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On Optimal Secure Message Transmission by
Public Discussion

Hongsong Shi, Shaoquan Jiang, Reihaneh Safavi-Naini, Mohammed Ashraful Tuhin

Abstract—In a secure message transmission (SMT) scenario a
sender wants to send a message in a private and reliable way toa
receiver. Sender and receiver are connected byn vertex disjoint
paths, referred to as wires, t of which can be controlled by
an adaptive adversary with unlimited computational resources.
In Eurocrypt 2008, Garay and Ostrovsky considered an SMT
scenario where sender and receiver have access to a public discus-
sion channel and showed that secure and reliable communication
is possible whenn ≥ t + 1. In this paper we will show that
a secure protocol requires at least 3 rounds of communication
and 2 rounds invocation of the public channel and hence give
a complete answer to the open question raised by Garay and
Ostrovsky. We also describe a round optimal protocol that has
constant transmission rate over the public channel.

Index Terms—SMT, public discussion, round complexity, MPC.

I. I NTRODUCTION

DOlev, Dwork, Waarts and Yung [5] introducedSecure
Message Transmission(SMT) systems to address the

problem of delivering a message from senderS to receiver
R in a network guaranteeingreliability and privacy. S is
connected toR by n node disjoint paths, referred to aswires,
t controlled by the adversary with unlimited computational
power.

A perfectlysecure message transmissionor PSMT for short,
guarantees thatR always receive the sent message and the
adversary does not learn anything about it. It was shown that
PSMT is possible if and only ifn ≥ 2t + 1. See [5], [17],
[18], [2], [8], [13] for more references. Franklin and Wright
[9] relaxed the security requirement of SMT protocols and
proposedprobabilisticsecurity in which two parametersε and
δ upper bound the advantage of the adversary in breaking
privacy, and the probability thatR fails to recover the sent
message, respectively. In a PSMT protocolε = δ = 0. In this
paper we refer to these protocols asalmost SMTprotocols.
We refer interested readers to [7], [12], [1], [15].

Franklin and Wright [9] also considered a model where an
additional reliable broadcast channel is available toS andR.
A broadcast channel guarantees thatall nodes of the network
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receive the same message. We refer to this model asBroadcast
Model (BM). They showed that PSMT in this model requires
n ≥ 2t + 1, but probabilistic security can be obtained with
n > t and gave a 3-round(0, δ) protocol in this model.

Garay and Ostrovsky [11] replaced the broadcast channel
with an authentic and reliablepublic channelthat connectsS
andR. A public channel is totally susceptible to eavesdropping
but is immune to tampering. We refer to this communication
model asPublic Discussion Model(PDM). Garay and Ostro-
vsky [11] gave a 4 round protocol with probabilistic security
whenn > t, which shows that the connectivity requirement
for PDM is the same as the broadcast model.

Efficiency parameters of SMT protocols are, (i) the number
of roundswhere each round is one message flow betweenS
andR, or vice versa, and (ii) the communication efficiency
measured in terms oftransmission ratewhich is the total
number of bits sent over all wires for a message divided by
the length of the secret.

Round complexity in PDM is measured by a pair(r, r′)
wherer is the total number of rounds andr′ is the number of
rounds that the public channel is invoked (r ≥ r′).

Related models:Pubic channel has been used in other
contexts including unconditionally secure key agreement [14]
where the public channel is used for the advantage distil-
lation, information reconciliation and privacy amplification.
The public channel in this case is a free resource and its
communication cost is not considered. In PDM however, the
cost of realizing a channel in a distributed system is taken into
account.

A. Our Results

Garay et al. [11] proposed a(4, 3)-round protocol and
subsequently improved its round complexity to(3, 2)-round
[10]. However it was not known if this round complexity was
optimal.

The main result of this paper is to prove that the minimum
values ofr and r′ for which an (r, r′)-round (ǫ, δ) protocol
can exist are 3 and 2, respectively. This answers the question
of round optimality of almost SMT protocols in PDM that was
raised in [11].

Our results on round optimality are obtained in three steps.
We first prove that there is no(2, 2)-round (ε, δ) protocol in
PDM with ε+δ < 1−1/|M| whenn ≤ 2t, whereM denotes
the message space. This means that message transmission
protocols in PDM with(2, 2)-round complexity will be either
unreliable, or insecure.

In the second step we will show that when the invocation of
the public channel does not depend on the protocol execution
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TABLE I
MAIN RESULTS ON LOWER BOUNDS OF CONNECTIVITY AND ROUND OFSMT PROTOCOLS INPDM

Type Resiliency Round Construction Transmission Rate
(ε, δ)

ε+ δ < 1− 1

|M|
n ≤ 2t (2,2)

Impossible
(Theorem 2)

(ε, δ)∗

ε+ δ < 1− 1

|M|

andδ < 1

2
(1 − 1

|M|
)

n ≤ 2t (r, 1), r ≥ 3
Impossible

(Theorem 3)

(ε, δ)-PD-adaptive∗∗

3ε+ 2δ < 1− 3

|M|
n ≤ 2t (3, 1)

Impossible
(Theorem 4)

(0, δ) n > t (3, 2)

√

[9], [10], (Theorem 5)

[9], [10]: O(n) on wires and public channel
ours: O(n) on wires andO(1) on public channel

when the length of message isΩ((n log δ)2)

∗ the invoker of public channel is fixed initially in the protocol
∗∗ the invoker of public channel is not fixed initially but adaptive to real execution of the protocol

and is statically determined as part of protocol description,
there is no(r ≥ 3, 1)-round (ε, δ) protocol with ε + δ <
1− 1/|M| andδ < 1

2 (1− 1/|M|) whenn ≤ 2t.
Then we generalize this result to the case that the invoker of

the public channel is not fixed at the start of the protocol andis
adaptively determined in each execution, and show that there
is no (3, 1)-round(ε, δ) protocol with3ε+ 2δ < 1− 3/|M|.

We also construct a round optimal protocol that has constant
transmission rate over the public channel when the length of
message (i.e.,log |M|) is Ω((n log δ)2) bits long.

Table I summarizes our results and puts them in relation to
others’ works.

B. Discussion

One of the main motivations for studying SMT is to reduce
connectivity requirement in secure multiparty protocols [3],
[4], [16]. Secure multiparty protocols require a secure and
reliable channel between every two nodes and so require the
network graph to becomplete. Using an SMT protocol one
can simulate secure connection between any two nodes using
a network with sufficient connectivity, that isn disjoint paths
(and not direct link) between any two nodes wheren > 2t.
Secure message transmission in PDM can further reduce
connectivity(n > t) as long as there is an authentic public
channel. This is the lowest possible connectivity and shows
that two nodes can securely communicate as long as there
is one uncorrupted path between them (and a public channel).
Realizing a public channel in an point-to-point sparse network
however is costly. For example it is possible to simulate such
a channel usingalmost-everywhere broadcast protocol[11]
that usesalmost-everywhere Byzantine agreement protocol[6].
It is shown [19] that in degree-bounded networks agreement
on a single bit using almost-everywhere agreement protocol
requires at leastO(logN) rounds communication, whereN
is the number of nodes in the network.

The high cost of simulating the public channel is the moti-
vation for reducing the number of invocation and transmission
rate of such a channel.

C. Organization

Section 2 describes the security model and relevant defini-
tions. Lower bounds on round complexity of SMT protocol in

PDM are proved in Section 3. Section 4 describes an round
optimal (0, δ)-SMT by public discussion protocol. Finally we
draw a conclusion in Section 5.

II. PRELIMINARIES

A. Model and Notations

Network model.We assume asynchronous, connected point-
to-point incompletenetwork. PlayersS andR are connected
by n vertex-disjoint paths, calledwires. In addition to the
wires, we assume there is an authentic and reliablepublic
channelbetweenS andR. Messages over this channel are
publicly accessible and are correctly delivered to the recipient.
All wires and the public channel are bidirectional. SMT
protocols proceed inrounds. In each round, one player may
send a message on each wire and the public channel, while
the other player will only receive the sent messages. The sent
messages will be delivered before the next round starts.
Adversary model.The adversaryA is computationallyun-
bounded. A can corrupt nodes on paths betweenS and
R. A wire is corrupted if at least one node on the path
is corrupted. We assume up tot ≤ n − 1 wires can be
corrupted by the adversary.A caneavesdrop, modifyor block
messages sent over the corrupted wires.A is assumed to
be adaptive, meaning that she can corrupt wires during the
protocol execution based on the communication traffic it has
seen so far.

We also considerstatic adversary by which we mean that
the adversary chooses the corrupted wires before the start of
the protocol. A static adversary will however act adaptively
during the protocol execution with regard to messages that
are sent over the corrupted wires: in each round the adversary
sees the traffic over all the corrupted wires and the public
channel before tampering the traffic over the corrupted wires
in that round.
Notations.Let M be the message space. LetMS denote the
secret message ofS, andMR the message output byR. We
use⊥ to denote null string and∅ to denote empty set. The
notationu ← U denotes that a valueu is sampled uniformly
from a setU .
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B. Definitions

The statistical distanceof two random variablesX,Y over
a setU is given by,

∆(X,Y ) =
1

2

∑

u∈U

∣

∣

∣
Pr[X = u]− Pr[Y = u]

∣

∣

∣
. (1)

Lemma 1: [20] Let X,Y be two random variables over
a setU . The advantage of any computationally unbounded
algorithmD : U → {0, 1} to distinguishX from Y is

|Pr[D(X) = 1]− Pr[D(Y ) = 1]| ≤ ∆(X,Y ).

