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Fig. 1. Slepian-Wolf network with feedback

Abstract— We consider source coding over networks with
unlimited feedback from the sinks to the sources. We first show
examples of networks where the rate region with feedback is
a strict superset of that without feedback. Next, we find an
achievable region for multiterminal lossy source coding with
feedback. Finally, we evaluate this region for the case when one
of the sources is fully known at the decoder and use the result
to show that this region is a strict superset of the best known
achievable region for the problem without feedback.

I. INTRODUCTION

The networks studied in the source coding literature are
typically directed, acyclic graphs. Just as it is well known
that feedback cannot increase the capacity of the canonical
point-to-point channel [1], it is also evident that feedback
cannot increase the rate region of the canonical point-to-point
lossless and lossy source coding problems. We here examine
the role of feedback in network source coding, demonstrat-
ing that feedback can increase the rate region for network
source coding in some networks where the rate region is well
understood and that feedback can increase the known set of
achievable rates in one example network where the rate region
remains unsolved. While we here focus on examples where
feedback increases the achievable rate region, it is important
to note that feedback does not increase the rate region for all
networks or even all network topologies where feedback has
the potential to increase the channel capacity. For example,
in the Slepian-Wolf system[2] shown in Fig 1, the presence
of feedback from receiver node 3 to source nodes 1 and 2
does not increase the min-cut and therefore does not enable
operation at lower rates on the forward links. In contrast, it is
well known that feedback can increase the capacity region of
the multiple access channel [3].

Following the typical approach from channel coding, we
here assume unbounded capacity on the feedback links and
then consider the rate region for the forward links only.
While this approach is chosen for its simplicity, the resulting
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insights may be directly applicable in networks where the
cost of operating the feedback link is negligible compared
to the cost of the forward links. For example, in sensor
networks, where the central receiver node usually has much
more power available than the remote sensors, the cost of
sending information from the central processor back to the
sensors may be far less than the cost of forward links. If
transmitting information from the central processor to the
sensors decreases the rate required on the forward links, then
an overall system benefit might be realized.

This paper considers the problem of characterizing the set of
achievable rates for source coding networks in the presence of
unlimited feedback. In Section III, we show through several
examples that feedback can enable operation at rate points
that are not achievable otherwise. Examples 1 and 3 illustrate
that codes that make available to the transmitter all the
information that is known at the receiver require less rate
form the transmitter. Example 2 demonstrates that even with
independent sources in a multi-source, multi-sink network,
feedback from the sinks to the sources increases the minimum-
cut between sources and their sinks and results in an increased
capacity region.

In Section IV, we examine a multiterminal lossy source
coding problem with two encoders. While the rate region
without feedback remains unsolved, we show that feedback
enables lower rates than the best achievable rates known to
date. The result of Example 3 is a special case of this network
that demonstrates the tightness of our bound at the extreme
points, showing that feedback strictly enlarges the rate region
for this network.

We begin by describing our setup and introducing necessary
notation in Section II.

II. PRELIMINARIES

Let V be the set of nodes and let S = {1, 2, . . . , s} ⊆ V
be the set of source nodes. Source nodes are connected to
the set of receiver nodes T forming an acyclic network with
directed, lossless edges E. In addition, each receiver node is
connected to each source node via a directed, lossless edge
from a set F . The sets E and F are called the set of forward
links and the set of feedback links, respectively. For a node
v ∈ V , the sets Γi(v) and Γo(v) denote the incoming and
outgoing forward inks, respectively. Similarly, Γi(V ′) (resp.
Γo(V ′)) denotes the set of incoming (resp. outgoing) forward
links for a set of nodes V ′ ⊆ V .
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Let X1, X2, . . . , Xs be discrete random variables distributed
according to a joint probability distribution PX1...Xs(·) on a
finite alphabet

∏s
j=1 Xj . For S′ ⊆ S, we denote the collection

of random variables (Xj : j ∈ S′) by XS′ . Each source
node j ∈ S observes the random process {Xj(i)}∞i=1, where,
the random process {XS(i)}∞i=1 is drawn i.i.d from the joint
distribution PXS

