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Abstract— Consider transmission over a binary additive white temperature spin glass) and we are able to treat it through
gaussian noise channel using a fixed low-density parity chiec cluster expansions. There exist a host of such expansigns [4
code. We consider the posterior measure over the code bits dn but we wish to stress that the simplest ones do not apply to the

the corresponding correlation between two codebits, aveged ) . . .
over the noise realizations. We show that for low enough noes present situation for at least two reasons. The first, isttieat

variance this average correlation decays exponentially & with ~ €xist arbitrarily large portions of the dual system whice ara
the graph distance between the code bits. One consequencehit  low noise (or low temperature) phase with positive probghil

result is that for low enough noise variance the GEXIT functons  (this is related to the Griffith singularity pnenomenon [G]he
(further averaged over a standard code ensemble) of the bell - geconq, is that the weights of the dual problem are not pesiti
propagation and optimal decoders are the same. so that the method in [3] does not work. It turns out that a
cluster expansion originaly devised by Berretti [5] is vemsl
suited to overcome all these problems.

We consider transmission over a binary additive white Our analysis can also be carried through for a class of
gaussian noise channel (BIAWGN) using low-density parityther channels including the BSC and BEC, but we do
check codes (LDPC) and the optimal MAP decoder. We ar@t give the details here. The case of the BEC is special
interested in the behavior of the correlation between twaecobecause under duality the Gibbs weight remains positive and
bits as a function of their graph distance. In [1] we treatettie communication problem using LDPC codes BRC(e)
this problem, for the regime of high noise, for a special codeansforms to a real communication problem using LDGM
ensemble containing a sufficiently large fraction of degremdes on theBEC(1 — ¢) [7].
one variable nodes. In the present contribution we attaek th In the last section we sktech an application of our main
problemin the low noise regime. result to the MAP-GEXIT function (in other words the first

The behavior of correlations between relevant degrees ddrivative of the input-output entropy with respect to thése
freedom is of central interest in the analysis of Gibbs meparameter). We prove that in the low noise regime where
sures, and various approaches have been developed to tattideaverage correlation decays (fast enough) the MAP-GEXIT
such problems. The Gibbs measures associated with the ofatirction can be exactly computed from the density evolution
mal decoder of LDPC codes confront us with new challengasalysis. These curves remain non-trivial all the way dowvn t
which invalidate the direct use of the standard methods. Frero noise as long as there are degree one variable nodes (e.g
example it is easy to see that the standard Dobrushin typeisson LDPC codes). This proves that a non-trivial replica
methods [2] fail due to the presence of hard constraints. $olution is the exact expression for the input-output gujtro
the high noise regime we were able to convert the problesf a class of LDPC codes (containing a fraction of degree
(at least in the special case of [1]) to a spin glass contginione variable nodes) on the BIAWGN channel. Previously the
a mixture of soft and hard constaints for which appropriateplica expression was only known to be a one-sided bound
cluster expansions can be applied. These expansions hene 8], [9] for general ensembles and channels. The equality ha
applied to the simpler case of low density generator matrbeen obtained previously for some ensembles on the BEC
codes (LDGM) in [3] for the high noise regime, which boilausing duality [10] and the interpolation method [11].
down to a high temperature spin glass.

The low noise regime which is our interest here is a truly _ _
low temperature spin glass problem for which all the above L8t " be a binary codeword of length from a fixed
methods fail. The general idea of our strategy is to apply'-eppc code with bounded, but otherwise arbitrary variable
duality transformation to the LDPC Gibbs measure. It turrd’d check node degrees. In the sequel we Tadk, rmax the
out that the dual problem does not correspond to a well defin@@ximal variable and check degrees. The noise variancesof th
communications problem, and in fact it does not even corrBIAWGN channel ise> andy™ denotes the received message.
spond to a well defined Gibbs measure because the uweigﬁtssumlng without loss of generality that the channel input
takes positive as well as negative values. Neverthelessuhie 1S the all zero codeword, the output can be mapped onto the
problem has the flavor of a high noise LDGM system (or highalf-log-likelihood ratiol; = 3 In By ix (v}

