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On Optimal Secure Message Transmission by
Public Discussion

Hongsong Shi, Shaoquan Jiang, Reihaneh Safavi-Naini, Moted Ashraful Tuhin

Abstract—In a secure message transmission (SMT) scenario areceive the same message. We refer to this modet@edcast

sender wants to send a message in a private and reliable way &
receiver. Sender and receiver are connected by vertex disjoint
paths, referred to as wires,t of which can be controlled by
an adaptive adversary with unlimited computational resources.
In Eurocrypt 2008, Garay and Ostrovsky considered an SMT
scenario where sender and receiver have access to a publicdis-
sion channel and showed that secure and reliable communidan
is possible whenn > t + 1. In this paper we will show that
a secure protocol requires at least 3 rounds of communicatio
and 2 rounds invocation of the public channel and hence give

Model (BM). They showed that PSMT in this model requires
n > 2t + 1, but probabilistic security can be obtained with
n >t and gave a 3-roun¢D, §) protocol in this model.

Garay and Ostrovsky [11] replaced the broadcast channel
with an authentic and reliableublic channekhat connectsS
andR. A public channel is totally susceptible to eavesdropping
but is immune to tampering. We refer to this communication
model asPublic Discussion ModelPDM). Garay and Ostro-

a complete answer to the open question raised by Garay and VSKY [11] gave a 4 round protocol with probabilistic secrit

Ostrovsky. We also describe a round optimal protocol that ha
constant transmission rate over the public channel.

Index Terms—SMT, public discussion, round complexity, MPC.

. INTRODUCTION
Olev, Dwork, Waarts and Yund [[5] introduceSecure

whenn > t, which shows that the connectivity requirement
for PDM is the same as the broadcast model.

Efficiency parameters of SMT protocols are, (i) the number
of roundswhere each round is one message flow betwgen
and R, or vice versa, and (ii) the communication efficiency
measured in terms ofransmission ratewhich is the total
number of bits sent over all wires for a message divided by
the length of the secret.

Message Transmissio(SMT) systems to address the Round complexity in PDM is measured by a pait )

problem of delivering a message from sendeto receiver
R in a network guaranteeingeliability and privacy. S is
connected tdR by n node disjoint paths, referred to agres

wherer is the total number of rounds andis the number of
rounds that the public channel is invoked> ).
Related modelsPubic channel has been used in other

t controlled by the adversary with unlimited computationajontexts including unconditionally secure key agreem@&dj [

power.
A perfectlysecure message transmisswPSMT for short,

where the public channel is used for the advantage distil-
lation, information reconciliation and privacy amplifiaat.

guarantees thak always receive the sent message and thehe public channel in this case is a free resource and its
adversary does not learn anything about it. It was shown th@mmunication cost is not considered. In PDM however, the

PSMT is possible if and only ifh > 2¢ + 1. See [[5], [17],

cost of realizing a channel in a distributed system is takém i

[18], [2], [8], [13] for more references. Franklin and Wrigh account.
[Q] relaxed the security requirement of SMT protocols and

proposedrobabilistic security in which two parametetsand

A. Our Results

4] upper bound the adva_ntage of t_he adversary in breakin%aray et al. [[11] proposed &,3)-round protocol and
privacy, and the probability thaeR fails to recover the sent subsequently improved its round complexity (@, 2)-round

message, respectively. In a PSMT protocet 6 = 0. In this
paper we refer to these protocols alsnost SMTprotocols.
We refer interested readers {d [7], [12]] [1],[15].

[10]. However it was not known if this round complexity was
optimal.
The main result of this paper is to prove that the minimum

Franklin and Wright[[9] also considered a model where agyjyes ofr and+’ for which an (r,’)-round (e, §) protocol

additional reliable broadcast channel is available&Stand R.

can exist are 3 and 2, respectively. This answers the questio

A broadcast channel guarantees tattnodes of the network of round optimality of almost SMT protocols in PDM that was
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raised in [11].

Our results on round optimality are obtained in three steps.
We first prove that there is n, 2)-round (¢, ) protocol in
PDM withe+6 < 1—1/|M| whenn < 2¢, whereM denotes
the message space. This means that message transmission
protocols in PDM with(2, 2)-round complexity will be either
unreliable, or insecure.

In the second step we will show that when the invocation of
the public channel does not depend on the protocol execution
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TABLE |
MAIN RESULTS ON LOWER BOUNDS OF CONNECTIVITY AND ROUND O SMT PROTOCOLS INPDM

Type Resiliency Round Construction Transmission Rate
(e,9) Impossible
e+d<1— ﬁ n<2t 22 (Theorem2)
G [ ibl
_ 1 mpossible
€+6<11 MI n<2t (r,1),r 23 (Thgorem
andsé < 5(1 — W)
(¢, 6)-PD-adaptive* Impossible
3e+20<1— ﬁ n<2 (3,1) (Theorem[@)
v [9], [10]: O(n) on wires and public channel
(0,6) n>t (3,2) (1, [i0], (TheoremB) ours: O(n) on wires andO(1) on public channel

when the length of message §¥ (n log §)?)

* the invoker of public channel is fixed initially in the protic
** the invoker of public channel is not fixed initially but adiptto real execution of the protocol

and is statically determined as part of protocol descniptioPDM are proved in Section 3. Section 4 describes an round
there is no(r > 3,1)-round (g, ) protocol withe + 6 < optimal (0,9)-SMT by public discussion protocol. Finally we
1—-1/|M] andd < 3(1 —1/|M]) whenn < 2t. draw a conclusion in Section 5.

Then we generalize this result to the case that the invoker of
the public channel is not fixed at the start of the protocoliand
adaptively determined in each execution, and show thaether
is no (3,1)-round (e, §) protocol with3e 4+ 26 < 1 — 3/|M]|.

We also construct a round optimal protocol that has constant
transmission rate over the public channel when the length &f Model and Notations
message (i.elog |M|) is Q((nlogd)?) bits long.

Table[l summarizes our results and puts them in relation
others’ works.