(·). For an integer n ≥ 1 and a subset
S′ ⊆ S, XS′ [n] denotes the collection of random variables
{XS′(i)}n

i=1.
Each receiver node t ∈ T demands a reconstruction

(X̂(t)
1 , X̂

(t)
2 , . . . , X̂

(t)
s ) ∈

∏s
j=1 X̂j of XS . For lossless

source coding, the demand must be met with asymptoti-
cally negligible error probability. For lossy coding, the de-
mand must be met subject to distortion criteria of the form
{Edj(Xj , X̂

(t)
j ) ≤ Dj} at each t ∈ T for some finite-valued

distortion measures dj : Xj × X̂j → R+, and distortion
thresholds Dj , j ∈ S. When the network has only one
sink t, we denote the reconstruction (X̂(t)

1 , X̂
(t)
2 , . . . , X̂

(t)
s ) by

(X̂1, X̂2, . . . , X̂s).
For any collection of rates (Re : e ∈ E) with Re ≥ 0 for all

e ∈ E, a ((2nRe)e∈E , n, L) network code (fn
{1,2,...,L}×E , gn

T )
defines a transmission strategy over L sessions with encoders

fn
l,vv′ : Xn

v ×
∏

1≤r<l
e∈Γi(T∪{v})

{1, . . . , 2nR(r)
e } ×

∏
e∈Γi(v)

{1, . . . , 2nR(l)
e } → {1, . . . , 2nR

(l)
vv′}

∀v ∈ S, (v, v′) ∈ E, l = 1, 2, . . . , L

fn
l,vv′ :

∏
1≤r≤l

e∈Γi(v)

{1, . . . , 2nR(r)
e } → {1, . . . , 2nR

(l)
vv′}

∀v 6∈ S, (v, v′) ∈ E, l = 1, 2, . . . , L

such that for each e ∈ E,
L∑

l=1

R(l)
e = Re,

and decoders

gn
t :

∏
1≤r≤L
e∈Γi(t)

{1, . . . , 2nR(r)
e } →

s∏
j=1

X̂j ∀t ∈ T.

We say that a rate vector RE = (Re : e ∈ E) is losslessly
achievable with feedback if for any ε > 0, there exists a
((2nRe)e∈E , n, L) code for some n, L ≥ 1 such that

Pr(X̂(t)
S [n] 6= XS [n]) < ε (1)

for all t ∈ T . For lossy coding, we say that the rate vector
RE achieves distortion constraints (D1, D2) with feedback if
for any ε > 0, there exists a ((2nRe)e∈E , n, L) code for some
n, L ≥ 1 such that

1
n

Edj(Xj [n], X̂(t)
j [n]) ≤ Dj (2)

for all j ∈ S, t ∈ T . The closure of the set of all achievable
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Fig. 2. Lossless source coding problem with coded side information and
feedback

rate vectors with feedback is denoted by R∗
fb.

Codes without feedback differ from codes with feedback
in two ways. First, only a single session is required (L =
1). Second, the encoders at nodes j ∈ S rely only on their
respective sources and incoming codewords giving encoders
of the form

fn
vv′ : Xn

v ×
∏

e∈Γi(v)

{1, . . . , 2nRe} → {1, . . . , 2nRvv′}

∀v ∈ S, (v, v′) ∈ E

fn
vv′ :

∏
e∈Γi(v)

{1, . . . , 2nRe} → {1, . . . , 2nRvv′}

∀v 6∈ S, (v, v′) ∈ E

and decoders

gn
t :

∏
e∈Γi(t)

{1, . . . , 2nRe} →
s∏

j=1

X̂j ∀t ∈ T.

The closure of the set of all achievable rate vectors without
feedback is denoted by R∗.

III. NETWORKS WHERE FEEDBACK HELPS

In this section, we give three examples of networks where
R∗

fb ) R∗. The first two examples demonstrate that feedback
can expand the rate region even for lossless coding. This is
in contrast to the point-to-point case, where feedback cannot
increase the rate region. The first example is the coded
side information network, which has been studied previously
without feedback in [4] and with partially separated encoders
in [5].