I. INTRODUCTION

Il. DECAY OF CORRELATIONS

)
Py |x (¥i]0) WherepY|X(y|x)
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is the channel's transition matrix. The channel outputs awehere the Fourier (or Hadamard) transform is,

i.i.d with distribution;zg‘gg(ng)) which_ induces a distribution Flr) = Z FloM)eiE Sima (1) (1=0)

c(l) = V#e*(l* )"/2¢7" Mapping the codewords™ e T

to spin configurations™ with o; = (—1)*, the posterior N f

measure becomes (for a uniform prior) to the partition functionZp of an LDPC codeC. The dual

m codeCt is an LDGM with codewords given by™ where

pxnyn (@ =—Hel szH (A+]]en i = [Jue @)
i€c cci
In this expressior{ ], is a product over all the parity checkand v, are them information bits ¢ and ¢ will always
constraints of the code and,.. is a product over variable refer to the variable and check nodes of the original LDPC
nodes attached to the check nad& he partition functioer Tanner graph and € : means that is connected tQ) A
is simply the normalizing factor straigthforward application of the Poisson formula theelds
an extended form of the MacWilliams identity,

ze= ¥ e TT50+10 !

one{—1,41}mi=1 icc Zp = Wez;‘zl Liza (4)

The average of an arbitrary functigifc™) with respect to the
above measure is denoted @§c™)) p where the subscripP N
refers to parity check (later we use various other brackets) Zo = Z H(l 42 Huc)
This is still a random quantity which depends on the channel
output realization. Further averages with respect to thiseno
are denoted byE;. [(f(c™))p]. Of course it does not make This expression formaly looks like the partition functioh o
sense to permute the expectatin and the bracket—)p &0 LDGM code (hence the subscript G) with “channel log-
because of the normalizing factdip in the denominator. likelihoods” g; such thattanhg; = e~". This is truly the

Our main result is on the average correlation between aﬁ?}se for the BEG{ wherel; = 0, +oc and hencg; = +00,0
two codebits defined by ch still correspond to a BEC(— ¢). The logarithm of

partition functions is related to the input-output entrcgoyd

Cp(i,j) = B [[{oioj)p — (0i)p(0j) Pl] one recovers (taking the derivative) the well known duality
relation between EXIT functions of a code and its dual on
the BEC [7]. For other channels however this is at best a
formal (but useful) analogy since the weights can be negativ
or equivalently they; can assume complex values.

We will need a duality formula for the correlations them-
selves. We introduce a brackeét)s which is not a true
probablhstlc expectation (but it is linear)

where

ume{_l +1}m =1 c€l

Theorem 1 (Decay of Correlations): Consider
transmission over a BIAWGN channel with noise variante
using an arbitrary fixed LDPC code. Set= (1maxrmax) />
Let dist(i, j) denote the graph distance between the codebits
i, j. There exist strictly positive purely numerical constafnts
c1, c2 such that for? < e2k~2(Ink)~! and disti, j) > 41max
we have 1 "

Cp(i,j) < Clg—%disﬂ(i,j) 1) (fw™)g = — Z ™) H(l 42 Huc)

ZG ume{—1,+1}m i=1 c€Ei

Remark: By graph distance we mean the smallest possi
number of edges on a path connectingnd j.

In fact we will derive (and use in sectiéd V) a slightly more
general estimate. Suppose that the hitsare transmitted at .
different noise levels; < e. Then

bjf%e denominator may vanish, but it can be shown that when
this happens the numerator also does so, and in a way that
ensures the finiteness of the ratio (this will become quitarcl

in all our subsequent calculations). Taking logarithm [gf (4
and then the derivative with respectitowe find

3+ e astig
Cp(i,j)§01€ 2 2 2kd|st(z,,7) (2) 1 <7'i>G

(oi)p = - = (5)
wherec > 0 is a strictly positive number. In particular if bits _ o tanh 2I; _ sinh 2I;
z; or x; are perfectly received we recovélp (i, j) = 0. and differentiating once more with respectl{o j # i
7756 — (Ti)alTj)a
[Il. DUALITY FORMULAS (0503)p — (03 plo) p = (itj)a — {ri)a(m)) ©)

