 1 more degrees of freedomthese two phases. In the listening phaseXef denote the

than other channels in the network. We calthe proximity Sequence of symbols transmitted Bywhile Yz and Y},
gain and assumg > 1. denote received signals & and D respectively. Similarly for

the cooperation phask? and Xy are the symbol sequences
transmitted fromS and R while Y?, is received atD. The
instantaneous mutual information across the two cuts can be

No channel state information (CSI) is available $ti.e.
only average channel statistipsy are known. However, ab
all channel realizations,,., hs;, hq; are completely known.

) ) ) written as,
We identify three models for relaying strategy.
« Global: The relay uses knowledge of all instantaneous Ics = fI(Xs;Yr, YpXg)+(1— f)I(XEYDHXr) (3)
channel realizations to optimize its strategy. Ie, = fIXgYp)+(0—HIX% Xk YD) (4)

o Local: The relay can measurk;,. and uses only this
(local) information.

« Blind: The relay only uses average channel statistics. 10 maximize these mutual information expressions we
need to choose zero-mean complex Gaussian distributions

The global strategy is discussed in SECIIIl whilecal and for X}, X% and Xy that have covariance matrices which
blind are discussed in Séd V. satisfy their respective average power constraints. Usinge



Cs ={S}.{R. D}| Cp ={S, R}, {D interference cancellation receiver achieves the mutualr-in
mation of the MIMO channel. For this schemg and g3 can
be calculated to be,

|y ] ?

2 2
92 || 7‘J-S|| 1+p||hs||2

gi = |lhl?

whereh,;; andh,, respectively denote the perpendicular
and parallel components &f,. with respect toh;.

Note that whileg? andg3 are correlatedp,, h, , andh,.,
are mutually independent. The correlation betwegrmnd g3
can therefore be explicitly calculated. The destinatiocodies
X r in the presence of interference froKy. It then cancels
X g from its received signal before decodif}gzs. Therefore
S effectively sees an interference free channel (with gain
to D during both listen and cooperation phases.

Fig. 3. Two cuts of network during listefyf) and cooperation phage.— f).
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22— 0y, ICD = flog(1+ PQ%)
+(1 = f)llog(1 + pg?) + log(1 + pg3)]
Fig. 4. Parallel Channel Model far x 2 MIMO. - log(l + ng) + (1 _ f) log(l + ng)
= 1 2

distributions we can write mutual information upper bounds Let «a,,,a; and ay represent channel realizations via the

Iés and]éD for 1o, and I, respectively. following variable transformations.
’ . 1 1+ p"hg, 2
e <1y = Flog(l+ plhe |2 + ol o = pim SLEVer)
) p—00 log p
+(1 = f)log(1 + p[|hs|[") _ log(1+ pg?)
~  fmax{log(l + p"|he, ), log(1 + pl|hs| )} o = e
+(1 = f)log(1 + pl[hl[*) o~ Ty los(+pgd)
Ie, <Ip, = flog(1+p|lhy||?) 7 o logp
+(1 — f)logdet(I + pHHT) This gives us simplified expressions for mutual information
upper bounds.
hsl hrl ’
whereh, = ,h, = andH=[ h, h, | I
_th h'r2 . . . o _Cs = a1+ f(O[ _ 0[1)+ (5)
It can be verified that the approximation is tight within one log p s
bit. I
Note that the expression faf. is a linear combination loﬁ = o+ (1= faz (6)
of the capacities of two Raleigh fading Gaussian channels &p
having correlated channel matricd%; = [ hy 0] and

o To achieve desired multiplexing gainat high SNR p —

H =[h, h, ]. Outage probability for the MIMO channel | y {he network must achieve a ra&— r log p. The network

was calculated in[]2] using eigenvalue decomposition of ti?g in outage if min{Ié Ié } < rlogp. For a givenr and
L S’ D _— .