Example 1 (Source coding with coded side information):
Consider the network shown in Fig 2. The encoders 1 and
2 observe sources X1 and X2 respectively, and the decoder
at node 3 wishes to reconstruct X with arbitrarily small
probability of error. Without feedback [4], the rate region,
R∗ is the collection of all rate pairs RE = (R13, R23) that
satisfy the following inequalities for some random variable U
forming a Markov chain U → X2 → X1:

R13 ≥ H(X1|U) (3)
R23 ≥ I(X2;U). (4)

For some rate points on the boundary of this region, the
sum rate R13 + R23 can be strictly greater than H(X1) [6].
Feedback increases the rate region as follows:

Claim: For the network N shown in Fig 2, a rate pair
RE = (R13, R23) is achievable if and only if

R13 ≥ H(X1|X2) (5)
R13 + R23 ≥ H(X1). (6)
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Fig. 3. Multicast with feedback

Proof: The necessity of (5) and (6) follows from simple
cutset arguments. The achievability of these rates can be shown
using a transmission strategy over two sessions that relies on
the partially separated encoding scheme of Kaspi and Berger
[5]. We present a simpler proof of achievability of these rates
by using a two-step Slepian-Wolf code. Let RE = (R13, R23)
satisfy (5) and (6). Given a block length n, let (fn

1 , fn
2 , gn)

be an n-length Slepian-Wolf code [2] at rate (R13, R23) for
a network in which both encoders observe the source X1 and
independently describe X1 to a shared decoder. Let (f̃n

1 , g̃n)
be a rate R13 Slepian-Wolf code [2] for describing X1 to a
decoder that knows X2. We design f̃n

1 by randomly binning
X1. We here set fn

1 (X1[n]) = f̃n
1 (X1[n]) for all X1[n] and

design f2(X1[n]) independently, again by random binning.
Consider the following coding strategy for the network N .

• Node 1 transmits f̃n
1 (X1[n]) to node 3 at a rate R13. This

description is then made available to node 2 via feedback.
• Node 2 performs a Slepian-Wolf decoding to create a

reconstruction X̂1[n] = g̃n(f̃n
1 (X1[n]), X2[n]) of X1[n],

and transmits the codeword fn
2 (X̂1[n]) to node 3 using

rate R23.
Using the above strategy, a decoding error occurs if
either node 2 is unable to reconstruct X1[n] using
(f̃n

1 (X1[n]), X2[n]), or node 3 is unable to decode X1[n]
using (fn

1 (X1[n]), fn
2 (X̂1[n])). Since RE satisfies (5) and (6),

following the arguments of [2], by choosing a large enough
n, the probabilities for both these error events can be made
arbitrarily small. Hence, the overall error probability can be
designed to be as low as desired.
Next, we consider networks with multicast demands, which
have been studied in the context of network coding in [7], [8],
[9]. Once again, we demonstrate that feedback enables rates
which are not achievable otherwise.

Example 2 (Networks with multicast demands): Consider
the network shown in Fig 3(a). Nodes in T ⊆ V demand
each of the sources X1, X2, . . . , Xs losslessly. We show
that feedback expands the rate region to include all rates
RE = (Re : e ∈ E) satisfying:∑

e∈Γo(C)

Re ≥ H(XC∩S |XS\C) (7)

for each cut C ⊆ V such that either S ⊆ C or C ∩ T = φ.
Claim: For the network N shown in Figure 3(a), R∗

fb )
R∗.

Proof: The rate region with feedback is found by
evaluating the characterization given in previous results on
cyclic network [7], [8]. Since sources are connected to the
sinks via the feedback links, the max flow calculation from a
given source to a sink is modified by adding acyclic paths
containing feedback links to other sources. The converse
follows immediately by noting that (7) can be viewed as a
collection of cut-set bounds on the cyclic network.

To verify the achievability of the above rates, note that in
order to meet all the demands, it is sufficient that for any set
S′ ⊆ S of source nodes, there exists a subset TS′ ⊆ T of
sink nodes for which the min-cut (without feedback) exceeds
H(XS′ |XS) and by using feedback from TS′ to S \ S′, the
min-cut requirement from S′ nodes in T \TS′ is also satisfied.
This condition is satisfied for all rates satisfying (7).

Finally, the butterfly network shown in Fig 3(b) shows that
the rate region with feedback may be strictly bigger than that
without feedback. The rate vector RE = (Re : e ∈ E), where
R15 = R26 = H(X1, X2), Re = 0 ∀ e /∈ {(1, 5), (2, 6)},
satisfies (7) but is not achievable without the feedback links.
With feedback, it may be achieved by transmitting both X1

and X2 over the links (1, 5) and (2, 6).
The next example is a lossy source coding problem where

feedback can increase the rate region [10]. We use this result
in order to prove Theorem 2.

