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Abstract—Consider a lossy communication channel for unicast
with zero-delay feedback. For this communication scenario, a
simple retransmission scheme is optimum with respect to delay.
An alternative approach is to use random linear coding in
automatic repeat-request (ARQ) mode. We extend the work of
Shrader and Ephremides in [1], by deriving an expression for
the delay of random linear coding over a field of infinite size.
Simulation results for various field sizes are also provided.
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sure channel, ARQ, Bulk service, Delay.

I. INTRODUCTION

Consider a communication model where packets arrive
from an information source to a network node, the sender,
according to a deterministic or random arrival pattern, and are
transmitted to another network node, the receiver, according
to a deterministic or random service pattern. Clearly, in a
balanced system, the average rate at which packets arrive
cannot exceed the average rate at which packets can be
transmitted. However, even when the arrival rate is lower
than the effective transmission rate, queues can build up due
to randomness in the processes involved, thus increasing the
delay of packet delivery.

Queuing theory provides a natural framework for the study
of the delay of protocols operating on such communication
models. Shrader and Ephremides [1] compared the delay
experienced by random linear packet-based coding to that of a
basic retransmission scheme, for a simple lossy unicast model.

A. Contributions of this work

In this paper we refine the delay estimates produced in [1].
In particular, for the case of coding over an infinite (or very
large) field, in Section III-A we derive an exact expression
for the delay of a random linear packet-based coding ARQ
scheme. Section III-B presents improved estimates of the
delay for the finite field case, and in Section III-C we have
collected some results from computer simulations that we have
performed.

B. Related work

As far as we know, [1] is the only paper in the literature
to deal with this specific model. Related but different work in
a unicast setting can be found in [2], [3], but in the model
addressed in these papers packets arrive to the sender as a
block, so there is no loss in waiting. Reference [4] addresses

delay in forward-error correction schemes for sender nodes
with a finite buffer capacity.

Random linear coding [5] is known to work particularly
well in the multicast case [6], and multicast problems similar
to the ones we discuss here are investigated in [7], [8].

C. Outline

This paper is structured as follows: Section II contains
background material, including a description of the queueing
model, basic notation, and a brief overview over prior work. In
Section III we present new results, including the determination
of the delay for coding over an infinite field and bounds for
the finite field case, and results obtained by simulation. We
present conclusions in Section IV.

II. BACKGROUND

Our departure point in this paper is Shrader and
Ephremides’ work in [1]. In this section we summarize nec-
essary background material, including a description of the
communication model, basic notation, and some prior results.

A. Notation and model description

The communication model considered in [1] and in this
paper contains the elements listed below.

1) A sender with unlimited buffer memory.
2) A packet source that injects fixed-length packets into the

sender. In this paper, as in [1], time is slotted, and the
packets arrive at the sender through a Bernoulli process
with arrival rate λ. Hence, during a given time slot, the
number of new packets injected into the sender is either
zero or one, with probabilities 1−λ and λ, respectively.

3) A receiver with unlimited patience.
4) A channel for sending packets from the sender to the

receiver, and a feedback channel for sending acknowl-
edgements (or negative acknowledgements) from the
receiver back to the sender. The channels have the
following properties:
• During a time slot, the sender may transmit exactly

one fixed-length packet.
• A packet transmitted by the sender is success-

fully delivered to the receiver with probability q,
0 < q ≤ 1. Two distinct packet transmissions are
independent. Thus the average service time of the
sender is 1/q for a single packet.
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• There is no delay between sending a packet and
receiving a positive or negative acknowledgement.
I. e., if a packet has been transmitted during a given
time slot, it will be known at the start of the next
time slot whether the transmission was successful
or not.

5) A communication protocol that regulates the flow of
packets between the sender and the receiver. Due to
the assumption of zero acknowledgement delay, an au-
tomatic repeat-request (ARQ) scheme is optimum with
respect to number of packets sent. The two schemes
compared in [1] are
• Retransmission of single packets: The sender col-

lects arriving packets in a queue. When the queue
is non-empty, the server selects a packet from the
queue (without loss of generality, the queue can be
ordered on a first in, first out basis), transmits the
packet in the first available time slot, and continues
to send that packet until a successful delivery is con-
firmed. The precise retransmission scheme (i.e stop-
and-go, go-back-N, selective repeat) is not important
in this context since there is no acknowledgement
delay.