In an executionof an SMT protocolΠ, S wants to send
MS ∈M to R privately and reliably. We assume that at the
end of the protocol,R alwaysoutputs a messageMR ∈M.

An execution is completely determined by the random coins
of all the players including the adversary, and the message
distribution of MS . For P ∈ {S,R,A}, the view of P
includes the random coins ofP and the messages thatP
receives. Denote byVA(m, cA) the view of A when the
protocol is run withMS = m andA’s randomnessCA = cA.

Definition 1: A protocol betweenS and R is an (ε, δ)-
Secure Message Transmission by Public Discussion
(SMT-PD) protocol if the following two conditions are sat-
isfied:

• Privacy: For every two messagesm0,m1 ∈M andcA ∈
{0, 1}∗, it has

∆(VA(m0, cA), VA(m1, cA)) ≤ ε,

where the probability is taken over the randomness ofS
andR.

• Reliability: R recovers the messageMS with probability
larger than1− δ, or formally

Pr[MR 6= MS ] ≤ δ,

where the probability is over the randomness of players
S,R andA, and the choice ofMS .

Observe that the above definition is oblivious of the message
distribution, meaning that given an SMT-PD protocol, it will
be secure with the same privacy and reliability parameters
regardless of the concrete distribution overM.

III. ROUND COMPLEXITY OF SMT-PD PROTOCOL

By the similarity of broadcast model and public discussion
model, we recall Franklin and Wright’s results [9] in our
language as follows.

Theorem 1:[9] If n ≤ 2t, then: (i) For any valuesr ≥
r′, it is impossible to construct(r, r′)-round (0, 0)-SMT-PD
protocols; (ii) For any valuesr > 0 and 0 ≤ ǫ ≤ 1, it is
impossible to construct(r, 0)-round (ǫ, δ)-SMT-PD protocols
with δ < 1

2 (1 −
1

|M|).
In this section, we will prove whenn ≤ 2t any (ε, δ)-SMT-

PD protocol needs(3, 2)-round complexity. This is by proving
that: (i) secure(2, 2)-round (ε, δ)-SMT-PD protocols donot
exist, and (ii) for any(3, 1)-round protocol, either privacy or
reliability can be compromised.

The following lemma plays a central role in proving the
impossibility results in this paper. Loosely speaking, the
lemma shows that for an(ε, δ)-SMT-PD protocol no algorithm
that is given the adversary’s view as the input, can outputMS

with a probability much better than random guess.
Lemma 2:Let Π be an(ε, δ)-SMT-PD protocol and assume
S selectsMS ←M. Then no adversaryA can correctly guess
MS with probability larger thanε+ 1/|M|. That is,

Pr[MA = MS] ≤ ε+ 1/|M|,

whereMA denotes the adversary’s output, and the probability
is taken over the random coins ofS,R andA.
In proving Lemma 2, we need the Lemma 3 below (See
Appendix A for its proof).

Lemma 3:Consider an(ε, δ)-SMT-PD protocolΠ and an
adversaryB that plays the following game: the challengerC
sets up the system;B selects two messagesM0,M1 from M

and gives them to a challengerC who selectsb← {0, 1} and
runs the protocol (by simulatingS,R) to transmitMb. B can
corrupt up tot wires and finally outputs a bitb′.

Let BΠ(Mb)() be the output ofB when b is selected byC
in the simulation. Then

∣

∣

∣
Pr[BΠ(M0)() = 1]− Pr[BΠ(M1)() = 1]

∣

∣

∣
≤ ε, (2)

where the probability is taken over the randomness ofC and
B.

Proof: (of Lemma 2) The proof is by contradiction:
assume that there is an adversaryA that can outputMA with
probability Pr[MA = MS] > ε + 1/|M|. We will construct
an algorithmB to invalidate Eq.(2) .

The code ofB is as follows:B randomly chooses two
messages(M0,M1) ∈M and asks its challengerC to transmit
one of the two messages.C chooses a bitb ← {0, 1} and
simulatesS,R to run protocolΠ in transmittingMb. B runs
adversaryA as a subroutine to attack the protocol.B answers
A’s queries by forwarding them to the challenger and returning
the results back toA. At the end of the protocolA outputs
a message inM (which can be different fromM1 andM0).
B outputs 1 ifA outputsM1, and outputs 0, otherwise. Note
thatB will have the complete view ofA. Then

Pr[BΠ(M1)() = 1]
= Pr[MA = M1 | C has chosenM1] > ε+ 1/|M|,

and

Pr[BΠ(M0)() = 1]
= Pr[MA = M1 | C has chosenM0] = 1/|M|.

(3)

Note that Eq.(3) follows by that fact thatM1 is chosen
independent ofM0 and the randomness of playersS andR
in the simulation ofC and so the probability ofA’s output
to be equal toM1 (which is chosen randomly) is at most the
probability of random guess which is1/|M|. Hence, we have
Pr[BΠ(M1)() = 1] − Pr[BΠ(M0)() = 1] > ε, contradicting
Corollary 3.
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A. Impossibility of(2, 2)-Round(ε, δ)-SMT-PD Protocol when
n ≤ 2t

The impossibility proof needs to analyze the actions of the
adversary in rounds, hence we start by decomposing an SMT-
PD protocol into rounds as follows.

Definition 2: For a (r, r′)-round SMT-PD protocol, the
functionality of the protocol is described as a sequence of
randomized functions(f1, . . . , fr, g).

The functionfi denotes theround encoding function that
is used to generate the traffic sent in thei-th round. The input
of fi consists of the received messages of previous rounds
and random coins of the caller. For a playerP ∈ {S,R},
CP denotes the random coins ofP , andMi

P denotes the set
of all messages received byP during the firsti rounds with
M

0
S = {MS} andM0

R = ∅. If the initiator of round1 ≤ i ≤ r
is P , we writePiXiYi = fi(M

i−1
P , CP ) to denote the random

variable corresponding to traffic in roundi; herePi denotes
the traffic over the public channel, andXi andYi denote the
traffic over the corrupted wires and the uncorrupted wires,
respectively, or vice versa.

The functiong denotes thedecoding function. By the end
of the protocolR outputsMR = g(Mr

R, CR).

Theorem 2:Let n ≤ 2t. Then there is no(2, 2)-round
(ε, δ)-SMT-PD protocol withε+ δ < 1− 1/|M|.

The proof is by contradiction: suppose there exists a(2, 2)-
round (ε, δ)-SMT-PD protocolΠ with ε + δ < 1 − 1/|M|.
We construct an adversaryA that breaks theprivacy of Π by
impersonatingR. We show that for each execution ofΠ where
S sends a messagem to R, there exists a second execution
called swapped executionwhereS sends the messagem but
A impersonatesR such thatS receives identical traffic in
the two executions and so cannot distinguish the two. The
views ofR andA are however swapped in the two executions,
and so ifR outputsMR = MS in one of the executions,
thenA outputsMA = MS in the swapped execution and so
Pr[MA = MS ] ≥ Pr[MR = MS ]. Using Lemma 2 and that
Π is an(ǫ, δ)-SMT-PD protocol, we haveε+ δ ≥ 1− 1/|M|
which is a contradiction.

Proof: Assume by contradiction that there is a(2, 2)-
round(ε, δ)-SMT-PD protocolΠ with ε+δ < 1−1/|M|, and
the message distribution overM is uniform. Suppose wires
are labeled by1, 2, . . . , n, andn = 2t. (Note if there exists an
(ε, δ)-SMT-PD protocol forn′ < 2t, the same protocol can be
run for n = 2t by neglecting the lastn − n′ wires. Thus an
impossibility result forn = 2t still holds forn′ < 2t.)

The adversary is assumed to bestatic in the following. That
is, the corrupted wires are selected at the start of the protocol.
The impossibility results obtained for such adversary willhold
for more powerfuladaptiveadversaries who will corrupt the
wires during the running of the protocol.

We write A’s randomness asCA = (CA0, CA1) where
CA0 ∈ {0, 1} is used to select one of the two sets oft wires:
{1, . . . , t} or {t+1, . . . , 2t} for corruption andCA1 ∈ {0, 1}∗

is used for encoding and decoding of the traffic. LetCA0 = 0
andCA0 = 1 denote the first and the lastt sets of wires will
be corrupted, respectively.

Before going ahead, we remark that: (i) The last round
message of a SMT-PD protocol can only be fromS to R
as otherwise it can be removed without affecting the output
of R. (ii) For generality we don’t assume the interaction in
a SMT-PD protocol should be back-and-forth, meaning that
some consecutive rounds of the protocol may have the same
sender and cannot be combined into one round. Under the
effect of public channel, this provides a possible paradigmin
designing SMT-PD protocols. E.g., both of the first two rounds
of the protocol in [11] are fromS to R, and are fromR to
S in [10].

Therefore, depending on the order of the first round, a 2-
round SMT-PD protocol has two kinds of interactions.

CASE 1. In this case, the first round traffic is fromR to S,
while the second round is fromS to R. AssumeCA0 = 1,
i.e., the lastt wires are corrupted. We illustrate the strategy
of A in Fig. 1 and formalize it as follows.