Example 3 (Rate-Distortion coding with Side Information):
Consider the network shown in Fig 4(a) The decoder at node
3 demands a lossy reconstruction X̂1 of X1 subject to a
distortion criterion Ed(X1, X̂1) ≤ D. Without feedback,
the minimum rate achievable is described by the Wyner-Ziv
region [10]:

R12 = min
(U,g):Ed(X1,g(U,X2))≤D

U→X1→X2

I(X1;U |X2). (8)

When feedback is present in the network, both the encoder
and the decoder have knowledge of X2. In this case, the
minimum achievable rate is given by the conditional rate-
distortion function RX1|X2(D), given by [10]:

RX1|X2(D) = min
U :Ed(X1,U)≤D

I(X1;U |X2). (9)

For some choices of sources X1 and X2 and distortion
measure d, the expression in Eq (8) is strictly greater than
RX1|X2(D) [10]. Thus, feedback increases the rate region for
this network.

IV. ACHIEVABLE RATES FOR MULTITERMINAL LOSSY
SOURCE CODING WITH FEEDBACK

In this section, we examine the network shown in Fig. 4(b).
Sources X1 and X2 are sources present at nodes 1 and 2
respectively. The receiver (node 3) wishes to reconstruct both
sources subject to the fidelity criteria:

Ed1(X1, X̂1) ≤ D1

and Ed2(X2, X̂2) ≤ D2

where, d1 and d2 are finite valued distortion measures, and D1

and D2 are the respective distortion thresholds. We derive an
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Fig. 4. Lossy source coding with feedback

achievable region Rin,fb with feedback, and show that Rin,fb

is a strict superset of Rin, the best known achievable region
without feedback. This is proved by evaluating both Rin,fb

and Rin for the network considered in example 3, which is a
special case. .

Let D(D1, D2) denote the set of pairs of random variables
(U, V ) ∈ U×V for which there exist functions α : U×V → X̂1

and β : U× V → X̂2 such that. Ed1(X1, α(U, V )) ≤ D1 and
Ed2(X2, β(U, V )) ≤ D2. Define the set R1 to be the set of
all rate pairs (R13, R23) that satisfy the conditions

R13 > I(X1;U |V ), (10)
and R23 > I(X2;V ), (11)

for some pair of random variables (U, V ) ∈ D(D1, D2) for
which X1 → X2 → V and U → (X1, V ) → X2 form Markov
chains. In a symmetric fashion, define the set R2 to be the set
of all rate pairs (R13, R23) that satisfy the conditions

R13 > I(X1;U), (12)
and R23 > I(X2;V |U), (13)

for some pair of random variables (U, V ) ∈ D(D1, D2) for
which X2 → X1 → U and V → (X2, U) → X1 form
Markov chains. Both R1 and R2 are non-empty since choosing
(U, V ) = (X1, X2) satisfies all the Markov chain conditions.
Finally, let Rin,fb be the convex hull of R1 ∪ R2, and again,
let R∗

fb denote the set of achievable rates with feedback for
the network shown in Fig 4(b). The following theorem proves
the achievability of Rin,fb.

Theorem 1: R∗
fb ⊇ Rin,fb.

The proof of this result relies on the notion of strong
joint typicality [11], which is reviewed here briefly. Let
Nabcd(x1[n], x2[n], u[n], v[n]) denote the number of oc-
currences of the quadruplet (a, b, c, d) in the sequence
(x1[n], x2[n], u[n], v[n]). Define the strongly typical set:

A∗(n)
ε (X1, X2, U, V ) , {(x1[n], x2[n], u[n], v[n]) :∣∣∣∣ 1

n
Nabcd(x1[n], x2[n], u[n], v[n])− p(a, b, c, d)

∣∣∣∣ <

ε

|X1||X2||U||V|
∀ (a, b, c, d) ∈ X1 × X2 × U× V}.(14)

Similarly, for each subset W of {X1, X2, U, V }, define
A
∗(n)
ε (W ) to be the typical sets corresponding to n-length

sequences drawn from the distribution of W . The above
definition implies that if a collection of sequences is jointly
typical with respect to their joint distribution, then any
subset of the collection is also jointly typical with re-
spect to the joint distribution of that subset; for exam-

ple, if (x1[n], x2[n], u[n], v[n]) ∈ A
∗(n)
ε (X1, X2, U, V ), then

(x1[n], x2[n], u[n]) ∈ A
∗(n)
ε (X1, X2, U). Therefore, whenever

the set of underlying random variables is clear from the con-
text, we denote the corresponding typical set by the simplified
notation A