• Random linear coding: When the queue is non-
empty, the sender selects the first k packets,
I1, . . . , Ik, in the queue (where k = min{ number
of packets in queue, K} and K is some pre-
selected integer that characterizes the protocol). The
collection I1, . . . , Ik will be referred to as a bulk.
The sender proceeds to generate encoded packets
based on the bulk. (A bulk service approach for
forward error correction has been studied in [9].)
Each encoded packet Ĩ is a random (or pseudo-
random) linear combination

Ĩ =
k∑

i=1

αi(Ĩ)Ii

of the original information packets, where αi(Ĩ) are
coefficients selected at random for each encoded
packet Ĩ from some field F. We assume that the
coefficients αi(Ĩ) can be conveyed to the receiver at
no significant cost. The sender proceeds to generate
and send randomly encoded packets until the re-
ceiver has successfully collected a set {Ĩ1, . . . , Ĩk′},
where k′ ≥ k, of encoded packets from which all
of the original information packets I1, . . . , Ik in the
bulk can be recovered. Upon successful delivery,
the sender returns to inspect its packet queue and
will serve another bulk of packets. The protocol
will be referred to as RLC(K,F), and is consistent
with e. g. fountain coding [5] or other random linear
coding schemes. Note that the special case of K = 1
corresponds to retransmission (for the only sensible
coding scheme.)

Figure 1 summarizes the model.
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Fig. 1. System Model.

In a practical general communication model, there are many
measures of performance that conceivably may be of interest,
such as throughput, sender’s delay, receiver’s delay, reliability,
efficiency in terms of usage of resources, and processing
complexity. In this paper we focus on the sender’s delay, under
the implicit assumptions that the communication protocol
ensures a completely reliable packet delivery, that processing
cost or resource usage are of no importance, that the receiver’s
delay is precisely determined by the sender’s delay, and that
the throughput is given exactly by the average packet arrival
rate and limited by the channel’s service rate. By the average
sender’s delay we mean the average number of time instances
between the moment when the packet is injected into the
sender’s queue and the moment when the packet has been
successfully delivered.

Extension to the model in [1]: Basically we consider the
same model and the same measures of performance as those
in [1], with the following minor extensions:
• In [1], binary coding is considered. Since coding is more

efficient over a larger field, we will consider also larger
fields, and in the limit, coding over an infinitely large
field.

• For convenience, the authors of [1] assume an encoding
scheme that allows (except for a bulk size of 1) the choice
of an all-zero encoding vector (i.e. all coefficients are
zero.) This simplifies the analysis, but it is not ideal,
especially for short bulk lengths and small fields, and
it is easy to avoid in practice.

B. Prior work

1) Basic retransmission: The retransmission protocol has
been analyzed in [10]. The average delay DRE and the average
waiting time WRE are given by

DRE =
1
q

+WRE , and WRE =
λ(1− q)
q(q − λ)

. (1)

2) Random linear coding: Shrader and Ephremides [1] an-
alyzed the RLC(K,F2) protocol, where F2 is the binary field.
They observed that the protocol corresponds to a variant of
what is known in queuing theory as a bulk service model [11],
[12]: a bulk of k(≥ 1) packets are serviced simultaneously.
Consequently they apply techniques for bulk service queues
in order to obtain estimates of the delay.



Consider a bulk of size k, i. e. k packets, I1, . . . , Ik
are selected for simultaneous service by the random coding
protocol. The service time Xk for the bulk is a random
variable that denotes the number of packets that need to be
sent (i. e., the number of time slots used) until the bulk has
been successfully delivered. Let bk(z) =

∑∞
i=0 bk,iz

i be the
probability generating function (p.g.f) for Xk, i. e.

bk,i = Pr{a size k-bulk is serviced in i time slots }.

Note that in general, bk(z) depends on q, F, and on the way in
which the encoding coefficients are selected. For convenience,
b0(z) = b1(z) in order to deal with the situation when the
queue is empty.

Lemma 1: Let St be the number of packets in the queue
immediately after the t-th bulk has been successfully delivered
(and before service is initiated for the (t+1)-th bulk.) Let Pk =
limt→∞ Pr{St = k} for k = 0, 1, 2, . . ., and let PK,F(z) =∑∞

i=0 Piz
i. Then, as explained in [1],

PK,F(z) =

K−1∑
k=0

Pk(zKbk(λz + 1− λ)− zkbK(λz + 1− λ))

zK − bK(λz + 1− λ)
.

(2)

Observe that PK,F(z) is completely determined by
P0, . . . , PK−1. The authors of [1] proceed by
• applying techniques involving Rouché’s theorem to ob-

tain numerical values for P0, . . . , PK−1,
• finding the expected number of packets in the queue

immediately after a bulk has been successfully delivered
to be

S =
∞∑

i=0

iPi = dP (z)/dz|z=1, (3)

and finally
• using S as an approximation to the average number of

packets in the system at an arbitrary point in time, and
applying this with Little’s law [12], [13] to obtain an
approximation to the average delay DRLC ,

DRLC ≈ S/λ. (4)

Note that although equation (4) is derived in [1] for the case
of binary encoding, the derivation remains valid for encoding
in other fields provided bk(z) is adjusted accordingly.