Il. PRELIMINARIES

Network modelWe assume aynchronousconnected point-
to-pointincompletenetwork. PlayersS and R are connected
by n vertex-disjoint paths, calledvires In addition to the
wires, we assume there is an authentic and relighiblic
_ o _ ) channelbetweenS and R. Messages over this channel are
One of the main motivations for studying SMT is to reducgyplicly accessible and are correctly delivered to thepieait.
connectivity requirement in secure multiparty protocd} [ All wires and the public channel are bidirectional. SMT
[4], [16]. Secure multiparty protocols require a secure artotocols proceed imounds In each round, one player may
reliable channel between every two nodes and so require fi,d a message on each wire and the public channel, while
network graph to beomplete Using an SMT protocol one the other player will only receive the sent messages. The sen
can simulate secure connection between any two nodes Usissages will be delivered before the next round starts.
a network with sufficient connectivity, that is disjoint paths - Adversary modelThe adversary4 is computationallyun-
(and not direct link) between any two nodes where- 2t. pounded A can corrupt nodes on paths betweén and
Secure message transmission in PDM can further reduge A wire is corrupted if at least one node on the path
connectivity (n > t) as long as there is an authentic publi¢s corrupted. We assume up to < n — 1 wires can be
channel. This is the lowest possible connectivity and showgrypted by the adversaryt caneavesdropmodifyor block
that two nodes can securely communicate as long as thg{gssages sent over the corrupted wirdsis assumed to
is one uncorrupted path between them (and a public channgB.adaptive meaning that she can corrupt wires during the
Realizing a public channel in an point-to-point sparse Pew protocol execution based on the communication traffic it has
however is costly. For example it is possible to simulatehsugeen so far.
a channel usingalmost-everywhere_ broadcast protocil1] We also considestatic adversary by which we mean that
that usesalmost-everywhere Byzantine agreement prot{lol the adversary chooses the corrupted wires before the dtart o

Itis shpwn [1.9] th.at in degree-bounded networks agreemg protocol. A static adversary will however act adaptivel

on a S|ngI$|b|tS?)5|1ng ]z\aflmost—%verywhere ggrt(_aement;[ pg)to ring the protocol execution with regard to messages that
.requ]ureS abea f (O§ ). rort]m S comlr(‘numca lon, whet are sent over the corrupted wires: in each round the adyersar
's the number of nodes In the network. sees the traffic over all the corrupted wires and the public

The high cost of simulating the public channel is the mo.tEhanneI before tampering the traffic over the corruptedsvire

vation for reducing the number of invocation and transroissi .
in that round.
rate of such a channel. Notations.Let M be the message space. LUeis denote the
o secret message df, and My the message output iy. We
C. Organization use L to denote null string an@ to denote empty set. The
Section 2 describes the security model and relevant definbtationu < U denotes that a value is sampled uniformly
tions. Lower bounds on round complexity of SMT protocol ifrom a seti/.

B. Discussion



B. Definitions The following lemma plays a central role in proving the
The statistical distancef two random variables(,Y over impossibility results in this paper. Loosely speaking, the

a setl/ is given by, lemma shows that for afx, 5)-S_MT-PD protocol no algorithm
1 that is given the adversary’s view as the input, can ouligyt
AX,Y) = = Z ‘Pr[X =u] —Pr[Y = u]‘_ (1) with a probability much better than random guess.
25 Lemma 2:LetII be an(e, §)-SMT-PD protocol and assume

Lemma 1:[20] Let X,Y be two random variables overS SeleCtsMs «— M. Then no adversamd can correctly guess
a setld. The advantage of any computationally unboundelfs With probability larger thare +1/[M]. That is,
algorithm®D : U — {0, 1} to distinguishX fromY is

|Pr[D(X) =1] — Pr[D(Y) = 1]| < A(X,Y).

Pr[Mjs = Mg] < e+ 1/|M],

) where M 4 denotes the adversary’s output, and the probability
In an executionof an SMT protocolll, S wants to send js taken over the random coins 8f R and A.

Ms € M to R privately and reliably. We assume that at the, proving Lemmal R, we need the Lemrfia 3 below (See
end of the protocolR alwaysoutputs a messagkly € M. AppendixA for its proof).

An execution is completely determined by the random coins Lemma 3: Consider an(e, §)-SMT-PD protocolll and an

of all the players including the adversary, and the message, that ol the followi - the chall
distribution of Mg. For P € {S,R, A}, the view of P ersaryss that plays the following game: the challenger

) ) sets up the systenfj selects two messagéd,, /M, from M
mclu_des the random coins af and _the messages that . gives them to a challengérwho selects < {0,1} and
receives. Denote bys(m,ca) the view of A when the .\ “he brotocol (by simulating, R) to transmitM,. B can
protocol is run withAM/s = m and.A’s randomnes§’y = c4. corrupt up tot wires and finally outputs a bif.

Let BU(Mb)() be the output of3 whenb is selected by’

Definition 1: A protocol betweenS and R is an (e, d)- in the simulation. Then

Secure Message Transmission by Public Discussion

(SMT-PD) protocol if the following two conditions are sat- Pr[BH(M“>() —1- Pr[BH(Ml)() —1l <., @)

isfied:
* Privacy:_For every two messages,, m, € M andcy € where the probability is taken over the randomnessoand
{0,1}*, it has B
A(Va(mo,ca), Valmi,ca)) < e, Proof: (of Lemmal[2) The proof is by contradiction:

o assume that there is an adversatyhat can outpufl/4 with
where the probability is taken over the randomnessofprobabi“ty Pr[M4 = Ms] > « + 1/|M|. We will construct

andR. _ _ . an algorithmB to invalidate Eq[(R) .
« Reliability: R recovers the messadés with probability The code of B is as follows: B randomly chooses two
larger thanl — 4, or formally messagesMy, M;) € M and asks its challengérto transmit
Pr[Mp # Mg] < 6, one of the two message€. chooses a bib «+ {0,1} and
o simulatesS, R to run protocolll in transmittingM;. B runs
where the probability is over the randomness of playeggjversaryA as a subroutine to attack the protodlanswers
S,R and A, and the choice ofi/s. A’s queries by forwarding them to the challenger and retgnin
Observe that the above definition is oblivious of the messag® results back tod. At the end of the protocaM outputs
distribution, meaning that given an SMT-PD protocol, itlwila message iM (which can be different from\/; and Mj).
be secure with the same privacy and reliability parametessoutputs 1 if A outputsM;, and outputs 0, otherwise. Note
regardless of the concrete distribution oWdr. that B will have the complete view ofA. Then

I1l. ROUND COMPLEXITY OF SMT-PD RROTOCOL Pr[BM) () = 1]

By the similarity of broadcast model and public discussion Pr[Ma = M, | C has chosed/y] > e + 1/[M],
model, we recall Franklin and Wright's results| [9] in our, 4
language as follows.