∗(n)
ε . Another useful property of this notion of

typicality is that it implies distortion typicality; namely, if
(U, V ) ∈ D(D1, D2) and (x1[n], u[n], v[n]) ∈ A

∗(n)
ε , then

1
n

∑n
i=1 d1(x1(i), α(u(i), v(i))) < D1 + dmax · ε.
Proof of Theorem 1: By the symmetry in the definition

of Rin,fb and the convexity of R∗
fb, it suffices to show that

R1 ⊆ R∗
fb. Let RE = (R13, R23) ∈ R1. By definition, there

exists a pair (U, V ) ∈ D(D1, D2) for which X1 → X2 →
V and U → (X1, V ) → X2 form Markov chains and the
inequalities (10) and (11) are satisfied.

Fix an integer n and an ε > 0. Choose R′
13 such that

I(X1, V ;U) < R′
13 < R13 + I(U ;V ). The reason for this

choice will become clear later. To show that the rate pair
(R13, R23) is achievable, consider the following encoding
and decoding strategy over a block of length n. Codebook
generation: For encoder 1, first generate 2nR′

13 sequences
U1[n], U2[n], . . . , U

2nR′
13

[n] drawn i.i.d. from the distribution

Πn
i=1PU (ui). Uniformly bin these 2nR′

13 sequences into 2nR13

bins. We use Bn(j) to describe the index of the bin into which
Uj [n] falls. For the second encoder, generate 2nR23 sequences
V1[n], V2[n], . . . , V

2nR′
13

[n] drawn i.i.d. from the distribution
Πn

i=1PV (ui). These codebooks are assumed known to both
encoders and the decoder.

Encoding: Let fn
2 (X2[n]) = k if (X2[n], Vk[n]) ∈

A
∗(n)
ε . Otherwise, let fn

1 (X2[n]) = 1. Transmit fn
2 (X2[n])

to node 3, and also to node 1 via the feedback link. Let
fn
1 (Vk[n], X1[n]) = Bn(j) if (X1[n], Vk[n], Uj [n]) ∈ A

∗(n)
ε .

Otherwise, let fn
1 (Vk[n], X1[n]) = 1.

Decoding: The decoder first decodes fn
2 (X2[n]) to

the sequence V̂ [n] = Vfn
1 (X2[n]) [n]. Next, it looks

for a sequence Û [n] in the bin fn
1 (V̂ [n], X1[n]) s.t.

(Û [n], V̂ [n]) ∈ A
∗(n)
ε . Finally, it produces the reconstructions

X̂1[n] = α(Û(1), V̂ (1)), . . . , α(Û(n)V̂ (n)) and X̂2[n] =
β(Û(1), V̂ (1)), . . . , β(Û(n), V̂ (n)). Since ε can be made ar-
bitrarily small, it is clear that the above coding scheme can
encode at rates as close to RE = (R13, R23) as desired.
Further, since d1 and d2 are finite distortion measures, in
order to show that the expected distortion of this code
can be made arbitrarily close to (D1, D2), it suffices to
show that Pr( 1

nd1(X1[n], α(Û [n], V̂ [n])) > D1 + δ) and
Pr( 1

nd2(X2[n], β(Û [n], V̂ [n])) > D2 + δ) can be made
arbitrarily small for each δ > 0. Thus, it is enough to prove
that Pr({(X1[n], X2[n], Û [n], V̂ [n]) /∈ A

∗(n)
ε } can be made

arbitrarily small for each ε > 0. Note that

{(X1[n], X2[n], Û [n], V̂ [n]) /∈ A∗(n)
ε } ⊆ E1 ∪ E2 ∪ E3 ∪ E4,

where, the events E1, E2, E3, and E4 are defined as follows:

• E1 = {(X1[n], X2[n]) /∈ A
∗(n)
ε }. By the Weak Law of

Large Numbers, the probability of this event can be made
arbitrarily small by choosing n large enough.