channel matrix. Following the same technique there Woug?:hedulef we can define the outage regi@(r, f) over
require computing the joint eigenvalue distributions fbe t channel realizationg = (a1, as, ay, ) ’
- I K ST )"

two correlated hermitian matriceHlHI and HH. It was o
noted in [4] that this is hard to compute. We propose an min{/c_, Ic, }
easier decomposition to solve this problem. The second term log p
in I, is the capacity of & x 2 MIMO channel which can
be represented by two parallel Gaussian channels having gai The outage probabilitP,.; is,
g1 and g» shown in Fig[#. The channel can be written as,

Pout = / f&(alaa%asr)

aeo(r,f)

L=l a im0

Y2 0 92 Z2 W2 where fz, (a1,09,0s-) is the joint distribution of
(CYl,OéQ,OéST).

Lemma 3.3: Proof see Appendik]A

O(r, f) = {al <r} ()

where E[|z;?] = 1, wy,wa ~ CN(0,1). The capacity for
z; — y; is given bylog(1 + pg7). It was shown in[[5][2] that )
a D-BLAST transmission scheme with a MMSE successive falar, ag, ag) = p~5(@



where0 < aj,as <1, 0 < g < n and ! o ) Proximity Gain 2'(Blind|) e
3 Proximity Gain 2 (L.
s(a) = n+4—3a1 — 200 — g a1 +ag <1 ®) \ Pr(ggmﬂl)_/yGa?r:E (&8523
N+3-2m —az—as artaz>1 08 Proxmity Gain 4 (Local
Proximity Gain 4 (Global)
For a given listen-transmit schedulgé the cut-set DMT § 06
bound is therefore given by, 8
>
d(r, f) = min s(a 9 4
(r f) = min_ s(@) © § o
To get the DMT upper bound we can optimize over all listen-
transmit schedules, 0-2
d(r) = min maxs(& 10 ",
(r) = min maxs(@) (10) . . ,\
) L . . . . 1 1.1 1.2 1.3 14 15 1.6 1.7 1.8
Note that this optimization is performed on a per realizatio Multiplexing Gain (r)
basis, i.e. the optimaf depends on all channel realizations _ _
asr,oq and as. Therefore this corresponds to thgtobal Fig. 5. d(r) diocai(r) and dyiina(r) comparison for > 1.

strategy discussed in SE¢ II.
It is easy to see that the globally optimal schedf)g; is

one which setslés _ IéD- The relay can generate a larger code-book with each code-

word of lengthT'. If the relay now chooses a listen-transmit

Falob = a2 schedulef, it can use the firs{1 — f)T" symbols of the
(s —a1)T + a2 codeword to composX ;. The destination always knows the
This leads to the solution faf(r) given in ). schedulef and hence can adapt its decoder accordingly. This
construction allows us to claim that “quantize-map” ackiv
IV. ACHIEVABILITY : RELAYING SCHEME a rate within a constant gap afin{I,_, I} uniformly for

The “guantize-map” relaying scheme proposed[in [7] arghch dynamic choice of i.e.
[8] has been shown to be DMT optimal for the single an- | I <R b hh 1
tenna relay channel][5]. We show that “quantize-map” adapts min{ley, Ie, } — & < Rouanize-maflisr, bis, by, p, f) - (11)
naturally to the network described in Se¢ Il and with some
modification achieves the cut-set DMT bound. For the sake oftne constant in the above equation does not depend on the

completeness we include a short description of the schemey,annel gains and SNR. At the order of DMT which assumes
A. Description of scheme high SNR (p — o0) the ef_fect ofx becomes qegligiple and
hence we have the following theorem for achievability.

. Theorem 4.1: For dynamic listen-transmit schedules, the
1,2,... to be transmitted. At both sourcé and relay we modified quantize-map relaying scheme as described above

create random Gaussian codebooKstandomly maps each . . . . . A
: : ..achieves the diversity multiplexing tradeoffofin{7._, 1. },
message to one of its Gaussian codewords and transmits it y P 9 in{lc,. lep }

usingT' symbol times giving an overall transmission rate Owherelcs andl,, are given by[(b)(6).

