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Abstract— The optimization of the transmit parameters (pow-
ers and steering vectors) for the MIMO BC under general linear
constraints is treated under the optimal DPC coding strategy and
the simple suboptimal linear zero-forcing beamforming strategy.
In the case of DPC, we show that “SINR duality” and “min-max
duality” yield the same dual MAC problem, and compare two
alternatives for its efficient solution. In the case of zero-forcing
beamforming, we provide a new efficient algorithm based on
the direct optimization of a generalized inverse matrix. In both
cases, the algorithms presented here address the problems in the
most general form and can be applied to special cases previously
considered, such as per-antenna and per-group of antennas power
constraints, “forbidden interference direction” constraints, or any
combination thereof.

I. MODEL AND BACKGROUND

One channel use of the MIMO BC with an M -antenna
transmitter and K single-antenna receivers is defined by

yk = hH
kx + zk, k = 1, . . . ,K (1)

where hk,x ∈ CM are the channel vector of user k and the
transmitted signal vector, respectively, and zk ∼ CN (0, 1) is
AWGN. The relevance of the above model for the downlink of
a wireless system has been widely discussed. Also, the impact
of non-ideal channel state information and practical techniques
for channel estimation and channel state feedback are well-
understood (see for example [1], [2] and references therein).
Here, we assume fixed channel vectors perfectly known to
all terminals and focus on the optimization of the transmitter
parameters.

Let S denote a compact set of M×M covariance matrices.
The capacity region of the MIMO BC (1) subject to the input
constraint E[xxH] = Σx ∈ S is given by the set of rate points
R ∈ RK

+ [3]

C(S; h1, . . . ,hK) = coh
⋃

PK
k=1 vkvH

kqk∈S

⋃
π{

Rπk
≤ log

(
1 +

|hH
πk

vπk
|2qπk

1 +
∑K
j=k+1 |hH

πk
vπj
|2qπj

)
, ∀ k

}
(2)

and it is achieved by Dirty-Paper Coding (DPC) where the
permutation π of the index set {1, . . . ,K} denotes the succes-
sive encoding order and where the transmit covariance is given

by Σx =
∑K
k=1 vkvH

k qk, defined by the unit-norm “steering
vectors” {vk} and by the users transmit powers {qk}.

The transmitter parameters {vk}, {qk}, π, achieving points
on the boundary of C(S; h1, . . . ,hK), can be determined
by solving the Weighted Rate Sum Maximization (WSRM)
problem

maximize
K∑
k=1

wkRk

subject to R ∈ C(S; h1, . . . ,hK) (3)

for some suitable nonnegative weights {wk}. Although a direct
solution of (3) is difficult, for the special case where the
constraint set S is defined by linear inequalities tr (ΣxΦ`) ≤
γ` for ` = 1, . . . , L, where {Φ`} are positive semidefinite
symmetric matrices and {γ`} are non-negative coefficients,
the solution of (3) can be computed efficiently by solving
a sequence of convex problems. Explicit algorithms for this
computation will be presented in Section II.

By the Heine-Borel theorem, the compactness of the set S
implies that S is bounded with respect to the Frobenius norm.
Hence, without loss of generality, we can always include an
additional trace constraint tr(Σx) ≤ P for some sufficiently
large P , without modifying the problem. It should also be
noticed that such set S includes a few particularly important
special cases studied in the literature: for L = 1, γ1 = P
and Φ1 = I we have the classical sum-power constraint; for
L = M and Φ` being all zero but one “1” in the (`, `)-th
position, we have the per-antenna constraint [4]; for L < M
and Φ` having all zeros but a segment of consecutive “1” on
the diagonal we have the per-group of antennas constraint [4];
for some arbitrary L and rank-1 Φ` = c`cH

` we have a general
“interference” constraint where the unit-vector c` denotes a
“forbidden” direction along which the transmit power must be
not larger than γ` [5].