• E2 = Ec
1 ∩ {(X1[n], X2[n], V̂ [n] /∈ A

∗(n)
ε }. By noting
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that X1 → X2 → V is a Markov chain, and using the
Markov lemma [12], the probability of this event can be
made to asymptotically vanish with n as long as R23 >
I(X2;V ) (see the proof of the rate distortion theorem
in [11], [13] for further details on this argument).

• E3 = (E1 ∪ E2)c ∩ {(X1[n], X2[n], V̂ [n], Uj [n]) /∈
A
∗(n)
ε ∀ j = 1, 2, . . . , 2nR′

13}. By following a similar
reasoning as above, as long as R′

13 > I(X1, V ;U), the
probability of this event can be made arbitrarily small.

• E4 = (E1 ∪ E2 ∪ E3)c ∩ {(u[n], V̂ [n]) ∈
A
∗(n)
ε for some u[n] 6= Ufn

1 ( bV [n],X1[n]) [n] s.t. u[n] is in
the bin Bn(fn

1 (V̂ [n], X1[n]))}. The probability of this
event can be made arbitrarily small too by choosing a
large enough n, the number of elements in each bin is
less than 2nI(U ;V ) with probability approaching 1 as n
grows without bound.

Thus, for any rate RE = (R13, R23) ∈ R1, there exists a se-
quence of valid ((2nR13 , 2nR23), n, 2) codes for this network.
By a similar reasoning, R2 is achievable. By the convexity of
R∗

fb, Rin,fb is achievable. Hence, Rin,fb ⊆ R∗
fb.

Let R∗ denote the set of achievable rate pairs for the
network in Fig 4(b) without the feedback links. Example 3
demonstrates that R∗ ( R∗

fb. It should be pointed out that a
single letter characterization of R∗ is not known. Berger and
Tung proposed an inner bound [12], [14] Rin ⊆ R∗, which
was shown to be optimal for Gaussian sources [15]. For other
classes of sources, the question of tightness of this bound is
still open. The inner bound is defined as follows:

Definition 1 (Berger-Tung inner bound): [12], [14] The
Berger-Tung inner bound Rin is defined to be the set of all
rate pairs (R13, R23) that satisfy the conditions

R13 > I(X1;U |V ), (15)
R23 > I(X2;V |U), (16)

and R13 + R23 > I(X1, X2;U, V ), (17)

for some random variables U and V taking values in alphabets
U and V respectively, and satisfying the following properties:

1) U → X1 → X2 → V forms a Markov chain, and
2) (U, V ) ∈ D(D1, D2).

Our next result relates Rin,fb to the Berger-Tung inner bound.

Theorem 2: For every source pair (X1, X2), Rin,fb ⊇ Rin.
Further, there exists a source pair such that Rin,fb ) Rin.

Proof: In order to prove that Rin,fb ⊇ Rin, first note that
Rin can be viewed as the convex hull of R1,nf ∪ R2,nf, where
R1,nf (and in a similar manner, R2,nf) is defined as the set of
all rate pairs RE = (R13, R23) ∈ Rin satisfying

R13 ≥ I(X1;U), (18)
R23 ≥ I(X2;V |U) (19)

for some pair (U, V ) of random variables that satisfy con-
ditions 1) and 2) of Definition 1. To prove that Rin =

conv(R1,nf∪R2,nf), note that for each RE ∈ Rin and λ ∈ [0, 1],

R13 + R23 > (1− λ)(I(X1;U) + I(X2;U |X1)
+I(X2;V |U) + I(X1;V |X2, U))

+λ(I(X1;V |X2) + I(X2;V )
+I(X2;U |V,X1) + I(X1;U |V )).

It follows that RE can be written as a convex combination
of points from R1,nf and R2,nf . Therefore, it is sufficient
to prove that R1,nf ⊆ R1. This is easy to see because the
Markov condition U → X1 → X2 → V that is satisfied by
every element in R1,nf implies the Markov conditions U →
X1 → X2 and X1 → (X2, U) → V . Hence, R1,nf ⊆ R1, and
therefore, Rin ⊆ Rin,fb.

Finally, observe that for rates that allow X2 to be known
losslessly at the decoder, the network reduces to a single
encoder source coding problem with side information at the
decoder. As discussed in Example 3, the addition of feedback
can lower the rate required by a non-zero quantity. Hence,
Rin,fb ) Rin for some choices of sources and distortion
measures.
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