• Round 1: WhenR sendsP1X1Y1 = f1(CR); A com-
putesP1X

′
1Y

′
1 = f1(C

′
R) whereC′

R is the value com-
puted fromCA1 and results inP1 over the public channel,
henceA can leave the transmission over the public
channel unchanged. This is always possible because the
function table off1 is public andA is computationally
unbounded. ThusA can find the set of random strings
such thatΩ = {r | f1(r) = P1X

′
1Y

′
1} and selects

C′
R ← Ω. A will then replacesY1 by Y ′

1 .
• Round 2: WhenS generates messageP2X2Y2 =

f2(MS, P1X1Y
′
1 , CS),A blocks the transmission over the

corrupted wires and outputsMA = g(P2Y2, C
′
R).

Let E be the set of all executions ofΠ in presence
of A. We consider a binary relationW over E such that
(E, Ê) ∈W if, (i) MS , CS are the same in the two executions;
(ii) CÂ0 ⊕ CA0 = 1; and (iii) CR̂ = C′

R, C
′
R̂

= CR, where
‘ ˆ ’ in the superscript denotes the random coins used and
messages output byA andR in Ê, respectively. Note that in
the two executions, thet corrupted wires are swapped with
the uncorrupted ones such that the messages received byA
andR are swapped as shown in Fig. 1 and 2.

For a pair of(E, Ê) ∈W, the first round messages received
by S in E and Ê are identical and equal toP1X1Y1. Thus
in the second round,S will generate the same trafficP2X2Y2

in both E and Ê, and so ifR outputsMR in E, A will
output MÂ = MR in Ê since MR = g(P2X2, CR) =
g(P2X2, C

′
R̂
) = MÂ.

Let pE be the probability that executionE is running.
Similarly definepÊ . Denote byS ⊆ E the set of executions
with MR = MS and so we havePr[MR = MS] =

∑

E∈S
pE .

Now MÂ = MS holds in Ê if MR = MS holds inE and so
we havePr[MA = MS ] ≥

∑

E∈S
pÊ .

Observe thatpE is completely determined by the probability
of selectingMS and other random coins of all the players. For
any two executions(E, Ê) ∈ W, we note that(MS , CS) =
(MŜ , CŜ), while CR andCR̂ are both selected with uniform
probability. Moreover, whenCR andCR̂ are fixed, both of the
probability of selectingCA andCÂ are2−1−⌈log |Ω|⌉. We thus
get pE = pÊ .
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S (MS ,CS) A (CA0,CA1) R (CR)

findsC′
R,

P1X
′
1Y

′
1 = f1(C

′
R)

P1X1Y
′

1
oo P1X1Y1 = f1(CR)

P1X1Y1
oo

P2X2Y2 =
f2(MS , P1X1Y

′
1 , CS)

P2X2Y2
//

blocksY2, computes
MA = g(P2Y2, C

′
R)

P2X2
// MR = g(P2X2, CR)

Fig. 1. An executionE of Π in the presence of adversaryA with CA0 = 1.

S (MS ,CS)
A (CÂ0,CÂ1) R (CR̂)

C′
R̂

= CR,
P1X1Y1 = f1(C

′
R̂
)

P1X1Y
′

1
oo

CR̂ = C′
R,

P1X
′
1Y

′
1 = f1(CR̂)

P1X
′

1Y
′

1
oo

P2X2Y2 =
f2(MS , P1X1Y

′
1 , CS)

P2X2Y2
//

blocksX2, computes
MÂ = g(P2X2, C

′
R̂
)

P2Y2
// MR̂ = g(P2Y2, CR̂)

Fig. 2. The swapped execution̂E of E with C
Â0

= 0 andC
R̂

= C′
R
, C′

R̂
= CR.

Then by Lemma 2 and above argument,

1− δ ≤ Pr[MR = MS] ≤ Pr[MA = MS ] ≤ 1/|M|+ ǫ. (4)

Therefore, it hasε + δ ≥ 1 − 1/|M|, which contradicts the
assumption onΠ.

CASE 2. In this case, both of the two rounds traffic are from
S toR. Intuitively, if n ≤ 2t andS receives no feedback from
R, A can just block the traffic over thet corrupted wires such
thatR has no advantage overA in recoveringMS .

More specifically, considering two executionsE and Ê in
this case, where the random coins ofA andR are swapped,
and the corrupted and uncorrupted wires are also swapped. If
A blocks thet corrupted wires, the view ofR in E will equal
the view ofA in Ê. Then ifR outputsMS in one execution,
A will output it in the swapped execution. By Lemma 2 and
the assumption onΠ, Eq. (4) holds also in this case, thus it
follows thatε+ δ ≥ 1− 1/|M|.

B. Impossibility of(r, 1)-Round(ε, δ)-SMT-PD Protocol when
n ≤ 2t

Theorem 2 shows that optimal(ǫ, δ)-SMT-PD protocols
need at least 3 rounds, while Theorem 1 shows that at least
one round public channel invocation is necessary. A natural
question thus is to find out if secure(r ≥ 3, 1)-round SMT-
PD protocols can exist. As a warm-up, the following theorem
gives a negative answer to the case that the invoker of public
channel is specified initially in the protocol.

Theorem 3:Let n ≤ 2t and r ≥ 3. Then a(r, 1)-round
(ε, δ)-SMT-PD protocol with fixed invoker of public channel
has eitherε+ δ ≥ 1− 1

|M| or δ ≥ 1
2 (1−

1
|M|).

The proof is by contradiction: assume there exists a(r, 1)-
round (ε, δ)-SMT-PD protocolΠ with fixed public channel
invoker, where values ofε and δ do not satisfy any of the
above inequalities. We construct an adversary who can break
either the privacy or the reliability ofΠ.
A’s strategy is to block the traffic (over thet corrupted

channels) sent by the invoker of public channel, and to replace

the traffic (over thet corrupted wires) sent to the invoker
by forged traffic that is constructed according to the protocol
description. Then,

1) If the public channel is invoked byS, we will show that
S cannot distinguish two swapped executions in which
she has the same views. The two executions have the
property that ifR outputsMR = MS in one execution
thenA outputsMA = MS in the swapped execution.
Using an argument similar to Theorem 2 we prove that
the adversary can break theprivacy of the protocol and
thus obtainε+ δ ≥ 1− 1

|M| .
2) If the public channel is invoked byR, we will show that
R cannot distinguish two swapped executions in which
he has the same views. If in one executionR outputs
MS, he will outputMA in the swapped execution with
the same probability. The two executions have the same
probability and so whenMS 6= MA, we prove the
adversary can break thereliability of the protocol and
so obtainδ ≥ 1

2 (1−
1

|M|).
Proof: We stress that in this proof the invoker of the

public channel is already specified in the protocol, whereasthe
actual invocation round of the public channel can be adaptive
to the protocol execution. The impossibility result will hold
straightforwardly for the case that the invocation round ofthe
public channel is a part of the protocol specification.

As noted in the proof of Theorem 2, the interaction order
in the protocol is not necessarily back-and-forth, and the last
round is fromS toR. Moreover, we also suppose the message
distribution overM is uniform, andn = 2t and the adversary
is static.

We separate the randomnessCA (of A) into four parts:
(CMA

, CA0, CA1, CA2), whereCA0 ∈ {0, 1} is used to choose
one of the two subsets oft wires to corrupt (CA0 = 0 and
CA0 = 1 are used for the first or the lastt wires, respectively),
CA1 is used to generate traffic for substituting the message
sent byS, CA2 for generating traffic to substitute the message
sent byR, andCMA

denotes the randomness ofA uniformly
selecting a message fromM to impersonateS ’s traffic.
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S (MS ,CS) A (CMA
,CA0,CA1,CA2) R (CR)

X1Y1 = f1(MS , CS)
X1Y1

// blocksY1
X1

//

X ′
2Y

′
2 = f2(Y1, CA2)

X2Y
′

2
oo X2Y2 = f2(X1, CR)

X2Y2
oo

X ′
3Y

′
3 = f3(Y1, CA2)

X3Y
′

3
oo X3Y3 = f3(X1, CR)

X3Y3
oo

...
...

...

PiXiYi =
fi(MS , X2Y

′
2 , . . . , CS)

PiXiYi
// blocksYi

PiXi
//

X ′
i+1Y

′
i+1 =

fi+1(Y1, . . . , CA2)

Xi+1Y
′

i+1
oo

Xi+1Yi+1 =
fi+1(X1, . . . , CR)

Xi+1Yi+1
oo

Xi+2Yi+2 =
fi+2(MS , X2Y

′
2 , . . . , CS)

Xi+2Yi+2
// blocksYi+2

Xi+2
//

...
...

oo ...
oo

XrYr =
fr(MS, X2Y

′
2 , . . . , CS)

XrYr
// blocksYr

Xr
// MR = g(X1, . . . , Xr, CR)

Fig. 3. The behaviors ofA in an execution where the public channel is used byS andCA0 = 1.

CASE 1. [S invokes the public channel.] We show that in
this caseA will break the privacy of Π. Without loss of
generality, assumeCA0 = 1. We describe the action ofA
as follows: in round1 ≤ j ≤ r,

• WhenS sendsXjYj or PjXjYj , A blocksYj .
• When R sends XjYj , A computes X ′

jY
′
j =

fj(M
j−1
A , CA2), then replacesYj by Y ′

j . (Here M
j−1
A

denotes the messages eavesdropped byA during the first
j − 1 rounds.)