Linear beamforming is a simple precoding strategy that can
be an attractive alternative to DPC. In this case, the achievable
rate region has the same form of (2) but the encoding order π
is irrelevant and the sum in the denominator of the term inside
the log includes all i 6= k. The optimization of the transmit
powers {qk}, however, is actually more difficult than with DPC
since the WSRM problem with linear beamforming has no
general convex programming equivalent. We shall focus on
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linear Zero-Forcing Beamforming (ZFBF) since in the regime
of high SNR it is close to optimal and, as we will see, it lends
itself to an efficient solution. In this case, the WSRM problem
subject to general linear constraints is given by

maximize
K∑
k=1

wk log
(
1 + |hH

kvk|2qk
)

subject to hH
j vk = 0 ∀j 6= k

tr (ΣxΦ`) ≤ γ`, ∀` (4)

We assume K ≤ M and H = [h1, . . . ,hK ] ∈ CM×K

of rank K, otherwise the problem is infeasible. In practical
applications, the number of users may be larger than the
number of antennas and some greedy user selection algorithm
takes care of selecting an “active subset” of size not larger than
M , but we do not consider this aspect here. Again, a direct
solution of (4) is difficult. The problem has been addressed
using convex relaxation and the theory of generalized inverses
in [6], for the case of per-antenna power constraint and equal
weights (maximization of the sum-rate). In Section III we
present a new efficient algorithm that addresses (4) in full
generality.

II. WSRM ALGORITHMS FOR DPC

Without loss of generality, assume w1 ≥ · · · ≥ wK > 0.
Then, it is well-known that the optimal DPC encoding order
is π = {1, . . . ,K}. In [5], using a technique called “SINR
duality”, the following fundamental results are proved. Define
the “dual MAC” corresponding to (1) as the multiple-access
Gaussian channel

y =
K∑
k=1

hkxk + z (5)

where y, z ∈ CM , z ∼ CN (0,Σz(λ)) with Σz(λ) =∑L
`=1 λ`Φ` for some vector of non-negative coefficients λ ≥

0 and each transmitter has power constraint E[|xk|2] ≤ pk,
subject to a total sum-power constraint

K∑
k=1

pk ≤
L∑
`=1

λ`γ` (6)

Then, for any λ ≥ 0, the value of the original MIMO BC
WSRM problem is upperbounded by the value of the new
MAC WSRM problem

maximize
K∑
k=1

wkR̂k

subject to R̂ ∈ CMAC (7)

where CMAC denotes the capacity region of the dual MAC
defined above for given parameters λ, {Φ`} and {γ`}. The
solution of (7) is achieved by successive decoding in the order
K,K − 1, . . . , 1, i.e. the reverse of the DPC encoding order.
Furthermore, the upperbound provided by the dual MAC is
tight: denoting by g(λ) the value of the dual-MAC problem
for given λ, the value of the MIMO BC problem can be

obtained by minimizing g(λ) with respect to λ ≥ 0. Hence,
the MIMO BC WSRM problem can be solved by iterating
between one “outer problem” solving the minimization of
g(λ) and an “inner problem” solving (7) for fixed λ. An
efficient solution of the inner problem is obtained, with minor
modifications, using the Lagrange duality approach of [7], as
done for example in [8]. In the case of single-antenna users,
this problem can be solved in a particularly efficient way by
extensive use of the matrix inversion lemma. We skip these
details because of lack of space.

The outer problem can be solved by a subgradient iteration.
Let λ(n) denote the current value of λ at step n. Then, the
next value is given by λ(n + 1) = λ(n) − εn s(λ(n)),
where s(λ(n)) is a subgradient of g(λ) at λ = λ(n) and
εn = ε0

1+b
n+b is the adaptation step for some suitable ε0, b > 0.

A subgradient for the problem is given by the vector with
components [5] s`(λ) = γ` − tr (Σx(λ)Φ`), where Σx(λ)
denotes the transmit covariance matrix of the MIMO BC
corresponding to the dual MAC at given λ. Intuitively, if the
`-th constraint is violated, i.e., if γ` − tr (Σx(λ)Φ`) < 0,
the corresponding variable λ` must be increased, otherwise,
λ` is decreased. The calculation of the subgradient requires
to map back the solution of the dual MAC (for given λ)
into the corresponding set of powers and steering vectors for
the MIMO BC, which determine Σx(λ). This is obtained by
well-known “MAC-to-BC” transformations, that in the case
of single-antenna users are particularly simple. We skip this
detail here in the interest of brevity.