Theorem 1:[9] If n < 2¢, then: (i) For any values > Pr[BH(Mn)() =1] 3
r’, it is impossible to constructr, r’)-round (0, 0)-SMT-PD = Pr[Ms = M, | C has chosen/y] = 1/|M]|. ®3)
protocols; (i) For any values > 0 and0 < e < 1, it is
impossible to construdtr, 0)-round (¢, )-SMT-PD protocols  Note that Eq[(B) follows by that fact that/; is chosen
with § < %(1 — ﬁ). independent of\f, and the randomness of playe$sand R

In this section, we will prove when < 2t any (¢,0)-SMT- in the simulation ofC and so the probability ofd’s output
PD protocol needs3, 2)-round complexity. This is by proving to be equal taM/; (which is chosen randomly) is at most the
that: (i) secure(2,2)-round (g, 6)-SMT-PD protocols danot  probability of random guess which i5|M|. Hence, we have
exist, and (i) for any(3, 1)-round protocol, either privacy or Pr[BT(M)() = 1] — Pr[B"T(Mo)() = 1] > ¢, contradicting
reliability can be compromised. Corollary[3. [ ]



A. Impossibility of2, 2)-Round(e, §)-SMT-PD Protocol when  Before going ahead, we remark that: (i) The last round
n <2t message of a SMT-PD protocol can only be fr@mto R

. o ] as otherwise it can be removed without affecting the output
The impossibility proof needs to analyze the actions of thg (i) For generality we don’t assume the interaction in

adversary in rounds, hence we start by decomposing an SMTS\VT-pD protocol should be back-and-forth, meaning that

PD protocol into rounds as follows. some consecutive rounds of the protocol may have the same
Definition 2: For a (r,7’)-round SMT-PD protocol, the sender and cannot be combined into one round. Under the

functionality of the protocol is described as a sequence @ffect of public channel, this provides a possible paradigm

randomized function$fy, ..., fr, g). designing SMT-PD protocols. E.g., both of the first two rosind
The functionf; denotes theound encoding function that of the protocol in[[11] are fronsS to R, and are fromR to

is used to generate the traffic sent in ikt round. The input S in [10].

of fi consists of the received messages of previous roundsrherefore, depending on the order of the first round, a 2-

and random coins of the caller. For a playere {S,R}, round SMT-PD protocol has two kinds of interactions.

CfP ﬁlenotes the randpmdcoinz Ff arlg M:{? (Jtlgnotes(jthe_;shet CASE 1 In this case, the first round traffic is froR to S,
of all messages received by during the first: rounds wi while the second round is fro§ to R. AssumeC 4o = 1,

0 0 - :
.M%_ {Ms}ta;d)'gﬂyi@' If,vtl?_el'n(';'atc;r ?jf routndthg ! Sdr i.e., the lastt wires are corrupted. We illustrate the strategy
is P, we write B, X,Y; = f(Mp ~, Cp) to denote the random A in Fig.[I and formalize it as follows.

variable corresponding to traffic in rourig here P; denotes
the traffic over the public channel, add; andY; denote the « Round 1: WhenR sendsP, XY, = f1(Cr); A com-
traffic over the corrupted wires and the uncorrupted wires, putesP, XY/ = fi(C%) whereC%, is the value com-

respectively, or vice versa. puted fromC4; and results inP; over the public channel,
The functiong denotes thelecoding function. By the end hence A can leave the transmission over the public
of the protocolR outputsMy = g(M%, Cr). channel unchanged. This is always possible because the

function table off; is public and.A is computationally
unbounded. ThusA can find the set of random strings
such thatQ = {r | fi(r) = P X{Y{} and selects

Theorem 2:Let n < 2t. Then there is no(2,2)-round
(€,0)-SMT-PD protocol withe + 6 <1 —1/|M]|.

The proof is by contradiction: suppose there exis{8,&)- C!, « Q. A will then replacesy; by V7.
round (g, 4)-SMT-PD protocolIl with & 4 & <1- 1/|M|. « Round 2: WhenS generates messagé,X»Ys =
We construct an adversary that breaks therivacy of II by f2(Ms, PLX,Y{, Cs), A blocks the transmission over the
impersonatingz. We show that for each executionkifwhere corrupted wires and outpufily = g(PyYa, C’).

S sends a message to R, there exists a second execution

called swapped executiowhereS sends the message but ~ Let E be the set of all executions ofl in presence

A impersonates® such thatS receives identical traffic in of .A. We consider a binary relatioW over E such that
the two executions and so cannot distinguish the two. Th&, &) € W if, (i) Ms, Cs are the same in the two executions;
views of R and.4 are however swapped in the two executiondi) C 4, ® Cao = 1; and (iii) Cp = C%,C}, = Cr, where
and so if R outputs Mz = Mg in one of the executions, ' ~ ' in the superscript denoteg the random coins used and
then A outputsM 4 = Mg in the swapped execution and sgnessages output byt andR in E, respectively. Note that in
Pr[My = Ms] > Pr[Mg = Ms]. Using LemmdR and that the two executions, thé corrupted wires are swapped with

IT is an (e, §)-SMT-PD protocol, we have + 46 > 1—1/|M| the uncorrupted ones such that the messages receivedi by
which is a contradiction. and R are swapped as shown in Fig. 1 ddd 2.

Proof: Assume by contradiction that there is(a,2)-  Forapair of(£, &) € W, the first round messages received
round (e, §)-SMT-PD protocollT with ¢ +§ < 1—1/|M|, and by § in E and £ are identical and equal t&; X,Y;. Thus
the message distribution ov®I is uniform. Suppose wires in the second round; will generate the same traffie; X»Y>
are labeled byl, 2, ..., n, andn = 2t. (Note if there exists an in both £ and F, and so if R outputs My in E, A will
(¢,6)-SMT-PD protocol forn’ < 2t, the same protocol can beoutput M ; = Mpg in E since Mg = g(P2X»,Cr) =
run for n = 2t by neglecting the lask — n’ wires. Thus an 9(P2X2,C;%) = Mj.
impossibility result forn = 2¢ still holds forn’ < 2t.) Let pr be the probability that executio® is running.

The adversary is assumed to giaticin the following. That Similarly definep;. Denote byS C E the set of executions
is, the corrupted wires are selected at the start of the pobto With M = Mg and so we hav@r[Mgr = Ms] = s p5-
The impossibility results obtained for such adversary tlld Now M ; = Mg holds in E' if Mr = Mg holds inE and so
for more powerfuladaptiveadversaries who will corrupt the we havePr[Ma = Ms] > " o g Pjp-
wires during the running of the protocol. Observe thapz is completely determined by the probability

We write A’s randomness a&'y = (Cao,Ca1) Where of selectingMs and other random coins of all the players. For
Ca0 € {0,1} is used to select one of the two setstafires: any two executiongFE, E) € W, we note that Mg, Cs) =
{1,...,t} or {t+1,...,2t} for corruption and”s; € {0,1}* (Mg, Cg), while Cr andCy, are both selected with uniform
is used for encoding and decoding of the traffic. Cef, = 0 probability. Moreover, wheiW'r andC/, are fixed, both of the
andC4o = 1 denote the first and the lastsets of wires will probability of selecting”4 andC' ; are2~1~° 1211, We thus
be corrupted, respectively. getpr = pg.