A general theory of duality for codes on graphs can be found sinh 2{; sinh 21
in [14] and references therein. Here we derive by elementaffe stress that if{5)[16); andr; are given by products of
means formulas that are useful to us. Cebe a binary parity information bits [B). The left hand side dfl(5) is obviously
check code and* its dual. We apply the Poisson summatiofpounded. It is less obvious to see this directly on the right
formula hand side and here we just note that the polé;at 0 is
Z flo™) = Z f harmless since, fal; = 0, the bracket has all its “weight” on
onec TnecL configurations withr; = 1. Similar remarks apply td16). In



any case, we will beat the poles by using the following trickdl' N 0i # ¢ andoI' N dj # ¢, (iii) there is a walk connecting

For any0 < s < 1 and|z| <1 we have|z| < |z|®, thus 0i anddj such that all its variable nodes arelin Finaly,
Cr(i.i) < 2 Ep([{o:0,)p — (o) plo) pl'] Za(x)= 3 I a+e[u)

and using[(b) and Cauchy-Schwarz C€u§(” Bir”{XS t¢> !
Cp(i ) < 2E(sinh 20) =2 ) Using | >, a;* < 3, ]a;]?® for 0 < 2s < 1 and then

Cauchy-Schwarz, we find

X B [[(ri7))e — (m)a () a*1? R
(i,7;9) ZTl )T (X)

The following bound

C _ /5(1723)
2

. (8) Where R R
=2 T1(X)? = B | K5 (X)[*] (10)
on the prefactor turns out to be important in our analysiseHe,
0<s< % andc¢ > 0, ¢ > 0 are purely numerical constants.

E[(sinh 21)7%%] <

Tk = e [(Z250)7) (11)

Bound on 73 (X). Trivially bounding the spins in[{9) byt
From inequalities[{7),L{8) of the previous section we S&ge geduce (in the first inequality we need < 1 and in the

IV. PROOF OFMAIN THEOREM

that it suffices to prove that secondss < 1)

Ca (i ji ) = En[[(imj)e — (Ti)a (1)a|*] Ty(X)2 <Xl 3" @BE e + Ep e 10T
decays. As explained in the introduction, the main tool used : ﬁﬁ?nble
here is a cluster expansion of Berretti [5] (that has the ad- < 4% Z o(4s+ 1|7 — 220552 )
vantage of dealing simultaneously with the Griffith singifla = e

T" compatible

phenomenon and at the same time does not use the positivity with %

of the weights). Here we can only explain the resultinﬁI L ) . o
expansion, adapted to our setting, without giving the fullow letus set = 15 and take=" < (10In2)~" for simplicity.
derivation (a good starting point is [6]). We have The bound becomes

T(X)? <48 Y emwal

1 o Za(XO)\2
TiTi)a —(Ti)a(Tj)a = 5 Y Ki;j(X)|——= I' compatible
(rmlo ~ (mlolrlo = 5 3 K (%5 ompa
where If I is compatible withX we necessarily hav@T'| > |):(| -

|0i| — 07| an since|dT'| < |T'|1max We get|T'| > (| X] —
(X)) 2 Z Z 70— @y (1) (2) H E.  2lmad/lmax Also, the maximum number of variable nodes

w1 () T compatible ker which have an intersection With is |X|rmax- Thus there are
ceX  withX at most2/XIm possible choices foF. These remarks imply
and T (X)? < 9(2+rma | X[, ~ 5oz (1X ] ~21max) / Lmax

Ep = T,El)efm’“ + 7’22)6*2” + 721)722)674” (9) BoundonT,(X). The ratio[I1) is not easily estimated directly
because the weights ii; are not positive. However we can

1 . . . . C
Here u{" and u!” are two independent copies of the inyse the duality transformatiofl (4) to get a new ratio of fiarti
formatlon bits (these are also known as real replicas) afighctions with positive weights,

(2)

7-,5 = [leek ugg ). To explain what areX andT' we keep Lo .