III. NEW RESULTS

Simulations indicate that (4) is a rather crude (un-
der)estimate for the delay suffered for random linear cod-
ing, and that the problem is that the p.g.f P (z) does not
really resemble the corresponding p.g.f. Q(z) = QK,F(z) =∑∞

i=0Qiz
i, where Qi is the probability of observing i packets

in the system (i. e. waiting in queue or being serviced) at an
arbitrary point in time. Intuitively, this can be explained in
the following way: Suppose that a bulk of size k, where k
is “large”, is being processed. This means that the sender is

transmitting at full speed for, on average, kE[Xk] time slots.
The expected number of arriving packets that arrive during
the processing of the bulk is λkE[Xk]. By definition, in a
balanced queue λ < k/E[Xk], and unless λ is very close to
q, the queue length will have been substantially reduced by
the completion of service of the bulk.

In this section we describe an alternative approach to
determining DRLC .

A. Coding in a field of infinite size

We start by considering the (in some sense) simplified
case where coding takes place in a field F which is very
large: Technically we investigate the case of a finite field
of |F| elements in the limit with |F| → ∞. We denote
this field by F∞. The important condition is that when a
bulk of size k is being transmitted, the probability that the
receiver can recover the information upon successful reception
of k encoded packets is very close to 1: The theoretical
results obtained in this section are close to those obtained by
simulation with coding over F16, for example.

Observe a random bulk being serviced by the random coding
scheme, and let Bk be the probability that the bulk is of length
k, for 1 ≤ k ≤ K.

Lemma 2: The bulk distribution is given by

B1 = P0 + P1 (5)
Bk = Pk for k = 2, . . . ,K − 1, and (6)

BK = 1−
K−1∑
i=1

Bi, (7)

where the Pk are the same as in (2).
Proof: Consider a moment when a new bulk is selected. If

the queue is empty, the sender will wait until a packet arrives;
hence B1 = P0 +P1. If the queue contains i packets, 2 ≤ i <
K packets, the bulk will also consist of these i packets; and
if there are K or more packets, the server will form a bulk of
size K.

Let L = (L1, L2, . . .) be a sequence corresponding to a
specific pattern of packet arrivals at the sender, i.e. an instance
of a source output sequence. Also let C = (C1, C2, . . .) be
another sequence representing a specific success pattern of the
channel, i. e. an instance of a channel success sequence.

Lemma 3: Let L and C be two specific arrival and chan-
nel success patterns, respectively. Apply the two alternative
protocols retransmission and RLC(K,F∞) simultaneously to
separate copies of L and C, and consider a moment just when
the RLC(K,F∞) is ready to inspect the queue to form a new
bulk (either at the very start of time, or because a bulk has
just been successfully delivered.)

At this moment, which for convenience we may call a bulk
selection moment,

1) the retransmission protocol is also ready to select a new
packet for transmission, (either because this is at the
very start of time, or because a packet has just been
successfully delivered,)



2) the set of all packets already delivered by the retransmis-
sion protocol is equivalent to the set of packets already
delivered by RLC(K,F∞), and

3) the set of packets waiting in the queue, and the time that
each packet has spent waiting so far, is independent of
which of the two protocols is used.

Proof: This can be seen by a simple induction argument.
The claims are obviously true at the start of time. Next,
suppose this is true at some bulk selection moment and
that the RLC(K,F∞) selects a bulk of size k. Then, since
both protocols will complete service of the k information
packets precisely when the channel has successfully delivered
k packets, the claim will be true also at the next bulk service
moment.

Note that for time instances that are not bulk selection
moments, claims 1-3 of Lemma 3 in general do not hold.

Theorem 1:

DRLC = WRE +
∑K

k=1Bk · k · (k + 1)
2q

, (8)

Proof: Suppose that at a bulk selection moment, the
RLC(K,F∞) selects a bulk of size k. Because of Lemma 3,
it makes sense to compare the processing of the bulk directly
with the retransmission protocol. We proceed to derive how
much each packet will be delayed when RLC(K,F∞) is used,
compared to the delay when retransmission is used. Assume
that the packets in the bulk are I1, . . . , Ik, where I1 is the first
packet in the queue. Assign a fictious waiting time for each
packet in the bulk, corresponding to the waiting time that the
packet would experience with a retransmission scheme, and
define the modified service time for each packet to be the
total delay minus the fictious waiting time. Then the modified
service time of Ij is (k − (j − 1))E[X1] = (k − j + 1)/q.
Thus, for a bulk of size k, the average delay is

DRLC = WRE +
1
k

∑k
i=1 i

q
= WRE +

k + 1
2q

.