§ (]Ws,Cs) A (CA07CA1) E (CR)
PiX,Y! finds C%, PLX1Y; _
PIX{Yl/ _ fl(Cﬁ) P1X1Y1 — fl(CR)
PX5Y, = PyXYo blocksY,, computes Py X3 _
fo(Ms, PX1Y{, Cs) Mo = g(PYa, C%) Mg = (P2 X2, Cr)

Fig. 1. An executionE of IT in the presence of adversa® with C' 4o = 1.

S (Ms,Cs) A (ConcAl) R (Cr)
PLX1Y/ Ch = Cr, PLX]Y{ Cp = Ch,
PLX1Y1 = f1(Ch) PLXTY) = fi(Cp)
Py XY, = Py X5 blocks X5, computes P,Y, o X
f2(Ms, PLX1Y{,Cs) MA:g(PQXQ,O}%) My = g(PY>,Cp)

Fig. 2. The swapped executiai of £ with C';, =0 andCp, = C%, C;% = Cg.

Then by Lemm&]2 and above argument, the traffic (over thet corrupted wires) sent to the invoker
15 < Pr[Mp = Ms] < Pr{Ma = Ms] < 1/[M| +c. (4) gzsl‘gggfigr:.ra_lf_‘frl](;:’]at is constructed according to the protoc
Therefore, it has + § > 1 — 1/|M|, which contradicts the 1) If the public channel is invoked h§, we will show that
assumption orl. S cannot distinguish two swapped executions in which
she has the same views. The two executions have the
property that ifR outputsMpr = Mg in one execution
then A outputsM 4 = Mg in the swapped execution.
Using an argument similar to Theordm 2 we prove that
the adversary can break tipeivacy of the protocol and
thus obtains +§ > 1 — ﬁ
If the public channel is invoked ki, we will show that
‘R cannot distinguish two swapped executions in which
he has the same views. If in one executiBnoutputs
Mg, he will outputM 4 in the swapped execution with
the same probability. The two executions have the same
probability and so when\fs # M4, we prove the
adversary can break threliability of the protocol and
o so obtains > 1(1 — IVI\)'

B. Impossibility of(r, 1)-Round(e, )-SMT-PD Protocol when Proof: We stress that in this proof the invoker of the
n<2t public channel is already specified in the protocol, whetkas

Theorem[2 shows that optimdk, §)-SMT-PD protocols actual invocation round of the public channel can be adaptiv
need at least 3 rounds, while Theoreim 1 shows that at leastthe protocol execution. The impossibility result will ldo
one round public channel invocation is necessary. A natugtaightforwardly for the case that the invocation roundhef
question thus is to find out if secufe > 3,1)-round SMT- public channel is a part of the protocol specification.

PD protocols can exist. As a warm-up, the following theorem As noted in the proof of Theorefd 2, the interaction order
gives a negative answer to the case that the invoker of pulilicthe protocol is not necessarily back-and-forth, and tst |
channel is specified initially in the protocol. round is fromS to R. Moreover, we also suppose the message

Theorem 3:Let n < 2t andr > 3. Then a(r,1)-round distribution overM is uniform, andn = 2t and the adversary
(€,0)-SMT-PD protocol with fixed invoker of public channelis static
has either + 6 > 1~ g or 6 > (1 — zg)- We separate the randomneSs (of A) into four parts:

The proof is by contradiction: assume there exists,d)- (Cas,, Ca0,Ca1,Ca2), WhereCyo € {0,1} is used to choose
round (e, §)-SMT-PD protocolIl with fixed public channel one of the two subsets af wires to corrupt C49 = 0 and
invoker, where values of and ¢ do not satisfy any of the C4¢ = 1 are used for the first or the lastvires, respectively),
above inequalities. We construct an adversary who can bredk; is used to generate traffic for substituting the message
either the privacy or the reliability ofl. sent byS, C 42 for generating traffic to substitute the message

A’s strategy is to block the traffic (over thecorrupted sent byR, andC},, denotes the randomness.dfuniformly
channels) sent by the invoker of public channel, and to peplaselecting a message froM to impersonates’s traffic.

CASE 2 In this case, both of the two rounds traffic are from
S to R. Intuitively, if n < 2t andS receives no feedback from
R, A can just block the traffic over thiecorrupted wires such
that R has no advantage ovet in recoveringMs.

More specifically, considering two executiofzand E in
this case, where the random coins.4fand R are swapped,
and the corrupted and uncorrupted wires are also swapped. I?)
A blocks thet corrupted wires, the view dR in E will equal
the view of A in £. Then if R outputsMg in one execution,
A will output it in the swapped execution. By Lemih 2 and
the assumption ofil, Eq. [4) holds also in this case, thus it
follows thate 6 > 1 — 1/|M]. [



S (Ms,Cs) A (Crmy,Ca0,Ca1,Ca2) R (Cr)
X1Y3 = f1(Ms,Cs) n blocks Y X
XoY) X-,Y-
- X5Yy = fo(Y1,Ca2) == XoYs = f2(X1,CR)
XYy X3Y:
— XY = f3(Y1,Ca2) = X33 = f3(X1,Cr)
P XY, = P X;Y; P X;
. O ,
fi(Ms, XaY3,...,Cs) blocks ¥;
Xit1Yi XY = Xit1Yit Xit1Yiq1 =
fir1(Y1,...,Ca2) fir1(Xa,..., CR)
Xit2Yiio = Xit2Yito Kz
blocksY;
fir2(Ms, X2Y5,...,Cs) +2
-
XY, = XYy X, B
£ (Mg, XaVy, ..., Cs) blocksY, Mg =9(X1,...,X,,CR)

Fig. 3. The behaviors afd in an execution where the public channel is usedShgnd C' 49 = 1.

CASE 1.[S invokes the public channel.]
this caseA will break the privacy of II. Without loss of
generality, assumé&'sy = 1. We describe the action aofl
as follows: in roundl < j <r,

o WhenS sendsX;Y; or P;X,Y;, A blocksY;.

« When R sends X;Y;, A computes X Y/
£i(M !, Ca2), then replacesy; by Y;. (Here M7t
denotes the messages eavesdroppeﬂ lolyiring the f|rst
j — 1 rounds.)

Finally, A outputsMa = g(M’,, C2).

The above strategy oA is also shown in Figl3. Note that
can block and forge messages as above sihcan randomly
select C4 to generate messaggsY;Y)}, and make them
consistent with the requirement of protodﬁ)] Also note that
Cy, = L andCy; = L since A needsnot to impersonates
in this case.

Let E be the set of executions di. We define a binary Let

relation W, over E to specify two execution& and £ as

We show that irstatements hold in the later rounds and thus prae= M ;.

The proof is by induction ovef. When?¢ = 0, the state-
ments (i) and (i) hold trivially from the facts tha doesn'’t
receive messages in the fiist 1 rounds and”' ;& Ca0 = 1.