Finally, A outputsMA = g(Mr
A, CA2).

The above strategy ofA is also shown in Fig.3. Note thatA
can block and forge messages as above sinceA can randomly
select CA to generate messages{X ′

jY
′
j }, and make them

consistent with the requirement of protocolΠ. Also note that
CMA

= ⊥ andCA1 = ⊥ sinceA needsnot to impersonateS
in this case.

Let E be the set of executions ofΠ. We define a binary
relationW1 over E to specify two executionsE and Ê as
follows: (E, Ê) ∈W1 if: (i) (MS , CS) are the same for both
executions; (ii)CÂ0 ⊕ CA0 = 1; and (iii) CA2 = CR̂ and
CR = CÂ2.

Claim 1: (i)The view ofS in E is the same as her view in
Ê; and (ii)the view ofA in Ê is identical to the view ofR
in E. Thus the output ofR in E is the same as the output of
A in Ê. That is,MR = MÂ holds.

Proof: Without loss of generality assume in executionE
we haveCA0 = 1 and the public channel is used in roundi.
Also assume during the firsti− 1 rounds,R is the initiator of
rounds{r1, . . . , rℓ} ⊆ {1, . . . , i−1}, ordered nondecreasingly.
We first prove statements (i) and (ii) hold during the first
rℓ rounds, then using the same technique we will prove the

statements hold in the later rounds and thus proveMR = MÂ.
The proof is by induction overℓ. When ℓ = 0, the state-

ments (i) and (ii) hold trivially from the facts thatS doesn’t
receive messages in the firsti−1 rounds andCÂ0⊕CA0 = 1.

For eachj < r, suppose that the statements (i) and (ii) hold
in the firstrj rounds forℓ = j. The induction hypothesis states
that Mrj

R = {Xk}k<rj and M
rj
A = {Yk}k<rj are swapped,

while M
rj
S are the same in executionsE andÊ. Our objective

is to prove that the statements (i) and (ii) also hold during the
first rℓ rounds forℓ = j+1. Note that in all those roundsk for
rj < k < rj+1, transmissions are only fromS toR. Formally
the message of each roundk is XkYk = fk(M

rj
S , CS), and

R and A will receive {Xk}rj<k<rj+1 and {Yk}rj<k<rj+1

respectively. ThusMrj+1−1
R = M

rj
R ∪ {Xk}rj<k<rj+1 and

M
rj+1−1
A = M

rj
A ∪ {Yk}rj<k<rj+1 . As CÂ0 ⊕ CA0 = 1, it

follows thatMrj+1−1
R andMrj+1−1

A are swapped inE andÊ.
Let Xrj+1Y

′
rj+1

= f
(1)
rj+1(M

rj+1−1
R , CR)f

(2)
rj+1(M

rj+1−1
A , CA2)

be the messages received byS in round rj+1 of E. ThenS
will receive the same messages in roundrj+1 of Ê because
CA2 = CR̂, CR = CÂ2, and thenMrj+1−1

R andM
rj+1−1
A are

exchanged inE and Ê. Thus the statements (i) and (ii) hold
during the firstrj+1 rounds.

Henceforth, S will send XkYk = fk(M
k
S , CS) =

fk(M
rℓ
S , CS) in each later roundk for rℓ < k < i. Observe

that in these roundsS won’t receive messages fromR. Thus
if S invokes the public channel in roundi of E, it will do
the same inÊ. And it follows that the view ofMi

R and
M

i
A in E and Ê are swapped during the firsti rounds. A

similar argument shows that after thei-th roundS will receive
identical messages in the two swapped executions. Finally,the
views ofS in the two executions will be the same, butM

r
R and
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M
r
A are swapped inE andÊ. At the end of the protocol, we

haveMR = g(Mr
R, CR) = g(Mr

Â
, CÂ2) = MÂ, whereMr

Â
denotes the messages thatA has eavesdropped in execution
Ê.

Let S1 ∈ E be the set of all successful executions in which
R outputsMR = MS, and pE denotes the probability of
executionE determined by the random coins of all players.
Define pÊ similarly. Then Pr[MR = MS ] =

∑

E∈S1
pE .

By Claim 1, if E ∈ S1, A will output MS in the swapped
execution ofÊ; thereforePr[MA = MS] ≥

∑

E∈S1
pÊ .

Additionally, by the definition ofW1 and the observation
of CMA

= CA1 = ⊥ in this case, we have,

pE =
1

|M|
2−rS−rR−rA2−1 = pÊ , (5)

whererS , rR, rA2 denote the length of the random coins of
CS , CR, CA2 used byS,R andA respectively.

Now by Eq.(5), and Lemma 2, it follows that Eq.(4) also
holds in this case, then it yields that1 − 1

|M| ≤ ε + δ,
contradicting the assumption onΠ.

CASE 2. [R invokes the public channel.] We will show
that in this case thereliability of Π will be broken. This is
by showing that for every successful execution there existsan
unsuccessful one and so probability of success is at most1/2.

Formally, the strategy ofA is similar to CASE 1, that is
whenCA0 = 1, then in each round1 ≤ j ≤ r:

• WhenR sendsXjYj or PjXjYj , A blocksYj .
• When S sends XjYj , A computes X ′

jY
′
j =

fj(M
j−1
A , CA1) and replacesYj by Y ′

j . (Here M
j−1
A

denotes the messages selected and eavesdropped byA
during the firstj − 1 rounds.)

Note thatCA2 = ⊥ in this case.For simplicity, we abuse the
notationMA here to denote the uniformly selected message
of A using coinsCMA

.
Let E and pE be as defined in CASE 1 and consider a

binary relationW2 over E where (E, Ê) ∈ W2 if: (i) CR

is the same in the two executions; (ii)CÂ0 ⊕ CA0 = 1; and
(iii) CA1 = CŜ , CS = CÂ1; (iv) MS = MÂ andMA = MŜ.
Denote byS2 the set ofsuccessfulexecutions in whichR
outputsMR = MS under the condition thatMA 6= MS .

Claim 2: For each swapped execution pair(E, Ê) ∈W2,
the views ofR in E andÊ are identical and so ifE ∈ S2 is
a successful execution, then̂E /∈ S2 is a failed execution.

Proof: Without loss of generality, assumeR invokes the
public channel in roundi of E, and during the firsti roundsS
is the initiator of rounds{r1, . . . , rℓ} ⊆ {1, . . . , i−1} (ordered
in nondecreasing order) in executionE. By induction onℓ, we
can prove thatR will receive the same messages during the
first rℓ rounds of the two swapped executions. This means that
R will invoke the public channel in the same roundi of E
and Ê, both. Furthermore, we can proveR will receive the
same messages during the later rounds of the two executions.
Thus, we haveMr

R = M
r
R̂

, whereMr
R̂

denotes all messages

thatR received inÊ. The proof is similar to Claim 1.
Now becauseMS and MA are swapped inE and Ê, if
R outputsMR = g(Mr

R, CR) = MS in E, he will output
MR̂ = g(Mr

R̂
, CR) = MÂ = MS in Ê. Thus for any two

swapped executions(E, Ê) ∈W2 whenMA 6= MS, we have
Ê /∈ S2.

Claim 3: (i) The occur probability of any two swapped
executions(E, Ê) ∈W2 is the same; that ispE = pÊ ; and (ii)
WhenMS 6= MA, the failure probability ofR in recovering
the secret message is not less than the success probability of
R; formally

Pr[MR = MS |MS 6= MA]

≤ Pr[MR 6= MS |MS 6= MA],

where the probability is taken over the random coins and
messages selected byS,R andA.

Proof: (i) Note that an executionE ∈ E is completely
determined by the random coins and messages selected by
all the players. Then for eachE ∈ E, we havepE =
1

|M|2
−rS−rR−rA , whererS , rR and rA denote the length of

the random coins ofCS , CR andCA, respectively. Similarly,
we havepÊ = 1

|M|2
−rŜ−rR̂−rÂ .

As CA2 = ⊥ in this case, it hasrA = rMA
+ rA0 + rA1,

whererMA
, rA0, rA1 denote respectively the length ofCMA

,
CA0, CA1. Similarly, it hasrÂ = rMÂ

+ rÂ0 + rÂ1.
Note thatrA0 = rÂ0 = 1 and rMA

= rMÂ
= ⌈log |M|⌉.

By the definition ofW2, we have thatrR = rR̂, rS = rÂ1

and rA1 = rŜ . Hence it hasrS + rR + rA = rŜ + rR̂ + rÂ,
and thenpE = pÊ holds.

(ii) Let S̄2 = E \ S2 denote the set offailed executions.
Since Ê ∈ S̄2 holds for anyE ∈ S2, and the one-to-one
correspondence ofE and Ê, we get that|S2| ≤ |S̄2|. The
probability thatΠ fails whenMA 6= MS can be computed as,

Pr[MR 6= MS |MS 6= MA]
= Pr[E ∈ S̄2]
≥

∑

E∈S2
pÊ

=
∑

E∈S2
pE

= Pr[MR = MS |MS 6= MA].

From Claim 3 we must havePr[MR 6= MS |MA 6= MS] ≥
1
2 ; hence

Pr[MR 6= MS ]
≥ Pr[MR 6= MS |MS 6= MA] Pr[MS 6= MA]
≥ 1

2 (1 −
1

|M|).