R.. Dug to the half—_duplex nature of.the relay, it must operate /A cpiEvABILITY | LISTEN-TRANSMIT SCHEDULE

using listen-transmit cycles. Relay listens to the fjf$t time

symbols of each block i.eXL. It quantizesY to Yy and  In Sec[ll-A the cut-set DMT upper bound was calculated
then randomly maps it into a Gaussian codewsirg using a for the globally optimal listen-transmit schedulg,;,,. How-
random mapping functiofiz (Y z). It transmits this codeword €Ver in a practical communication scenario global knoweedg
during the nex(1 — f)T' symbol times. Given the knowledgeOf instantaneous channel realizations may not be available

of all the encoding functions and signals receivBdattempts at the relay. To account for this we defined thoeal and

S has a sequence of messaggse {1,2,...,27R}, n =

to decode the message sent$y blind relaying strategies in Secl Il. In this section we refine
Theorem 31l to calculate DMT bounds flwcal and blind
B. DMT of QuantizeMap schedules.

By Theorem 7.4.1 in[[8], for any fixed listen-transmit ) ,
schedulef, the quantize-map relaying scheme, uniformly ovef Blind Scheduling
all channel realizations achieves a rate within a constapt g Theorem 5.1: For the low rate region i.e: < 1, the blind
to the cut-set upper boundin{IéS,IéD} for that particular scheduling strategy is DMT optimal. Additionally far > 2
f. The random Gaussian code-book generated at sourcehisblind strategy achieves thex 2 MIMO DMT bound for
independent off. Also the code-book generated at relay < 1. The optimal blind schedule for this region figins = 3

depends ory only to determine the length of each codeword ]
(1- f)T. dpting(r) = min{n+2,4} —3r r<1 (12)



From [9) the DMT bound for blind scheduling can béNow for (0 < a1, as < 1) their joint CDF can be written as,

written as, _ _
o Foyas(a1,02) = Plgi <p™71 g5 < p27]
dplind(r) = max min s(Q) (13) o
I aeoth = Plgt = p""", g3 < p™>Vdx
i.e. f is optimized without knowledge of channel realizations ””ZO
&. Solving this optimization forr < 1 yields Theoreni 5]1. = / p201-2)
=0

This suggests that as long as cooperative multiplexing {s no

necessary i.e. desired rafe = rlog(p) is such thatr < 1, P|hsir|? + s < pe2 Yy
static scheduling at relay is sufficient to achieve the DMT L+ p*
upper bound.fuina = % turns out to be the optimal listen- - /al —20-)
transmit schedule for this region. =0
For the high rate regiog > 1), the analytical solution for az—1 ” 25 ztag—1
(13) is tedious to obtain. The optimization is convex andlman /u—o P P(lhsr|"<p ) dy dux

solved numerically. Fid.]5 shows a comparison betwé@r)
and dyinq(r) for r > 1. It can be seen that for cooperative 1) Case a; +as < 1:
multiplexing(r > 1) static scheduling is insufficient to achieve -

(051 (!2—1
DMT upper bound. Fy o0, c) = / p—2(l—m)/ prutoe=1 g gy
=0 y=0
B. Local Scheduling N /“1 Jetaa—t g,
Similarly, the DMT bound for local scheduling can be =0
expressed as an optimization problem frdh (9). = plortrea—d
- 3a1+2a2—4
diocal(r) = minmax  min  s(&) (24) Jar.aala, ) p
s f a1,02€0(rf) 2) Case a1 + ag > 1:
fiocar Can be optimized using knowledge af,,. only. The 15 N 1-a2 8a-+200-4 g
DMT performance of local scheduling must be at-least as o0 (01, 02) = 0 P *
good as blind scheduling, therefore by Theofen 5.1-fer 1 o o3
diocat (1) = dplina(r) = d(r). + /_1 pr T da
Numerical solution to[(14) for the high rate> 1 region is N gaf;al_f‘:f
shown in Fig[h. It can be seen that local scheduling performs N pm T
better than blind, but for highey this advantage diminishes. foran = p7HT

Sinceay, is independent ofv;, a; we get Lemma 3]3.