For eachj < r, suppose that the statements (i) and (ii) hold
in the firstr; rounds for? = j. The induction hypothesis states
that My} = {Xj}i<r, and M7} = {Yi}r<r, are swapped,
while I\/I ' are the same in executio#sand £. Our objective
is to prove that the statements (i) and (ii) also hold durhmy t
first r, rounds for¢ = j+1. Note that in all those roundsfor
r; < k <141, transmissions are only frodi to R. Formally
the message of each roundis XY, = fk(MTSj,CS), and
R and A will receive { Xy}, <k<r;n and {Yitr, che<r; s
respectively. ThusM ™'~ i MY U {Xi}r,<ker,,, and
MTFH ! M:{ U {Yk}rj<k<rj+1- As OAO ®Ca =1, it

follows thatM”+1 andM’i """ are swapped i and E.
1 Tit1—1 2 Tiy1—1
XY = F M Cr) fi2 (MG Claa)

be the messages received 8yin roundr;;, of E. ThenS

follows: (E, E) € W1 if: (i) (Mg, Cs) are the same for both will receive the same messages in round; of E because

executions; (ii)C';, ® Cao = 1; and (iii) Ca2 = Cp and
Cr= CA2

Caz = Cp, Cr = C},, and thenMy '™~ 'and M7+ Lare
exchanged in® and E. Thus the statements (i) and (i) hold

Claim 1: (i)The view of S in E is the same as her view induring the firstr;; rounds.

E; and (ii)the view of A in E is identical to the view ofR

Henceforth, S will send XY fe(ME Cg)

in E. Thus the output oRR in E is the same as the output offk(Mg@, Cys) in each later round for r, < k < i. Observe

Ain E. Thatis, My = M ; holds.

Proof: Without loss of generality assume in executibn
we haveC 4o = 1 and the public channel is used in round
Also assume during the firé$t- 1 rounds,R is the initiator of
rounds{ry,...,r¢} C{1,...,i—

that in these round§ won't receive messages frofd. Thus
if S invokes the public channel in roundof £, it will do
the same inE. And it follows that the view ofM?%, and
Mi in B and £ are swapped during the first rounds A

1}, ordered nondecreasingly.simllar argument shows that after tieh roundsS will receive

We first prove statements (i) and (ii) hold during the firsdentical messages in the two swapped executions. Firtlady,
r¢ rounds, then using the same technique we will prove tlews of S in the two executions will be the same, Bdf, and



M7, are swapped i and E. At the end of the protocol, we swapped executiond, E) € Wy whenM 4 # Mg, we have

have Mp = g(My, Cr) = g(M7,Cy,) = M4, whereM”, E ¢ S,. ]
denotes the messages thaithas eavesdropped in execution Claim 3: (i) The occur probability of any two swapped
E. B executiongE, £) € W is the same; that isg = p,; and (ii)

Let S; € E be the set of all successful executions in whickivhen Mg # M 4, the failure probability ofR in recovering
R outputs Mr = Mg, and pg denotes the probability of the secret message is not less than the success probability o
executionE determined by the random coins of all playersk; formally
Define p; similarly. ThenPr[Mg = Mg] = PE.
By Clain;E[], if €8Sy, A WiE| output MS] in thz(;Esev?épped PriMp = Ms | Ms # Ma]
execution of; thereforePr[Ma = Ms] > 3" g, Pp- < Pr[Mg # Ms | Ms # My],
Additionally, by the definition ofW; and the observation

of Chr, = Ca1 — L in this case, we have, where the probability is taken over the random coins and

messages selected By R and A.
pg = L27r57rR7rA271 —p; (5) Proof: (i) Note that an executior € E is completely
M| E? determined by the random coins and messages selected by

whererg, rr, 742 denote the length of the random coins o?‘lll the players. Then for eacly < E, we havepp =
Cs,Cr,Caz used byS, R and A respectively. WTTS—TR‘”., whererg,rg andrz denotg the Igngth of
Now by Eq.[5), and Lemm@l 2, it follows that Eg.(4) alsghe random 00|r11s of’s, Cr and Cy, respectively. Similarly,
holds in this case, then it yields that— 7 < ¢+, W€ havep, = g2 "s7 R4
contradicting the assumption dh As Ca2 = L in this case, it hasa = ra, + 740 + 7a1,
_ ) ) whererys,, 740,741 denote respectively the length 6fy/,,
CASE 2.[R invokes the public channel.] ~ We will showc /o, similarly, it hasr; = rar, + 740 + 74y

that in this case theeliability of IT will be broken. This is  Note thatrap = r4, = 1 andrar, = rar, = [log|M]|].
by showing that for every successful execution there ezists By the definition Ofve'% we have that :ATR, rs =14

unsuccessful one and so probability of success is at M@t ands,, — .. Hence it has's + rp 4+ 14 = 74+ 74 + 174,
Formally, the strategy of4 is similar to CASE 1, that is gpqg theanS:pE holds. s

whenC 4 = 1, then in each round < j <r: . _ . )
« WhenR sendsX.Y; or P:X.Y: A blocksY: (i) Let S = E\ S, denote the set ofailed executions.
When S sendé iXY J ,Z( J,computes )J(',Y, _ Since E € S, holds for anyE € S,, and the one-to-one

[ ) VREE ] ] =

- , d off and E, t that/S,| < |S,|. Th
fj(Mf[l,Cm) and replacesy; by Y. (Here M7 corresponcence an we get thal|Sz| < |S;| ©

denotes the messages selected and eavesdroppstd bg/robablhty thatll fails whenM 4 # Mg can be computed as,
during the firstj — 1 rounds.) Pr[Mgr # Ms | Ms # Ma]

Note thatC'4» = L in this caseFor simplicity, we abuse the = Pr[E eS8y
notation M4 here to denote the uniformly selected message > Ypes,Pp
of A using coinsC}y, . = EcS, PE

Pr[Mp = Ms | Ms # Ma).

Let E and pg be as defined in CASE 1 and consider a
binary relationW, over E where (E, E) € Wy if: () Cg u
is the same in the two executions; (@), ® C4o = 1; and From Claim(3 we must havBr[Mp # Mg | Ma # Mg] >
(i) Car = C4,Cs5 =Cyy; (V) Mg = M; and My = M. L: hence
Denote byS, the set ofsuccessfuexecutions in whichR

outputsMp = Mg under the condition that/,, # Ms. Pr[Mp # Ms]
Claim 2: For each swapped execution péit, ) € Wy, > Pr[Mg # Ms | Ms # Ma] Pr[Ms # Ma]
the views ofR in £ and E’ are identical and so itV € S5 is > %(1 - ﬁ)-

a successful execution, theﬁ’\gé S, is a failed execution.