The theorem follows by averaging the second term (i. e., the
service time) over all bulks.

Corollary 1: The delay of random linear coding over an
infinte field is at most a factor of

(λ− q)K(K + 1)
2q(1− λ)

+
λ(1− q)
q(1− λ)

(9)

worse than the delay of retransmission. This factor ap-
proaches 1 as λ→ q.

Proof: From (1) and (8), the factor is

DRLC

DRE
=
WRE +

PK
k=1 Bk·k·(k+1)

2q

WRE + 1
q

.

(9) follows since
∑K

k=1Bk · k · (k + 1) ≤ K(K + 1).

B. Coding over a finite field

A similar approach can be applied in the case of a finite
field. In this case, comparing the delay of the RLC scheme
with that of retransmission does not give an exact expression
for the delay, since the waiting time is affected by the extra
packet retransmissions required due to decoding errors. A
lower bound on the RLC delay can, however, be derived,
by adding the service time of the RLC scheme (which can
be computed from knowledge of the bulk distribution) to
the waiting of the basic retransmission scheme. We omit the
details.

C. Simulation results

We have simulated the queueing models for the protocols
under consideration. The results are shown in the figures in
this section. (We had to make sure that the samples from the
pseudo-random generator appear uncorrelated, as the standard
Java pseudo-random generator failed to meet this criterion.)
Each simulation curve is based on 100 values of λ, and for
each λ the average delay is measured over a time scale of 107

time slots. We do not show simulations for the infinite field
case, as they coincide with the curves derived from (8).

Figure 2 presents results from [1], from Theorem 1, and
from computer simulations, for channel success rate q = 0.5,
while Figure 3 shows similar curves for q = 0.9.
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K= 4, Binary field, Eq. (4)
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Fig. 2. Average delay, in time slots, as a function of arrival rate λ for q = 0.5.
Curves that refer to eq. 4 are calculated by that equation, even though the
curves as such may not appear in [1]. The simulation curves marked “bad
coding” is obtained by using the RLC coding scheme in [1], which allows
transmission of the zero codeword for bulk size larger than one. The simulation
curves marked “good coding” is obtained by using an RLC coding scheme
that does not allow transmission of the zero codeword. The legend is ordered
according to the saturation point of curves from left to right.

Observations:
• 16-ary encoding for K = 4 according to computer

simulations performs very close to RLC(4,F∞) in terms
of delay.

• The estimate of RLC(K,F∞) based on [1] and repeated
here in equation (4) decreases with K, while in fact the
delay increases with K.



K= 4,  Binary field, simulation bad coding
K= 4, Binary field, Eq. (4)
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Fig. 3. Average delay, in time slots, as a function of arrival rate λ for
q = 0.9. For explanation: see the caption of Figure 2.

• [1] underestimates RLC(K,F2), as determined from sim-
ulation.

• Disallowing all-zero linear combinations makes the dif-
ference between “bad coding” and “good coding”, and
can be seen to improve performance significantly for
small K and field sizes.

IV. CONSEQUENCES/IMPLICATIONS

As noted also in [1], random coding for the unicast model
studied here will increase the delay as compared with the
simple retransmission protocol, and random coding over a
finite field and imposing a finite maximum bulk size will
even reduce the channel capacity (as defined by the saturation
point of the queue at the sender.) However, the loss can be
substantially reduced by coding over, say, a field with 16
elements.

The estimate (4) (from [1]) for the delay of the RLC(K,F∞)
suggests that the delay decreases with increasing K. In fact
equation (8) shows that the opposite is true, even though the
saturation point remains the same.

A more realistic queueing model could take into account,
for example,
• the transmission delay and the round trip delay,
• the cost of network resources,
• the effect of a lossy feedback channel,
• variance of delay.

It will be of interest to study a model extended in these
directions. For example, the case of a nonzero round trip delay
splits the concept of delay into two separate issues: sender
delay and receiver delay. For the sender delay, a nonzero round
trip delay can be alleviated (at least in terms of queueing
effects) by proper allocation of buffer space. However, it is
reasonable to believe that a random coding approach may
offer benefits with respect to receiver delay, since coding
may reduce the expected number of round trip delays per
information packet, but coding will also increase the queueing

delay at the sender. Thus it requires further investigation to
optimize the protocol.
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