VI. ACKNOWLEDGEMENTS
REFERENCES

The authors wish to acknowledge the contnbuuons ?{] Y. Fan, H. V. Poor, and J. S. Thompson, “Cooperative migiing in
the students, faculty and sponsors of the Berkeley Wireless full-duplex multi-antenna relay networksglobal Telecommunications
Research Center and the National Science Foundation infras Conference, 2008. IEEE GLOBECOM 2008. IEEE, pp. 1-5, 30 2008-

Dec. 4 2008.
tructure Grant No. 0403427, [2] L. Zheng and D. Tse, “Diversity and multiplexing: a fumdantal tradeoff
in multiple-antenna channeldjiformation Theory, |EEE Transactions on,
APPENDIXA vol. 49, no. 5, pp. 1073-1096, May 2003.

[3] J. Laneman, D. Tse, and G. Wornell, “Cooperative ditgréi wireless
networks: Efficient protocols and outage behavionformation Theory,
. T IEEE Transactions on, vol. 50, no. 12, pp. 3062—3080, Dec. 2004.
A. Margi nal Distribution of o, [4] M. Yuksel and E. Erkip, “Multiple-antenna cooperativéreless systems:
: A diversity—multiplexing tradeoff perspectiveiformation Theory, IEEE
fasr(a) is calculated as, Transactions on, vol. 53, no. 10, pp. 3371-3393, Oct. 2007.
[5] S. Pawar, A. Avestimehr, and D. Tse, “Diversity-muléging tradeoff

ProOF OFLEMMA [3.3

. 2 o )
P[asr < CY] = lim P[|hsr| < p* n] of the half-duplex relay channel,” ifProc. Forty-Sxth Allerton Conf.
P70 Commun. Contr. Comput., lllinois, 2008.
fa (@) = p"7%0 < as <) [6] M. Varanasi and T. Guess, “Optimum decision feedback timsgr

equalization with successive decoding achieves the taiphgty of
the gaussian multiple-access chann&lgnals, Systems and Computers,
1997. Conference Record of the Thirty-First Asilomar Conference on,

2 2 dictri i i iotribiiti vol. 2, pp. 1405-1409, Nov 1997.
Note thatg; has ax; distribution, the marginal distribution [7] A Avestimehr, S. Diggavi, and D. Tse, "Approximate caibtof gaussian

B. Joint Distribution of o; and ap

of ay is given by' relay networks,1nformation Theory, 2008. IS T 2008. IEEE International
5 Symposium on, pp. 474-478, July 2008.
dgl [8] A. S. Avestimehr, “Wireless network information flow: a

— —(1-a1) Y ; i
fal (al) - fgf (p ! ) deterministic approach,” Ph.D. dissertation, EECS Depant,
. o(i—ar) University of California, Berkeley, Oct 2008. [Online]. Alable:
=p “0<a; <1) http://iwww.eecs.berkeley.edu/Pubs/TechRpts/2008&2008- 128.html

dOél


http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-128.html

	Introduction
	System Model
	Diversity-Multiplexing Tradeoff
	Cut-Set DMT upper bound

	Achievability: Relaying Scheme
	Description of scheme
	DMT of Quantize-Map

	Achievability: Listen-Transmit Schedule
	Blind Scheduling
	Local Scheduling

	Acknowledgements
	Appendix A: Proof of Lemma ??
	Marginal Distribution of sr
	Joint Distribution of 1 and 2
	Case 1+21
	Case 1+2 > 1


	References