Proof: Without loss of generality, assuni@ invokes the
public channel in round of E, and during the first roundsS
is the initiator of roundgr, ..., 7} C {1,...,i—1} (ordered
in nondecreasing order) in executiéh By induction on¢, we
can prove thafR will receive the same messages during th€. Impossibility of(3, 1)-Round PD-adaptivée, §)-SMT-PD
first r, rounds of the two swapped executions. This means tHotocol

R will invoke the public channel in the same roundf E Theorem[B says when the invoker of public channel is

and E, both. Furthermore, we can prove will receive the known at the start of the protocol, thén 1)-round SMT-PD

same messages during the later rounds of the two executiqf}gtocol is impossible. In this section we consider protsco

Thus, we haveM, = M7, whereM?, denotes all messagesthat allow the invoker of public channel depends on the

that R received inE. The proof is similar to Claini]1. executions; or more precisely depends on the random coins of
Now becauselMs and M4 are swapped inE and E, if players. We call this type of SMT-PD protocd®D-adaptive

R outputs Mg = g(M%,Cr) = Mg in E, he will output  Definition 3: A (r,7’)-round SMT-PD protocoll is called

Mp = g(M},,Cr) = M; = Mg in E. Thus for any two PD-adaptive if the invoker of the public channel and the

On the other hand, sindé is a ¢ reliable protocol, we have
Pr[Mp # Mg] < 6. It follows thaté > (1 — Wl\)' which
contradicts the assumption dh ]



round of invocation of the public channel are not specified IV. AN ROUND OPTIMAL SMT-PD RrOTOCOL
at the start but depend atis, Cr,C4 and Mg.

More specifically, for each round < i < r, let player
P € {S,R} be the initiator of the round. LeM’ ' be
the set of all messages received Byduring the firsti — 1

rounds z;mfd thaMy = {Mg} and M}, = (. We denote by

As noted earlier the modified version of the protocol in
[10] has optimal round complexity but has linear (it
transmission rates over the wires and the public channédlewh
the complexity of protocol in[[9] is similar.
i1 _ ) In this section we describe #3,2)-round (0,d)-SMT-
BXiY: = fi(Mp,Cp) the traffic of roundi, where P, pp protocol with constant transmission rate over the public

denotes the traffic over the public channel, akid andY;  chanpel, and)(n) transmission rate over the wires (when the
are the traffic over the two sets of wires, one all Co"um‘%’qessage is long enough).

and one all uncorrupted.

Traffic on the public channel, that B, = 1L or P, # L is
determined byM’% ! andCp. Moreover, it must havé’, = 1. A. Our Construction
if the public channel has been usgdtimes before roung.

Theorem 4:Let n < 2t. Then a PD-adaptiv€3, 1)-round
(e,9)-SMT-PD protocol must have

The proposed protocol uses universal hash functions.
Definition 4: Let m > ¢. A function family # = {h :
{0,1}™ — {0,1}*} is calledy-almost strongly universal,
325> 1 i hash function family if given anya, as € {0, 1}™, a1 # as,
- M| and anyb, by € {0,1}¢, it holds thatPrpey[h(a1) = b1 A

Proof: Supposell is an arbitrarily PD-adaptive3, 1)- h(az) = by} <.
round(e, 0)-SMT-PD protocol. We constructstaticadversary
A that breaks privacy or reliability ofl and so prove that
3e+20 > 1— % should hold for anyll. The message
distribution is assumed to be uniform in this proof.

A selects the first or lagt wires to corrupt. In the rounds
before invocation of the public channelf conducts man-
in-the-middle attack betwees and R by tampering with
the corrupted wires. When playé? € {S,R} uses public
channel,A simply blocks the corrupted wires and continues
to cheatP by tampering the later transmissions (from the othed
player P to P) over the corrupted wires until the end of the|
protocol.

Observe that despit2 will learn the locations of corrupted
channels, but since the public channel has been ugednnot

1) (§ — R): Fori =1,...,n, S randomly selects
r; € {0,1}* and R; € {0,1}™ and sends the pai
(ri; R;) to R along wirei.

2) S £ R): Fori = 1,...,n, if R correctly
receives a pair(r;, R;) along wirei (i.e., r; €
{0,1}*, R € {0,1}™), he selectsh; «+ F and
computesT; = r, @ h;(R;); otherwise, wirei is
assumedtorrupted He then constructs an indicator
bit string B = b1b, - - - b,, whereb; = 1 if the wire d
is corrupted an@; = 0 otherwise. Finally, he send
(B,(Hy,...,Hy,)) over the public channelwhere
H; = (h;, T)) if b; = 0; and H; is empty, otherwise

=

=

)

notify P. Thus.A can continue to chedt in the later execution 3) (S - R): S ignores the wires with; = 1. For
of the protocol. We will prove thad can conduct the above i=1,...,nif b; =0, S computesT; = ri®hi(R;)
attack and thus violate the privacy or reliability of the forol. and checksl! = T;; if T, = T/, wire i is assumed
We use[A — B — (] to indicate the initiators of the first, consistentotherwise, wirei is corrupted.

second and third rounds aré, B and C, respectively. The S constructs an indicator bit string = vivs - - - vy,
proof is divided into four steps stated as lemmas, each pgovi wherev; = 1 if wire 7 is considered consistent;
an impossibility result for an interaction order. The owewuilt otherwisev; = 0. Finally, she publishes the pajr
proofs can be found in Appendix B. (V,C=Mso{ ®1Ri}) over the public channel

Lemma 4:If the interaction order of protocdl is [S—S —
S, thene +6 > 1 — #r.
Proof: The invoker of public channel in this case must be
S and soA only blocks the traffic over the corrupted wires. Fig. 4. The (3,2)-round (0, §)-SMT-PD protocolll;
This is an special case of Theorem 2 and we havwed >
1— = |
M| . — . m 14 _
Lemma 5:1f the interaction order of protocal is [s—R —  Corollary 1: Let # = {A : {0,1}™ — {0,1}'} be ay
S], thene + 6> 1 — L almost strongly universahash function family. Then, for any
) - 2 -

M m 4 —
Lemma 6:1f the interaction order of protocdl is [R — (01:€1) # (a%cg) € {0, 1} x {0, 1}, Prpenler @ h(ar) =
R — 8], then3e +20 > 1 — r. c2 ® h(az)] < 2%y.

Lemma 7:If the interaction order of protocdl is [R — h Progf: For er?ualltycl @lh(al) :.dCQ @hh(@)’ i af1 -
58| thene +5 > 1 — 1 thenc; = ¢, . Thus we only consider the case @f # as.