referring to checks and variables in the original LDPC Tanne ZG(XC) _ (exp Z l-) €~ (X)| Zp(X°)

graph language: checks are indexeddognd variables by. Za aliet )l Zp

Given a subsefS of variable or ckeck nodes of the Tanner iNX #¢

graph letdS be the subset of neighboring nodes. The sugpity

over X is carried over clusters of check nodes such that: (|) 1

X is "connected via hyperedges” (this means thiat 0.X for Z H H 5(1 + H 03)

some connected subsat of variable nodesX is connected allist cexe iccand
Dink - b diNX=¢ dinX=¢

if any pair of variable nodes can be joined by a path all of
whose variable nodes lie ifY) and (ii) X contains both the which is the partition function corresponding to the sulpiira
di anddj. T is a set of variable nodes (all distinct). We sayof the full Tanner graph) induced by checks &f¢ and
that ' is compatible withX if: (i) 0T Ui U dj = X, (ii) variable nodess.tdin X = ¢. MoreoverC(X¢) is the dual



of the later codei’(f(c) defined on the subgraph. By standarevhere the variable node is selected uniformly at random
properties of the rank of a matrix, the rank of the parity ¢hedthe result is independent of the node due to symmetry). In
matrix of C(X¢), which is obtained by removing rows (checksjhis formulaE;~ [(0,)] is the MAP soft-bit estimate.

and columns (variables) from the parity check matrixCofs In fact one can verify that the density evolution analysis
smaller than the rank of the parity check matrix@fThus is equivalent to performing statistical mechanical sumsaon
|C(X¢)| > |c| and|C-(X¢)| < |C|. Moreover tree whose leaves are the spins (variable nodes) with free
. boundary conditions (channel outputs as initial cond&jon
(eXP Z li>ZP(XC) <Zp More precisely if we callV,(o) the neighborhood of depith
allis.t of o for d even (that is all the nodes of the Tanner graph that

inX e are at a distance d from o) and consider the LDPC Gibbs

To see this one must recognize that the left hand side is masure<_>Nd(o) restricted to the subgrapN,(o), we can

sum of terms ofZp corresponding tor™ such thato; = +1  verify by explicit calculation that

for 9iN X # ¢ (and all terms are> 0). These remarks imply

for (1) ELDPC’l[tanh(l-f—A(d))] = ELDPCanUo)Nd 0)|Nd(0) is a tre¢

TH(X)* <1 .
Now for d fixed, Nq(o) is a tree with probabilityl — O(2- )

Now we can conclude the proof of theordmh 1. Frorwhere~ depends only on the maximum node degrees o)

the bounds on[{10) and{11) we get fof < (1max(2 +

Trmax)161n2) " Eiorc,in [{00) Ny(0)] = ELDPC,l[taHh(lJrA(d))]+0(%) (13)
1 1
Cal(i,j;s = E) < Ze e (1 X1 =21max) Thus in view of [IP) the theorem will follow if we can show
X that )
A~ _ _57
The clustersX connectdi and dj and thus have sizes Evn[{00) P] = Ein[{00) Ny()] + Oe™> ) (14)

|X| > 1dist(i, j). Moreover the number of clusters of a giver, i, ¢>0andO(e —¢d %) uniform in n and depending only
size grows at most |ikélmaxrmax)| Work|ng out the final on lmax, Tmax- |ndeed if m) ho'ds Comb"'"ng W|tm3) we
bounds, and putting them in a symmetrical form, the net tesglgt

is that for disfi, j) > 41max We can find a purely numerical p

constante, such that fore? < e3k=2(Ink)~! Eiopc.n[(00) p] =Evopc[tanh(l + A@)] + 0(%)
Colinjis = 1 e +0(e5#)

where k = (lmaxrmax)% and ¢; and ¢, a strictly positive and the theorem follows by taking first the limit — +oo
numbers. Using this bound witi](7) and (8) concludes tt@nd thend — +oo.

proof of (@) and[(R). Formula [(I#) follows directly from the next two lemmas.
Let C;(0) denote the circle of variable nodes at distarcéd
from o. Call (— >N (o) the LDPC Gibbs measure associated

In this section we illustrate an application of the theorefg the grathd( ) with o; = +1 "boundary condition” for
to the GEXIT function of standard irregular LDPC ensemblesc ¢, (o). First we will show

with degrees bounded bymax, rmax L€t h, = 1H(X"|Y”)
be the input-output entropy. The MAP-GEXIT function is in Lemma 1 (Cuttmg a piece of the Tanner graph): For ¢? <
general defined as etk (Ink)~!