In [4], the per-antenna power constraint is considered and
a “min-max duality” approach is used in order to obtain a
saddle-point convex-concave optimization problem that can
be solved by an iterative infeasible-start Newton method [9].
Following a similar approach, after some algebra omitted here
for lack of space, we find a min-max dual MAC problem for
the case of general linear constraints in the form:

minλ≥0
maxp≥0

∑K
k=1 wk log |Σ

′
z(λ)+

Pk
j=1 hjh

H
j pj|

|Σ′z(λ)+
Pk−1

j=1 hjhH
j pj|

subject to Σ′z(λ) = I +
∑L
`=1 λ`Φ`,∑

k pk ≤ P +
∑L
`=1 λ`γ` (8)

where P denotes the total sum-power constraint of the MIMO
BC. We already argued that a sum-power constraint corre-
sponding to Φ0 = I and γ0 = P can always be included
without loss of generality. We can also show (proof is omitted
because of lack of space) that the corresponding optimal dual
variable is λ0 = 1. It follows that (7) and (8) are indeed
identical.

The infeasible start Newton method can be used as an
alternative to the (inner) Lagrange duality – (outer) subgradient
method reviewed before. Since this algorithm only briefly
presented in [4] for the case of per-antenna power constraint,
and several computation steps are left to the reader, we give
more details here for the general linear constraint case. First,



we define the modified objective function for (8)

ft(p,λ) =
K∑
k=1

∆k log

∣∣∣∣∣∣I +
L∑
`=1

λ`Φ` +
k∑
j=1

hjhH
j pj

∣∣∣∣∣∣−
−w1 log

∣∣∣∣∣I +
L∑
`=1

λ`Φ`

∣∣∣∣∣
+

1
t

(
K∑
k=1

log pk −
L∑
`=1

log λ`

)
(9)

where t > 0 is a parameter that controls a “logarithmic barrier”
term in order to prevent the iterative algorithm to approach the
boundaries where some elements in p or in λ may become
zero or negative and where we define ∆k = wk −wk+1 with
wK+1 = 0. The logarithmic barrier guarantees that the optimal
value of the problem can be approached with gap K+L

t . Along
the iterations, the value t shall be increased in order to make
this gap as small as desired.

The problem is convex with respect to λ and concave
with respect to p, with Lagrangian function (neglecting the
non-negativity constraints and using the modified objective
function (9)) given by

L(p,λ, µ) = ft(p,λ)− µ

(
K∑
k=1

pk − P −
L∑
`=1

λ`γ`

)
(10)

The necessary and sufficient conditions for optimality are
given by the KKT conditions:

r1 =
∂ft(p,λ)

∂p
− µ1 = 0

r2 =
∂ft(p,λ)

∂λ
+ µγ = 0

r3 = P + γTλ− 1Tp = 0 (11)

The vector r = (rT
1 , r

T
2 , r3)T of dimension K + L + 1 forms

the “residual” of the KKT equations. The algorithm finds a
direction and a step for updating the variables (p,λ, µ) ≥ 0
such that, as the number of iterations grows, the norm of the
residual tends to zero. The updating direction is given by d =
− (∇r)−1 r, where the so-called KKT matrix is given by

∇r =


∂r1
∂pT

∂r1

∂λT −1
∂r2
∂pT

∂r2

∂λT γ

−1T γT 0

 (12)

Letting for simplicity the vector of variables be denoted by
x = (pT,λT, µ)T, the algorithm takes the following form:

1) Fix ν > 1, and δ > 0. Initialize x(0) to some positive
values, let n = 0, and t = 1.

2) Compute the updating direction d(n) at x(n). (see
explicit expressions of the derivatives given later on).

3) Update x(n + 1) = x(n) + sd(n) where s is found by
backtracking line search: initialize s = 1 and find s such
as while

‖r(x(n) + sd(n))‖ > (1− αs) ‖r(x(n))‖

then let s ← βs, where β ∈ (0, 1) and α ∈ (0, 1/2)
are fixed constants. (typical values are α = 0.3 and β =
0.8).

4) If ‖r(x(n+ 1))‖ ≤ δ, move to the next step, otherwise
set n← n+ 1 and go back to step 2.

5) If K+L
t ≤ δ, exit and accept the value of x(n + 1) as

the final value, otherwise set t← νt and n← n+1 and
go back to step 2.