M . Since
The above argument shows that a protocol with ofter

R — S] may have better security than protocols with other p,. [c1 @ har) = ¢z @ h(as)]

interaction orders. However, even in this case, the prétoco h€#

cannot guarantee privacy and reliability at the same tinés T = Z Pr [h(a1) =c1 ®bAh(az) = c2 D).
completes the proof. ] be{0,1}¢ her

R recovers the messageWhen gets(V,C), R
recoversMp = C @ { & R’} and outputs it.




From Definitio4,Prcy[h(a1) = c1®bAR(az) = ca®b] < v
and soPry,cx[c1 @ h(a1) = c2 @ h(az)] < 2%y, and the result
follows. ]

Wegman and Carter[ [21] constructed & —2‘-almost
strongly universalhash familyF = {h : {0,1}™ — {0, 1}}.
Functions in F can be described by)(¢/logm) bits and
computed in polynomial time. The short description length
of the family F allows us to authenticate messages with
low communication complexity. The protocal; transmits
Mg € {0,1}™ to R is described in Fid.l4.

Theorem 5:The protocolll; is a(3,2)-round(0, (n —1) -
21=6-SMT-PD protocol. Moreover]l; is polynomial time
computable, and its transmission rate(ién) over the wires
and constant over the public channel when= Q(n?x?),
where « is the reliability parameter of the system with
§=(n—-1)-217t =27~

Proof: Let Cor = {i | wire i is corrupted, and Con =
{4 | wire 7 is consisten.

o Reliability: If S can detect all corrupted wires with
(r}, R}) # (r;, R;), the protocol is thus perfectly reliable;
otherwise, one such a wire will break the reliability. Using
Corollary 2, we show this probability is small. A more
formal proof follows.

In the second round the wires with = 1 are detected
as corrupted, and are ignored in the third round. Hence
in the following we only consider wires with; = 0. For
wire i, the wire is calledbad if (r;, R;) # (v}, R}) but
ri®h(R;) = r,®h;(R,). Bad wires are always included
in Con. Using Corollanfd and noting that, R;, 7}, R,
are fixed before the second round and thers selected
with uniform distribution, we have

Pr|wire 7 is bad]

Pr[r; @ hi(Ri) = 7 ® hi(R}) A (13, Ri) # (17, R})]
Pr[r; © hi(R;) = 7 @ hi(R}) | (ri, Ri) # (17, R})]
2174’

<
<

where the probability is over the random coins of all the

players.

Then, the probability of unreliable message transmis-
sion is

Pr[MR 7é MS] Pr[@jEConRj 7& EBJ’ECon‘R;']

Pr[3j € Con s.t. R; # R]
Pr[3 at least one bad wife
> jecor Pr[wire j is bad]
(TL - 1) ' 217!7

ININININ I

where the probability is over the random coins of all the
players.

« Perfect Privacy: The intuition for provingperfect privacy
is as follows: the adversary can obtain transmissions
related toMg only from the public channel in round 3.
However, Mg is masked byR; (if wire ¢ is uncorrupted),
and the adversary knows nothing abdeit because the
only transmission which depends @1 is in the second
round invocation of public channelh(R;)) which is
masked byr; and is not known by the adversary. This is

true because; was only transmitted on a secure wire
A more formal proof follows.

Let Ms = m™* be the message chosen 8ywndC4 =
ca denotes the value aoft’'s coin. We first described’s
view in the protocol. Observe that in protoddl Cor
is formed completely in the first round since the last two
rounds are only over the public channel. Then in the first
round A sees{(r;, R;)}iccor Over the corrupted wires
and modifies them intd (r}, R})}iccor- In the second
and third round,A sees respectivelyB, (H1, ..., H,))
and (V,M @ {®R;}iccon) Over the public channel.
Since {(r}, R,)}iccor is computed byA usingcs and
{(rs, R;) }iccor (in adaptive way), and whenl knows
{(r}, R)) }iccor @and{h;}iccor, She can computg{r; &
hi(R})}iecor, B) and (®;ccornconRi, V) by herself,
we thus remove the computable part from her view and
describe it as a 4-tuple of random variables as follows,

Va(m*,ca) = (ca, Vi, V2, V3)
= (ca,{(ri, Ri)}iecor
({hi}iei, {7 ® hi(Ri) Figcor), m* @ (DigcorRi))- )
whereV; is A’s view in rounds.
For two messagesiy, m; andC4 = c4, the statistical
distance betweef4(mg,ca) and Va(mq,ca) is given

by,

A(VA(T)’LQ, CA), VA(ml, CA))
= 350, | Pr[Va(mo, ca) = v] = Pr{Va(ma, ca) =] |,

where the probability is over the choices@§ andCkx.
Then the termPr[V4(mo,ca) = v] is given by,

Pr[Va(mg,ca) = ]
= E{CS,CR:VA(WO,CA):'U} Pr[CS =Cs A CR = CR]'

Note thatC's andCr are independent and have length
n(m + ¢) andwk respectively, wherev is the Hamming
weight of the stringB and k is the description length
of function in 7. HencePr[Cs = cs A Cr = cg] =
= note this value is independent of the value
of mo.

Therefore we only need to count the number of exe-
cutions in which the coin tosses of the sender and the
receiver are such that random variablg(mo,ca) = v.

Suppose that = (ca, V1, Va, V3) is fixed, it implies
thatCor andcy = {h;}_, are also determined; then the
choices of{(r;, R;)};¢cor Should be consistent with:
and V3. Since®;¢cor i = V3 @ mo, Whenmyg, V3 are
fixed, at most: — |Cor| — 1 elements in{R;};¢cor CaN
be selected freely. Moreover, whéi and {R;};¢cor
are fixed,{r;},¢cor are also determined. Therefore, the
number ofCys, Cr result inV4 (mg, c4) = v are bounded
by the number ofR; for i ¢ Cor. Totally, they have
om(n=|Cor|-1) different choices. Hence we have,

2m(n7\Cor\71)
Pr[Va(mo,ca) = v] = ETCIOET

The proof is complete by noting that the above prob-

ability is independent ofng.