On the other hand, sinceΠ is aδ reliable protocol, we have
Pr[MR 6= MS ] ≤ δ. It follows that δ ≥ 1

2 (1 −
1

|M|), which
contradicts the assumption onΠ.

C. Impossibility of(3, 1)-Round PD-adaptive(ε, δ)-SMT-PD
Protocol

Theorem 3 says when the invoker of public channel is
known at the start of the protocol, then(r, 1)-round SMT-PD
protocol is impossible. In this section we consider protocols
that allow the invoker of public channel depends on the
executions; or more precisely depends on the random coins of
players. We call this type of SMT-PD protocolsPD-adaptive.

Definition 3: A (r, r′)-round SMT-PD protocolΠ is called
PD-adaptive if the invoker of the public channel and the
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round of invocation of the public channel are not specified
at the start but depend onCS , CR, CA andMS .

More specifically, for each round1 ≤ i ≤ r, let player
P ∈ {S,R} be the initiator of the round. LetMi−1

P be
the set of all messages received byP during the firsti − 1
rounds and thatM0

S = {MS} and M
0
R = ∅. We denote by

PiXiYi
def
= fi(M

i−1
P , CP ) the traffic of roundi, wherePi

denotes the traffic over the public channel, andXi and Yi

are the traffic over the two sets of wires, one all corrupted
and one all uncorrupted.

Traffic on the public channel, that isPi = ⊥ or Pi 6= ⊥ is
determined byMi−1

P andCP . Moreover, it must havePj = ⊥
if the public channel has been usedr′ times before roundj.

Theorem 4:Let n ≤ 2t. Then a PD-adaptive(3, 1)-round
(ε, δ)-SMT-PD protocol must have

3ε+ 2δ ≥ 1−
3

|M|
.

Proof: SupposeΠ is an arbitrarily PD-adaptive(3, 1)-
round(ε, δ)-SMT-PD protocol. We construct astaticadversary
A that breaks privacy or reliability ofΠ and so prove that
3ε + 2δ ≥ 1 − 3

|M| should hold for anyΠ. The message
distribution is assumed to be uniform in this proof.
A selects the first or lastt wires to corrupt. In the rounds

before invocation of the public channel,A conducts man-
in-the-middle attack betweenS and R by tampering with
the corrupted wires. When playerP ∈ {S,R} uses public
channel,A simply blocks the corrupted wires and continues
to cheatP by tampering the later transmissions (from the other
player P̄ to P ) over the corrupted wires until the end of the
protocol.

Observe that despitēP will learn the locations of corrupted
channels, but since the public channel has been used,P̄ cannot
notify P . ThusA can continue to cheatP in the later execution
of the protocol. We will prove thatA can conduct the above
attack and thus violate the privacy or reliability of the protocol.

We use[A − B − C] to indicate the initiators of the first,
second and third rounds areA, B and C, respectively. The
proof is divided into four steps stated as lemmas, each proving
an impossibility result for an interaction order. The omitted
proofs can be found in Appendix B.

Lemma 4: If the interaction order of protocolΠ is [S−S−
S], thenε+ δ ≥ 1− 1

|M| .
Proof: The invoker of public channel in this case must be

S and soA only blocks the traffic over the corrupted wires.
This is an special case of Theorem 2 and we haveε + δ ≥
1− 1

|M| .
Lemma 5: If the interaction order of protocolΠ is [S−R−
S], thenε+ δ ≥ 1

2 −
1

|M| .
Lemma 6: If the interaction order of protocolΠ is [R −
R− S], then3ε+ 2δ ≥ 1− 3

|M| .
Lemma 7: If the interaction order of protocolΠ is [R −
S − S], thenε+ δ ≥ 1

2 −
1

|M| .
The above argument shows that a protocol with order[R−
R − S] may have better security than protocols with other
interaction orders. However, even in this case, the protocol
cannot guarantee privacy and reliability at the same time. This
completes the proof.

IV. A N ROUND OPTIMAL SMT-PD PROTOCOL

As noted earlier the modified version of the protocol in
[10] has optimal round complexity but has linear (inn)
transmission rates over the wires and the public channel, while
the complexity of protocol in [9] is similar.

In this section we describe a(3, 2)-round (0, δ)-SMT-
PD protocol with constant transmission rate over the public
channel, andO(n) transmission rate over the wires (when the
message is long enough).

A. Our Construction

The proposed protocol uses universal hash functions.
Definition 4: Let m > ℓ. A function family H = {h :
{0, 1}m → {0, 1}ℓ} is calledγ-almost strongly universal2
hash function family if given anya1, a2 ∈ {0, 1}m, a1 6= a2,
and anyb1, b2 ∈ {0, 1}ℓ, it holds thatPrh∈H[h(a1) = b1 ∧
h(a2) = b2] ≤ γ.

1) (S −→ R): For i = 1, . . . , n, S randomly selects
ri ∈ {0, 1}ℓ andRi ∈ {0, 1}m and sends the pair
(ri, Ri) to R along wire i.

2) (S
P
←− R): For i = 1, . . . , n, if R correctly

receives a pair(r′i, R
′
i) along wire i (i.e., r′i ∈

{0, 1}ℓ, R′
i ∈ {0, 1}

m), he selectshi ← F and
computesT ′

i = r′i ⊕ hi(R
′
i); otherwise, wirei is

assumedcorrupted. He then constructs an indicator
bit stringB = b1b2 · · · bn wherebi = 1 if the wire i
is corrupted andbi = 0 otherwise. Finally, he sends
(B, (H1, . . . , Hn)) over the public channel, where
Hi = (hi, T

′
i ) if bi = 0; andHi is empty, otherwise.

3) (S
P
−→ R): S ignores the wires withbi = 1. For

i = 1, . . . , n, if bi = 0, S computesTi = ri⊕hi(Ri)

and checksT ′
i

?
= Ti; if Ti = T ′

i , wire i is assumed
consistent; otherwise, wirei is corrupted.
S constructs an indicator bit stringV = v1v2 · · · vn,
where vi = 1 if wire i is considered consistent;
otherwisevi = 0. Finally, she publishes the pair
(V,C = MS ⊕ { ⊕

vi=1
Ri}) over the public channel.

R recovers the message:When gets(V,C), R
recoversMR = C ⊕ { ⊕

vi=1
R′

i} and outputs it.

Fig. 4. The (3, 2)-round (0, δ)-SMT-PD protocolΠ1

Corollary 1: Let H = {h : {0, 1}m → {0, 1}ℓ} be a γ-
almost strongly universal2 hash function family. Then, for any
(a1, c1) 6= (a2, c2) ∈ {0, 1}m × {0, 1}ℓ, Prh∈H[c1 ⊕ h(a1) =
c2 ⊕ h(a2)] ≤ 2ℓγ.

Proof: For equalityc1⊕ h(a1) = c2⊕ h(a2), if a1 = a2,
then c1 = c2 . Thus we only consider the case ofa1 6= a2.
Since

Pr
h∈H

[c1 ⊕ h(a1) = c2 ⊕ h(a2)]

=
∑

b∈{0,1}ℓ

Pr
h∈H

[h(a1) = c1 ⊕ b ∧ h(a2) = c2 ⊕ b].
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From Definition 4,Prh∈H[h(a1) = c1⊕b∧h(a2) = c2⊕b] ≤ γ
and soPrh∈H[c1⊕h(a1) = c2⊕h(a2)] ≤ 2ℓγ, and the result
follows.

Wegman and Carter [21] constructed a21−2ℓ-almost
strongly universal2 hash familyF = {h : {0, 1}m → {0, 1}ℓ}.
Functions inF can be described byO(ℓ logm) bits and
computed in polynomial time. The short description length
of the family F allows us to authenticate messages with
low communication complexity. The protocolΠ1 transmits
MS ∈ {0, 1}m to R is described in Fig. 4.

Theorem 5:The protocolΠ1 is a (3, 2)-round(0, (n− 1) ·
21−ℓ)-SMT-PD protocol. Moreover,Π1 is polynomial time
computable, and its transmission rate isO(n) over the wires
and constant over the public channel whenm = Ω(n2κ2),
where κ is the reliability parameter of the system with
δ = (n− 1) · 21−ℓ = 2−κ.

Proof: Let Cor = {i | wire i is corrupted}, andCon =
{i | wire i is consistent}.

• Reliability : If S can detect all corrupted wires with
(r′i, R

′
i) 6= (ri, Ri), the protocol is thus perfectly reliable;

otherwise, one such a wire will break the reliability. Using
Corollary 2, we show this probability is small. A more
formal proof follows.

In the second round the wires withbi = 1 are detected
as corrupted, and are ignored in the third round. Hence
in the following we only consider wires withbi = 0. For
wire i, the wire is calledbad if (ri, Ri) 6= (r′i, R

′
i) but

ri⊕hi(Ri) = r′i⊕hi(R
′
i). Bad wires are always included

in Con. Using Corollary 1 and noting thatri, Ri, r
′
i, R

′
i

are fixed before the second round and thenhi is selected
with uniform distribution, we have

Pr[wire i is bad]

= Pr[ri ⊕ hi(Ri) = r′i ⊕ hi(R
′
i) ∧ (ri, Ri) 6= (r′i, R

′
i)]

≤ Pr[ri ⊕ hi(Ri) = r′i ⊕ hi(R
′
i) | (ri, Ri) 6= (r′i, R

′
i)]

≤ 21−ℓ,

where the probability is over the random coins of all the
players.