Evopclhu] Ein[{00)] = Bin [(00) 5, )] + Ole™5%)

) <ce szk

V. EXACTNESS OFDENSITY EVOLUTION

_d_
d(e=2) .,
where¢ > 0 and O(e*5?2) depend only onlmax, rmax IN
Theorem 2 (Exactness of Density Evolution): One can find particular they are independent of

a strictly positive numbet; (in general smaller than theg of )

theorenT1L) such that foP < ¢2k~2(Ink)~! The second step is to show that fersmall enough the
d 1 N soft estimate of the bit ab is independent from boundary

lim ) IELDPC[hn] = 5( lim ELDpc_’l[tanh(l + A(d))] — 1) conditions.

n—oo

Lemma 2 (Independence from Boundary Conditions):

where A@ s the soft bit-estimate given by the densit
9 y Y Under the same conditions than in lempja 1

evolution analysis of the BP decoder.

— + -4
The proof of this theorem rests on the simple formula [12], Eun[(00) Na(o)] = Ein[(0) v, (o)) + Ofe*%)
[13] valid for the BIAWGN channel Proof of Lemma [ We first introduce new interpolating
Ee[hn] Gibbs measures. Label the variable node€’jifo) in some
Clln| =

d 1
d(e=?) Q(ELDPCJ”K%)P] -1 (12) arbitrary orderC,(o) = {1,2,..., N} and assume these bits



are transmitted through a BIAWGN channel with noise vectdor ¢ < ewap, iS non zero fore > eyap While it remains
vN = (v1,...,vny) With 0 < v < € (here z/,f is the noise continuous ateyap (the curve may have a discontinuity at
variance). Set’ = (0,...,0,vj,€,...,¢) for j = 1,...,N. higher noise value.). Although in this case the statement of
The interpolating Gibbs measurés )%, are defined on the theoren{2 may be valid for some rangeecfiboveeyap, our
full Tanner graph with noise vectorg’ for bits in C,;(0) proof only works only belowyap. This can be explicitly seen

and noisee for all other bits. A crucial remark is that for from Lemmd2 and the fa- [(0,) | Na(o) is @ treg¢ = 1

vN =(0,..,0) =0 which imply that our proof only works in a range were the
N0 N GEXIT function vanihes. Our analysis is not powerful enough
Ein[{o0)p 1 = Ein[{00) (o)) (15) to capture any interesting behavior for the GEXIT function f

Proceeding similarly to [3] we apply iteratively the fundam MAP << € < €. _ :
tal theorem of calculus Finally, consider the case of ensembles with some fraction

N of degree one nodes and a GEXIT function tliaes not
B WN =g € d 5 vanish all the way down toe — 0 (with possibly a disconti-
Ein[{o0) p] = Eue [{o0)p 7] + Z/O d’/jd_yj]El"[<°—°>P] nuity at somee,). An example is given by LDPC ensembles
=1 with Poisson degree distribution for variable nodes. Nbt t
For the BIAWGN channel we have the remarkable formulﬁereEangom ( )|Nd(0) is a treé¢ # 1 because the tree still
dlo

[13] contains leaves (at distanee d from o) with free boundary
d 59 59 i Sivg conditions. In this case theordrh 2 really captures a norakriv
mEl"[<UO>P] = Ep [(<UOC’J‘>P —{00)p (05)F) ] behavior of he GEXIT curve for smadl. It extends to other
J channels previous results [10], [11] that had been obtained
Then using[(Ib) we obtaithe sum rule only for the BEC. This also proves that the replica soluti®n i
Ein[(0,)p] = El"“"’omd(o)] indeed correct for channels other than the BEC.
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