Explicit expressions for the elements of the KKT ma-
trix ∇r can be obtained using matrix calculus (see for
example [10] and references therein). Letting Ak =[
I +

∑L
`=1 λ`Φ` +

∑k
j=1 hjhjpj

]−1

, we find:[
∂r1

∂pT

]
i,j

= −
K∑

k=max{i,j}

∆khH
i AkhjhH

j Akhi −
δi,j
tp2
i[

∂r1

∂λT

]
i,j

= −
K∑
k=i

∆khH
i AkΦjAkhi =

[
∂r2

∂pT

]
j,i[

∂r2

∂λT

]
i,j

= −
K∑
k=1

∆ktr (AkΦjAkΦi)

+w1tr (A0ΦjA0Φi) +
δi,j
tλ2
i

Figs. 1 and 2 show a numerical example for M = 4 anten-
nas, K = 3 users, and unit weights for users wk = 1, with
L = 2 forbidden interference directions. We considered a sum-
power constraint with P = 10 and interference constraints
with γ1 = γ2 = 2.5. The same channel vectors hk and unit-
norm interference direction vectors c` were used in both plots.
Fig. 1 and Fig. 2 show the evolution of the objective function
(sum rate) and of the sum-power and interference constraints
versus the number of iterations n for the subgradient-based
algorithm and infeasible start Newton algorithm, respectively.
Circles in Fig. 1 mark the iterations at which the subgradient
update is performed, i.e. the start of the new inner problem
loop. It is shown that both algorithms converge to the same
optimal values and also satisfy the given sum-power and
interference power constraints. The infeasible start Newton
algorithm converges significantly faster.

III. A NOVEL WSRM ALGORITHM FOR ZFBF

The WSRM problem with ZFBF (4) can be reformulated
in terms of unnormalized transmit matrices (i.e., including the
transmit powers) as

maximize
K∑
k=1

wk log
(
1 + hH

kTkhk
)

subject to hH
j Tkhj = 0 ∀j 6= k

tr

(
K∑
k=1

TkΦ`

)
≤ γ`, ∀`

Tk ≥ 0, rank(Tk) = 1, ∀k (13)

Problem (4) is not convex due to the rank-1 constraint. In
[6] the problem is solved for the equal-weight case and per-



Fig. 1. Rate and power convergence behavior of the subgradient method for
DPC with M = 4 and K = 3 under the sum transmit power and interference
constraints with L = 2 forbidden directions.

Fig. 2. Rate and power convergence behavior of the infeasible start Newton
method for DPC under the same conditions of Fig. 1.

antenna constraint and it is shown that the convex relaxation
problem obtained by removing the rank-1 constraints has
always a rank-1 solution. Following in the footsteps, it is
almost trivial to show that the same holds for the general
case (13). In particular, letting {T?

k} denote a solution of the
relaxed problem with possibly rank(T?

k) > 1 for some k, a
rank-1 solution Tk = tktH

k achieving the same optimal value
can be determined by solving, independently for each user, the
problem:

maximize hH
k tk

subject to hH
k tk ∈ R+

hH
j tk = 0, ∀ j 6= k

tr
(
tktH

kΦ`

)
≤ tr (T?

kΦ`) , ∀ ` (14)

We notice that (14) is, in general, a Second-Order Cone

Program (SOCP) and can be easily solved by standard tools.
In the special case of per-antenna constraints, treated in [6],
(14) reduces to a linear program.

Two main issues arise from the convex relaxation approach.
1) A dramatic dimensionality increase: the relaxed problem
deals with K symmetric matrices of dimension M × M ,
that is, with KM(M − 1)/2 = O(KM2) variables. 2) Lack
of an efficient computational method: in [6], the relaxed
problem for equal weights is cast as a MAXDET for which
efficient solvers exist. For general weights, the problem is
not MAXDET and general-purpose convex optimizers must
be used, with consequent increase of the computation burden.
In the following we address both issues.

The zero-forcing constraints hH
j tk = 0 for all j 6= k imply

that the linear precoding matrix T = [t1, . . . , tK ] must be a
right generalized inverse of the channel matrix HH, i.e., it can
be expressed in the form

T = [g1a1, . . . ,gKak] + U⊥[b1, . . . ,bK ]
= G + U⊥B (15)

where gk is the normalized (to unit-norm) k-th column of
the Moore-Penrose (right) pseudoinverse H(HHH)−1 of HH,
{ak} are scalar coefficients, U⊥ is an orthogonal projector
onto the orthogonal complement of the span of the channel
vectors {hk} and {bk} are (M −K)-dimensional vectors of
coefficients. The direct optimization of the coefficients {ak}
and {bk} can be obtained by iterating two steps: 1) for fixed
steering vectors, optimize the power allocation; 2) for fixed
relative powers on the pseudo-inverse directions, maximize a
common scaling factor by optimizing the steering vectors.