Then, the probability of unreliable message transmis-
sion is

Pr[MR 6= MS] = Pr[⊕j∈ConRj 6= ⊕j∈ConR
′
j ]

≤ Pr[∃j ∈ Con s.t.Rj 6= R′
j ]

≤ Pr[∃ at least one bad wire]
≤

∑

j∈Cor
Pr[wire j is bad]

≤ (n− 1) · 21−ℓ,

where the probability is over the random coins of all the
players.

• Perfect Privacy: The intuition for provingperfect privacy
is as follows: the adversary can obtain transmissions
related toMS only from the public channel in round 3.
However,MS is masked byRi (if wire i is uncorrupted),
and the adversary knows nothing aboutRi because the
only transmission which depends onRi is in the second
round invocation of public channel (h(Ri)) which is
masked byri and is not known by the adversary. This is

true becauseri was only transmitted on a secure wirei.
A more formal proof follows.

Let MS = m∗ be the message chosen byS andCA =
cA denotes the value ofA’s coin. We first describeA’s
view in the protocol. Observe that in protocolΠ1 Cor

is formed completely in the first round since the last two
rounds are only over the public channel. Then in the first
roundA sees{(ri, Ri)}i∈Cor over the corrupted wires
and modifies them into{(r′i, R

′
i)}i∈Cor. In the second

and third round,A sees respectively(B, (H1, . . . , Hn))
and (V,M ⊕ {⊕Ri}i∈Con) over the public channel.
Since{(r′i, R

′
i)}i∈Cor is computed byA using cA and

{(ri, Ri)}i∈Cor (in adaptive way), and whenA knows
{(r′i, R

′
i)}i∈Cor and{hi}i∈Cor, she can compute({r′i ⊕

hi(R
′
i)}i∈Cor, B) and (⊕i∈Cor∩ConRi, V ) by herself,

we thus remove the computable part from her view and
describe it as a 4-tuple of random variables as follows,

VA(m
∗, cA) = (cA, V1, V2, V3)

= (cA, {(ri, Ri)}i∈Cor,
({hi}ni=1, {ri ⊕ hi(Ri)}i/∈Cor),m

∗ ⊕ (⊕i/∈CorRi)).
(6)

whereVi is A’s view in roundi.
For two messagesm0,m1 andCA = cA, the statistical

distance betweenVA(m0, cA) and VA(m1, cA) is given
by,

∆(VA(m0, cA), VA(m1, cA))
= 1

2

∑

v | Pr[VA(m0, cA) = v]− Pr[VA(m1, cA) = v] |,

where the probability is over the choices ofCS andCR.
Then the termPr[VA(m0, cA) = v] is given by,

Pr[VA(m0, cA) = v]
=

∑

{cS ,cR:VA(m0,cA)=v} Pr[CS = cS ∧ CR = cR].

Note thatCS andCR are independent and have length
n(m+ ℓ) andwk respectively, wherew is the Hamming
weight of the stringB and k is the description length
of function in F . HencePr[CS = cS ∧ CR = cR] =

1
2n(m+ℓ)+wk ; note this value is independent of the value
of m0.

Therefore we only need to count the number of exe-
cutions in which the coin tosses of the sender and the
receiver are such that random variableVA(m0, cA) = v.

Suppose thatv = (cA, V1, V2, V3) is fixed, it implies
thatCor andcR = {hi}ni=1 are also determined; then the
choices of{(ri, Ri)}i/∈Cor should be consistent withV2

andV3. Since⊕i/∈CorRi = V3 ⊕m0, whenm0, V3 are
fixed, at mostn− |Cor| − 1 elements in{Ri}i/∈Cor can
be selected freely. Moreover, whenV2 and {Ri}i/∈Cor

are fixed,{ri}i/∈Cor are also determined. Therefore, the
number ofCS , CR result inVA(m0, cA) = v are bounded
by the number ofRi for i /∈ Cor. Totally, they have
2m(n−|Cor|−1) different choices. Hence we have,

Pr[VA(m0, cA) = v] =
2m(n−|Cor|−1)

2n(m+ℓ)+wk
.

The proof is complete by noting that the above prob-
ability is independent ofm0.
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• Complexity: Since the hash function is polynomial time
computable inm, the computation complexityof S and
R are polynomial in n and m. For communication
complexity, Π1 needs to communicatem + ℓ bits over
each wire, and at most(4s logm + ℓ + 2)n + m bits
over the public channel, wheres = ℓ + log logm. If the
reliability requirement is set toδ = 2−κ = (n−1) ·21−ℓ,
then ℓ = κ + log(n − 1) + 1. The transmission rate
over the public channel assumingm = Ω(n2κ2), is
((4s logm+ ℓ+ 2)n+m)/m which is constant asymp-
totically.

B. Comparisons with Schemes in [9], [10]

As noted earlier communication over public channel is
much more costly than communication over wires, and so
minimizing the transmission rate over the public channel will
have a large effect on overall efficiency of the protocol. This
is particularly important for transmitting long messages.For
example in most casesκ = 30 provide sufficient reliability.
However messages can be as long as220 bits. Whenn = 30
wires are available, our proposed protocol transmits around
220 bits over the public channel with reliability higher than
1 − 2−30 (sincem > n2κ2). The protocols in [9], [10] both
have transmission rateO(n) and so need to send almost30
times data (30× 220 ≈ 225 bits) over the public channel. The
reliability is 1−2−O(m) = 1−2−220 in [9], [10], which would
be unnecessarily high.

V. CONCLUSION AND FURTHER RESEARCH

In this work we considered round optimality protocols for
secure message transmission (SMT) by public discussion. This
is an important communication model in realizing almost-
everywhere multiparty computation. Since the implementation
cost of public channel is high, it is important to minimize
transmission over the pubic channel. Our results show that
secure protocol in this model need at least 3 rounds and in 2 of
them the public channel must be invoked. We prove this result
in a general setting where the invocation of public channel is
not known at the start of the protocol and depends on the coin
tosses of participants. We describe a round optimal protocol
that hasconstanttransmission rate over the public channel and
linear transmission rate over other wires.

Existence of PD-adaptive SMT-PD protocols withr ≥ 4
rounds and one round public discussion, and construction of
round optimal protocols with optimal communication com-
plexity over wires and public channel (if there exists) are
interesting open problems.

REFERENCES

[1] T. Araki. “Almost Secure 1-Round Message Transmission Scheme
with polynomial-time Message Decryption,” inProc. of International
Conference on Information Theoretic Security, ser. Lecture Notes in
Computer Science, no.5155. New York: Springer- Verlag, 2008, pp.2-
13.

[2] S. Agarwal, R. Cramer, and R. de Haan. “Asymptotically optimal
two-round perfectly secure message transmission,” inAdvances in
Cryptology - CRYPTO 2006, ser. Lecture Notes in Computer Science,
no.4117. New York: Springer- Verlag, pp.394-408.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract),”STOC, pp.1-10, 1988.

[4] D. Chaum, C. Crpeau, and I. Damgoard. “Multiparty unconditionally
secure protocols (extended abstract),”FOCS, pp.11-19, 1988.

[5] D. Dolev, C. Dwork, O. Waarts, and M. Yung. “Perfectly secure
message transmission,”J. ACM, vol.40, no.1, pp.17-47, 1993.

[6] D. Dwork, D. Peleg, N. Pippenger, and E. Upfal. “Fault tolerance in
networks of bounded degree,”SIAM J. Comput, vol.17, no.5, pp.975-
988, 1988.

[7] Y. Desmedt and Y. Wang. “Perfectly secure message transmission
revisited,” inAdvances in Cryptology-Eurocrypt 02, ser. Lecture Notes
in Computer Science, no.2332. New York: Springer- Verlag, 2002,
pp.502-517.

[8] M. Fitzi, M. Franklin, J. Garay, and S. H. Vardhan. “Towards Optimal
and Efficient Perfectly Secure Message Transmission,” inProc. of TCC
2007, ser. Lecture Notes in Computer Science, no.4392. New York:
Springer- Verlag, 2007, pp.311-322.

[9] M. Franklin, and R. N. Wright. “Secure Communication in Minimal
Connectivity Models,”J. Cryptol, vol.13, no.1, pp.9-30, 2000.

[10] J. Garay. “Partially Connected Networks: InformationTheoretically
Secure Protocols and Open Problems,”An invited talk in ICITS 2008,
Aug 11, 2008.

[11] J. Garay, R. Ostrovsky. “Almost-everywhere Secure Computation,”
in Advances in Cryptology-Eurocrypt 2008, ser. Lecture Notes in
Computer Science, no.4965. New York: Springer- Verlag,2008, pp.307-
323.

[12] K. Kurosawa and K. Suzuki. “Almost secure (1-round, n-channel)
message transmission scheme,” Cryptology ePrint Archive,Report
2007/076, 2007. Available: http://eprint.iacr.org/ .

[13] K. Kurosawa, and K. Suzuki. “Truly Efficient 2-Round Perfectly Secure
Message Transmission Scheme,” inAdvances in Cryptology-Eurocrypt
2008, ser. Lecture Notes in Computer Science, no.4965. New York:
Springer- Verlag, 2008, pp.324-340.

[14] U. Maurer. “Secret key agreement by public discussion from common
information,” IEEE Trans. Inform. Theory, vol.39, no.3, pp.733-742,
1993.

[15] A. Patra, A. Choudhary, K. Srinathan, and C. Pandu Rangan. “Un-
conditionally Reliable and Secure Message Transmission inUndi-
rected Synchronous Networks: Possibility, Feasibility and Optimal-
ity,” Cryptology ePrint Archive, Report 2008/141, 2007. Available:
http://eprint.iacr.org/2008/141.pdf

[16] T. Rabin and M. Ben-Or. “Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract),”STOC, pp.73-85,
1989.

[17] H. Sayeed and H. Abu-Amara. “Efficient perfectly securemessage
transmission in synchronous networks,”Information and Communica-
tion, vol.126, no.1, pp. 53-61, 1996.

[18] K. Srinathan, A. Narayanan, and C. Pandu Rangan. “Optimal perfectly
secure message transmission,” inAdvances in Cryptology-CRYPTO
2004, ser. Lecture Notes in Computer Science, no.3152. New York:
Springer- Verlag, 2004, pp.545-561.

[19] E. Upfal. “Tolerating Linear Number of Faults in Networks of Bounded
Degree,”PODC, pp.83-89, 1992.

[20] J. Wullschleger. “Oblivious Transfer Amplification,”Ph.D. dissertation,
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APPENDIX

A. Proof for Lemma 3

Proof: By Definition 1 and Lemma 1 we have: For
any algorithmD, any two messagesm0,m1 ∈ M, and any
adversaryB with randomnesscB ∈ {0, 1}∗,

|Pr[D(VB(m0, cB)) = 1]− Pr[D(VB(m1, cB)) = 1]| ≤ ε,
(7)

where the probability is over the random coins ofS andR.
Note hereVB(m, c) is (the random variable of) the view ofB
when the (fixed) messagem ∈ M is transmitted andB uses
the (fixed) coinsCB = cB in the protocol.

http://eprint.iacr.org/
http://eprint.iacr.org/2008/141.pdf
http://arxiv.org/abs/cs/0608076
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Then by takingaverageover the randomness ofCB, the
following holds from Eq.(7)

|Pr[D(VB(m0)) = 1]− Pr[D(VB(m1)) = 1]| ≤ ε , (8)

whereVB(m) denotes the view ofB when the fixed message
m ∈ M is transmitted in the protocol, and it is a random
variable over the random coins ofS,R andB.

The adversary’s strategy consists of: selecting messages
(M0,M1) followed by attacking the protocol and so we write
B = (B1,B2). We useCB1 to denote the random coins used

by B1 to select(M0,M1). Let p0
def
= Pr[B

Π(m0)
2 () = 1] and

p1
def
= Pr[B

Π(m1)
2 () = 1]. We have,

∣

∣Pr
[

BΠ(M0)() = 1
]

− Pr
[

BΠ(M1)() = 1
]∣

∣

=
∣

∣

∑

CB1=c Pr[CB1 = c] (p0 − p1)
∣

∣

≤
∑

CB1=c Pr[CB1 = c] |p0 − p1|
≤ ε .

The last step follows from the observation that|p0 − p1| ≤ ε
due to (8).

B. Proofs Omitted From Theorem 4

As in the proof of Theorem 3, we separateA’s random
coins into four parts:(CMA

, CA0, CA1, CA2). For the sake of
clarity, the messageselectedby A using randomnessCMA

is
denoted byMA, while the messageoutputtedbyA by the end
of the protocol is denoted byM+

A .

1) Proof of Lemma 5:
The public channel can be used in any of the three rounds.
For simplicity, we assumeCA0 = 1, i.e., A selects the last
t wires to corrupt. The actions ofA is illustrated as in Fig.
6, 7 and 8 respectively. (We remark that whenCA0 = 0, A’s
action is similar.) The detail ofA selecting(MA, CA1, CA2)
when S doesn’t use the public channel in the first round is
supplied in Fig. 5.

We remark that: (i) WhenS doesn’t use public channel
in round 1 andΩ2 6= ∅, the strategy as described in Fig.
5 ensures thatA can produce messageX ′

2Y
′
2 without public

channel communication in the second round. (ii) SinceA is
computationally unbounded, she knowsf1 and f2’s function
tables and so knows the setsΩ1 andΩ2. ThusA can conduct
the above attacks.

We analyze the success probability ofA in the following.
Let E1 and E3 denote the events thatS invokes the public
channel in round 1 and 3, respectively. LetE2 be the event
that R invokes the public channel in round 2. ThenE1, E2
andE3 are disjoint events andPr[E1 ∨ E2 ∨ E3] = 1 sinceΠ
is a (3, 1)-round protocol.

Assume in the first roundS sendsX1Y1 and let the sets
Ω1 ⊆M× {0, 1}∗ andΩ2 ⊆ Ω1 × {0, 1}∗ be defined as

Ω1
def
= {(m, c1) | f1(m, c1) doesn’t use

public channel}

and

Ω2
def
= {(m, c1, c2) | (m, c1) ∈ Ω1, c2 ∈ {0, 1}∗

s.t. f2(X ′
1Y1, c2) doesn’t use public

channel whereX ′
1Y

′
1 = f1(m, c1)}.

We have(MS , CS) ∈ Ω1. If Ω2 6= ∅, A randomly chooses
(MA, CA1, CA2) ← Ω2; otherwise,A randomly chooses
(MA, CA1, CA2)← Ω1 × {0, 1}∗.

Fig. 5. The strategy thatA selects(MA, CA1, CA2) whenS
doesn’t use public channel in round 1.

Claim 4: Let b ∈ {1, 3}. If Eb occurs, we have

Pr[M+
A = MS | Eb] ≥ Pr[MR = MS | Eb].

Proof: (i) We first prove the case ofb = 1. Denote byE1

the set of all executions whereE1 occurs, and byS1 ⊆ E1 the
set of successful executions in whichR outputsMR = MS .

Define a relationW1 ⊆ E1 × E1, where (E, Ê) ∈ W1

if: (i) MS, CS remain unchanged in the two executions; (ii)
CÂ0 ⊕ CA0 = 1; (iii) CA2 = CR̂, CR = CÂ2.

Similar to CASE 1 in Theorem 2, we can prove thatS
cannot distinguish two swapped executions(E, Ê) ∈W1 and
so if MR = MS, we haveM+

Â
= MS. Furthermore, we have

pE = 1
|Φ|2

−rA−rR = pÊ , whereΦ ⊆M× {0, 1}rS is the set
of all (MS , CS) such thatE1 occurs, andrS , rA, rR denote
the length of the randomness used byS,A,R, respectively.
We then obtain,

Pr[M+
A = MS | E1] ≥

∑

E∈S1
pÊ

=
∑

E∈S1
pE

= Pr[MR = MS | E1].

(ii) When b = 3, let E3 be the set of all executions whereE3
occurs, andS3 ⊆ E3 be the set of all successful executions in
whichR outputsMR = MS . Define a relationW3 ⊆ E3×E3,
where (E, Ê) ∈ W3 if: (i) MS , CS and MA, CA1 remain
unchanged in the two executions; (ii)CÂ0 ⊕ CA0 = 1; (iii)
CA2 = CR̂, CR = CÂ2.

Then by a similar proof of CASE 1 in Theorem 2, we have
M+

Â
= MR.

For any two executions (E, Ê) ∈ W3,
suppose (MS , CS , CR, CA) = (mS , cS, cR, cA) and
(MŜ , CŜ , CR̂, CÂ) = (mŜ , cŜ , cR̂, cÂ). Then the
probability that E occurs is pE = Pr[(MS , CS) =
(mS , cS) ∧ CR = cR ∧ CA = cA | E3] = α · β, where
α = Pr[(MS , CS) = (mS , cS) | E3] and β = Pr[CA =
cA ∧ CR = cR | (MS , CS) = (mS , cS) ∧ E3]. Similarly, it
haspÊ = Pr[(MŜ , CŜ) = (mŜ , cŜ) ∧ CR̂ = cR̂ ∧ CÂ = cÂ |
E3] = α̂ · β̂, whereα̂ = Pr[(MŜ , CŜ) = (mŜ , cŜ) | E3] and
β̂ = Pr[CÂ = cÂ ∧ CR̂ = cR̂ | (MŜ , CŜ) = (mŜ , cŜ) ∧ E3].
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S (MS ,CS) A (CA0,CA2) R (CR)

P1X1Y1 =
f1(MS , CS)

P1X1Y1
// blocksY1

P1X1
//

X ′
2Y

′
2 =

f2(P1Y1, CA2)

X2Y
′

2
oo

X2Y2 =
f2(P1X1, CR)

X2Y2
oo

X3Y3 =
f3(MS , X2Y

′
2 , CS)

X3Y3
//

blocksY3,
computesM+

A =
g(P1Y1, Y3, CA2)

X3
//

MR =
g(P1X1, X3, CR)

Fig. 6. An execution ofΠ with order [S −R− S], whereCA0 = 1 andS uses the public channel in round 1.