Step 1. Initialize the steering vectors by tk = gk, cor-
responding to ak = 1 and bk = 0, for all k. The ZFBF
power allocation problem for fixed (not necessarily unit-norm)
steering vectors is

maximize
K∑
k=1

wk log(1 + |hH
k tk|2qk)

subject to:
K∑
k=1

qktH
kΦ`tk ≤ γ`, ∀`

q ≥ 0 (16)

Defining the L × K matrix C with (`, k) element [C]`,k =
1
γ`

tH
kΦ`tk, the constraint can be written as Cq ≤ 1. The

Lagrangian for (16) is

L(q,λ) =
K∑
k=1

wk log(1 + |hH
k tk|2qk)− λTCq + λT1 (17)

where λ ≥ 0 is a vector of dual variables. The KKT conditions
for qk yield the waterfilling-like solution

qk(λ) =
[
wk

λTck
− 1
|hH
k tk|2

]
+

(18)

where ck is the k-th column of C. Using this into L(q,λ),
we can solve the dual problem by minimizing L(q(λ),λ) with



respect to λ ≥ 0. It is immediate to check that for any, λ′ ≥ 0,

L(q(λ′),λ′) ≥ L(q(λ),λ′)
= L(q(λ),λ) + (1−Cq(λ))T(λ′ − λ)

(19)

Therefore, s(λ) = (1 − Cq(λ)) is a subgradient for
L(q(λ),λ). It follows that the dual problem can be solved
by a simple L-dimensional subgradient iteration.

Step 2. Let {qk} denote the output of Step 1 for fixed
steering vectors {tk}. It follows that, by construction, ak =√
qkgH

k tk. In this step we fix {ak} as given above and search
for the steering vectors that maximize a common power scaling
factor η. Using (15) we obtain the optimization problem

maximize η

subject to:
η2

γ`
tr
(
TTHΦ`

)
≤ 1 ∀ ` (20)

with solution readily given by

η =
1

max`=1,...,L

√
1
γ`

tr (TTHΦ`)

where B is the solution of

minimize u

subject to:
√

1
γ`

tr (TTHΦ`) ≤ u ∀ ` (21)

where T and B are related by (15). It is recognized that (21)
is a SOCP with respect to the variables u and B and can be
solved by standard efficient tools [11].

The output of Step 2 is a new set of steering vectors in
the form tk = η[gkak + U⊥bk]. These can be used as new
fixed steering vectors for Step 1, and so on. With the proposed
initialization, at the first round of Step 1 we obtain the optimal
solution based on the pseudo-inverse steering vectors, and
after some iterations the algorithms finds a generalized inverse
that improves upon the pseudo-inverse. It is known (see [6])
that the pseudo-inverse ZFBF is optimal under the sum-power
constraint, but it may be very suboptimal under general linear
constraints.

Fig. 3 illustrates the convergence behavior of the proposed
iterative algorithm for ZFBF under general linear constraints.
Channel and constraint parameters are the same as in Figs. 1
and 2. The proposed algorithm for ZFBF satisfies the given
sum-power and interference power constraints as in DPC
cases. The circles indicate the iterations at which the steering
vectors update (step 2) is performed, i.e., when the power
optimization of step 1 begins with the new set of steering
vectors. Since the steering vectors are initialized with the
pseudo-inverse directions, the performance of pseudo-inverse
ZFBF is given at the end of the first round of step 1, i.e.
right on the left of the second circle in the plots (iteration
number 39 in the plot). We notice that the pseudo-inverse
ZFBF is markedly suboptimal in this case, in fact, the transmit
sum power constraint is not met with equality. This means
that if one insists on pseudo-inverse steering vectors the

Fig. 3. Rate and power convergence behavior for ZF-BF under the same
conditions of Fig. 1.

transmitter has to back off its transmit power in order to
meet the interference constraints. Instead, our algorithm finds a
generalized inverse that yields a significant improvement and,
in this case, meets all constraints with equality.
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