S (MS ,CS) A (CA0) R (CR)

X1Y1 =
f1(MS , CS)

X1Y1
//

selects
(MA, CA1, CA2),

X ′
1Y

′
1 = f2(MA, CA1)

X1Y
′

1
//

blocksY2
P2X2

oo
P2X2Y2 =

f2(X1Y
′
1 , CR)

P2X2Y2
oo

X3Y3 =
f3(MS , P2X2, CS)

X3Y3
//

X ′
3Y

′
3 =

f3(MA, P2Y2, CA1)

X3Y
′

3
//

MR =
g(X1X

′
1, X3Y

′
3 , CR)

Fig. 7. An execution ofΠ with order [S −R− S], whereCA0 = 1 andR uses the public channel in round 2.

S (MS ,CS) A (CA0) R (CR)

X1Y1 =
f1(MS , CS)

X1Y1
//

selects
(MA, CA1, CA2),

X ′
1Y

′
1 = f2(MA, CA1)

X1Y
′

1
//

X ′
2Y

′
2 =

f2(X
′
1Y1, CA2)

X2Y
′

2
oo

X2Y2 =
f2(X1Y

′
1 , CR)

X2Y2
oo

P3X3Y3 =
f3(MS , X2Y

′
2 , CS)

P3X3Y3
//

blocksY3,
computesM+

A =
g(X ′

1Y1, P3Y3, CA2)

P3X3
//

MR =
g(X1Y

′
1 , P3X3, CR)

Fig. 8. An execution ofΠ with order [S −R− S], whereCA0 = 1 andS uses the public channel in round 3.

Obviously, it hasα = α̂ as (MS , CS) = (MŜ, CŜ). The
following is to proveβ = β̂. Since(MA, CA1) = (MÂ, CÂ1),
this is equivalent to proving

Pr[CA2 = cA2 ∧ CR = cR | X ]

= Pr[CÂ2 = cÂ2 ∧CR̂ = cR̂ | X̂ ],
(9)

where X denotes the event that(MS , CS) = (mS , cS) ∧
(MA, CA0, CA1) = (mA, cA0, cA1) ∧ E3, and X̂ denotes
the event that(MŜ , CŜ) = (mŜ , cŜ) ∧ (MÂ, CÂ0, CÂ1) =
(mÂ, cÂ0, cÂ1) ∧ E3.

Note thatCR is uniformly selected byR andCA2 is selected
by A in the first round without seeing any information about
CR. HenceCA2 andCR are independent. Similarly,CÂ2 and
CR̂ are independent.

Then Eq.(9) can be expressed as

Pr[CA2 = cA2 | X ] Pr[CR = cR | X ]

= Pr[CÂ2 = cÂ2 | X̂ ] Pr[CR̂ = cR̂ | X̂ ].

Let Φ = {c | f2(X
′
1Y1, c) doesn’t use public channel};

whereX ′
1Y1 comes fromX1Y1 = f1(mS , cS) andX ′

1Y
′
1 =

f1(mA, cA1). SinceCA2 is uniformly selected fromΦ, we
havePr[CA2 = cA2 | X ] =

1
|Φ| . Furthermore, when̂X occurs,

from the definition ofW3 we have thatCR̂ is in Φ, which
impliesPr[CR̂ = cR̂ | X̂ ] =

1
|Φ| . Similarly, we get

Pr[CR = cR | X ] = Pr[CÂ2 = cÂ2 | X̂ ].

We thus prove the equality of Eq.(9), which implies that
pE = pÊ , and then

Pr[M+
A = MS | E3] ≥

∑

E∈S3
pÊ

=
∑

E∈S3
pE

= Pr[MR = MS | E3].

Claim 5: Pr[MR 6= MS | MS 6= MA ∧ E2] ≥ Pr[MR =
MS |MS 6= MA ∧ E2].

Proof: Denote byE2 the set of all executions whereE2
occurs. LetS2 ⊆ E2 denote the set of executions in whichR
outputsMR = MS given thatMA 6= MS.

We define a relationW2 ⊆ E2 × E2 such that(E, Ê) ∈
W2 if: (i) CR remains unchanged in the two executions; (ii)
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CÂ0 ⊕ CA0 = 1; (iii) CA1 = CŜ , CS = CÂ1; and (iv)MS =
MÂ,MA = MŜ.

ThenR cannot distinguish two swapped executions(E, Ê)
in W2 and if E ∈ S2, we haveÊ /∈ S2. Moreover, for any
E ∈ E2, a proof similar to case (ii) in Claim 4 can be used
to prove thatpE = pÊ . We thus have,

Pr[MR 6= MS |MS 6= MA ∧ E2]
= Pr[E /∈ S2]
≥

∑

E∈S2
pÊ

=
∑

E∈S2
pE

= Pr[MR = MS |MS 6= MA ∧ E2].

From Claim 4 and 5, we have

Pr[M+
A = MS ]
≥ Pr[M+

A = MS | E1] Pr[E1]
+Pr[M+

A = MS | E3] Pr[E3]
≥ Pr[MR = MS ∧ E1] + Pr[MR = MS ∧ E3]

(10)

and

Pr[MR 6= MS ]
≥ Pr[MR 6= MS | E2] Pr[E2]
≥ Pr[MR 6= MS |MS 6= MA ∧ E2]
·Pr[MS 6= MA | E2] Pr[E2]

≥ Pr[MR = MS |MS 6= MA ∧ E2]
·Pr[MS 6= MA ∧ E2]

= Pr[MR = MS ∧ E2]
·(1− Pr[MS = MA |MR = MS ∧ E2])

≥ Pr[MR = MS ∧ E2]− Pr[MA = MS]

(11)

Moreover, we also havePr[MA = MS] ≤ ε + 1
|M| , as

otherwise by choosingM+
A to be MA, we havePr[M+

A =
MS ] > ε+ 1

|M| , which contradicts Lemma 2.
Hence, it has

Pr[M+
A = MS ] + Pr[MR 6= MS ]
≥ Pr[MR = MS ∧ E1] + Pr[MR = MS ∧ E3]

+Pr[MR = MS ∧ E2]− Pr[MA = MS ]
= Pr[MR = MS]− Pr[MA = MS ].

Thus, by noting thatPr[M+
A = MS ] ≤ ε + 1

|M| ,
Pr[MA = MS ] ≤ ε + 1

|M| and Pr[MS 6= MR] ≤ δ,
we getε+ δ ≥ 1

2 −
1

|M| . �

2) Proof of Lemma 6:AssumeCA0 = 1, we illustrateA’s
strategy as follows.

Round 1: (i) if R uses public channel,A just blocks thet
corrupted wires. ThenA selects(MA, CA1)←M× {0, 1}∗,
and setsCA2 = ⊥.

(ii) Otherwise, assumeR sends outX1Y1. Consider the
following two sets

Ω1
def
= {c | c ∈ {0, 1}∗ s.t. f1(c) involves no public

channel communication},

Ω2
def
= {c | c ∈ Ω1 s.t. f2(c) involves no public

channel communication}.

Obviously,CR ∈ Ω1. Then if |Ω2| > 0, A selectsCA2 ← Ω2;
otherwise, selectsCA2 ← Ω1. A also chooses(MA, CA1)←

M × {0, 1}∗, then computesX ′
1Y

′
1 = f1(CA2) and replaces

Y1 by Y ′
1 .

Round 2: (i) if R uses public channel in this round or public
channel has been used in round 1,A just blocks the corrupted
wires. (ii) Otherwise, supposeR responsesX2Y2, it hasCR ∈
Ω2, then the selection ofCA2 ensures thatA can produce
messageX ′

2Y
′
2 without public channel communication.A thus

replacesY2 by Y ′
2 .

Round 3: (i) If S sends outP3X3Y3, A just blocksY3,
and computesM+

A = g(P3Y3, CA2). (ii) Otherwise, assumeS
sends outX3Y3, it implies that public channel has been used
in the first two rounds,A thus computesX ′

3Y
′
3 and replaces

Y3 by Y ′
3 .

Then by a similar calculation of Eq. (10) and (11), we get

Pr[MR 6= MS]

≥ Pr[MR = MS ∧ E1] + Pr[MR = MS ∧ E2]

−2Pr[MS = MA]

and

Pr[M+
A = MS] ≥ Pr[M+

A = MS ∧ E3]

≥ Pr[MR = MS ∧ E3],

whereE1, E2 denote the events thatR uses the public channel
in round 1 and 2 respectively, andE3 denotes the event that
S uses the public channel in round 3. Finally we obtain
3ε+ 2δ ≥ 1− 3

|M| . �

3) Proof of Lemma 7:
A’s strategy withCA0 = 1 is described as follows.

Round 1: (i) If R uses public channel,A just blocks thet
corrupted wires; (ii) otherwise, assumeR sends outX1Y1, A
selectsCA2 from the set of

Ω1
def
= {c | c ∈ {0, 1}∗ s.t. f1(c) involves no public

channel communication}

and computesX ′
1Y

′
1 = f1(CA2), then replacesY1 by Y ′

1 .
In the latter two rounds: (i) If R doesnot use the public

channel in round 1, it saysS will be the invoker of public
channel, thusA just blocks the corrupted wires. (ii) Otherwise,
A chooses(MA, CA1) ← M × {0, 1}∗ and computesX ′

2Y
′
2

andX ′
3Y

′
3 , then modifies the corrupted wires.

We note that the impossibility proof in this scenario is
similar to Lemma 5, and thus omit it here. �
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