« Complexity: Since the hash function is polynomial time [3]
computable inm, the computation complexitpf S and
R are polynomial inn and m. For communication 4]
complexity II; needs to communicate: + ¢ bits over
each wire, and at mosslogm + ¢ + 2)n + m bits [
over the public channel, where= ¢ + loglog m. If the 6]
reliability requirement is setté = 27% = (n—1) -2,
then ¢ = k + log(n — 1) + 1. The transmission rate
over the public channel assuming = Q(n%k?), is 7
((4slogm + £ + 2)n +m)/m which is constant asymp-
totically.
(8]
[ |
B. Comparisons with Schemes in [9], [10] 9]

As noted earlier communication over public channel isBlO]
much more costly than communication over wires, and s
minimizing the transmission rate over the public channdl wi
have a large effect on overall efficiency of the protocol.sThi [11]
is particularly important for transmitting long messagEer
example in most cases = 30 provide sufficient reliability.
However messages can be as lon@#sbits. Whenn = 30 [12]
wires are available, our proposed protocol transmits atoun
220 pits over the public channel with reliability higher than [13]
1 —273% (sincem > n?x?2). The protocols in[[9],[[10] both
have transmission rat®(n) and so need to send almaxi

times data 30 x 22° ~ 22° bits) over the public channel. The [14]
reliability is 1 —2-°(m) = 1—2-2"" in [9], [10], which would
be unnecessarily high. [15]

V. CONCLUSION AND FURTHER RESEARCH

In this work we considered round optimality protocols for
secure message transmission (SMT) by public discussida. TH16l
is an important communication model in realizing almost-
everywhere multiparty computation. Since the impleméonat [17]
cost of public channel is high, it is important to minimize
transmission over the pubic channel. Our results show thafg
secure protocol in this model need at least 3 rounds and in 2 of
them the public channel must be invoked. We prove this result
in a general setting where the invocation of public chansel i 19]
not known at the start of the protocol and depends on the coin
tosses of participants. We describe a round optimal protocél
that hasconstantiransmission rate over the public channel anq21]
linear transmission rate over other wires.

Existence of PD-adaptive SMT-PD protocols with> 4
rounds and one round public discussion, and construction of
round optimal protocols with optimal communication com-
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plexity over wires and public channel (if there exists) arg proof for Lemmal3

interesting open problems.
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http://eprint.iacr.org/
http://eprint.iacr.org/2008/141.pdf
http://arxiv.org/abs/cs/0608076
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Then by takingaverageover the randomness af'z, the Assume in the first round sendsX;Y; and let the sets

following holds from Eql{I7) Q1 CM x {0,1}* andQs C 27 x {0,1}* be defined as
o «© {(m,ec1) | fi(m,c1) doesn't use
| Pr[D(Vp(mo)) = 1] = Pr[D(Vp(m1)) =1][<e, (8) public channel}
and

whereVp(m) denotes the view o when the fixed message
m € M is transmitted in the protocol, and it is a randonj
variable over the random coins 6f R andB.

The adversary’s strategy consists of: selecting messages
(Mo, M) followed by attacking the protocol and so we writd We have(Ms, Cs) € Q. If Q5 # 0, A randomly chooses
B = (By,By). We useCp; to denote the random coins used (Ma,Ca1,Caz) < o] otherwise, A randomly chooses
by B, to select(My, M;). Let py def Pr[BE(m‘))() = 1] and (M, Ca1, Caz) ¢ 1 x {0, 1}".

p Pr[Bg(m])() = 1]. We have, Fig. 5. The strategy thatd selects(Ma, Ca1,Ca2) whenS
doesn't use public channel in round 1.

Q = {(m,e1,0) | (m,er) € Q1,00 € {0,1)

s.t. f2(X1Y1,co) doesn't use public
channel whereX[Y{ = f1(m,c1)}.

[Pr [BUM) () = 1] — Py [BIOM) () = 1]|

1> ¢ p—e PrICB1 = ¢] (po — p1)|
> Cp=c PrCB1 = ¢ |po — p1| Pr[M} = Ms | &) > Pr[Mg = Ms | &)].
E.

Claim 4: Letb € {1,3}. If & occurs, we have

IAIN

Proof: (i) We first prove the case @f= 1. Denote byE,
the set of all executions whe#g occurs, and by, C E; the
The last step follows from the observation that — p1| < e  set of successful executions in whih outputsMy = Ms.
due to [(8). L] Define a relationW,; C E;, x E;, where(E,E) € W,
if: () Mg, Cs remain unchanged in the two executions; (ii)
CAO ® Cyo = 1; (III) Cuo = CR,CR = CAQ'
Similar to CASE 1 in Theorem 2, we can prove that
B. Proofs Omitted From Theorehh 4 cannot distinguish two swapped executigis E) € W; and
so if Mg = Mg, we haveMZ = Mg. Furthermore, we have
As in the proof of Theorenil3, we separatés random p, = ‘%2—”‘_”? = py, where® C M x {0,1}"s is the set
coins into four parts(Cas,, Cao, Ca1, Caz2). For the sake of of all (Mg, Cs) such that€; occurs, andrg,r 4,7z denote

clarity, the messagselectedby A using randomnesS;, is  the length of the randomness used 8yA, R, respectively.
denoted byM 4, while the messageutputtedoy .4 by the end we then obtain,
of the protocol is denoted by/ .

1) Proof of Lemma&l5:
The public channel can be used in any of the three rounds.
For simplicity, we assumé&'yy, = 1, i.e., A selects the last
t wires to corrupt. The actions ofl is illustrated as in Fig.
6, [7 and_8 respectively. (We remark that wh€Ro = 0, A'S  (jiy When b = 3, let E; be the set of all executions whefe
action is similar.) The detail ofd selecting(M4,Ca1,Ca2) occurs, and; C E; be the set of all successful executions in
when S doesn’t use the public channel in the first round ignhich R outputsM = M. Define a relatiofWs C E; xEg,
supplied in Fig[b. where (E,E) € W if: (i) Mg,Cs and M4, Ca; remain
We remark that: (i) WhenS doesn't use public channelunchanged in the two executions; (i) ;, ® Cao = 1; (iii)
in round 1 andQ, # 0, the strategy as described in FigC2 = Cy,Cr = C},.
ensures thad can produce message;Y; without public  Then by a similar proof of CASE 1 in Theorem 2, we have
channel communication in the second round. (ii) Sintés MX = Mpg.

computationally unbounded, she knowis and f»'s function For any two executions (E,E) c W,
tables and so knows the sdts and(2,. Thus.4 can conduct suppose (Ms,Cs,Cr,Ca) = (ms,cs,cr,ca) and
the above attacks. (]\/[S,CS,CR,CA) = (mg,CS,CR,CA). Then the
We analyze the success probability dfin the following. probability that £ occurs is pg = Pr[(Ms,Cs) =
Let & and &3 denote the events thal invokes the public (mg,cs) ACr = cr ACa = ca | &] = a - B, where
channel in round 1 and 3, respectively. L&t be the event o = Pr[(Mg,Cs) = (mg,cs) | &] and 8 = Pr[Ca =
that R invokes the public channel in round 2. Thén, &2 ¢4 A Cg = cg | (Ms,Cs) = (ms,cs) A ). Similarly, it
and&; are disjoint events anitr[€1 V & V &) = 1 sincell  hasp, = Pr[(Mg,Cg) = (mg,cg) A\Cp=cy ACj =c; |
is a(3, 1)—round prOtOCOI- 53] = &- B, wherea = Pr[(]\/‘[§70§) = (mg,c§) | 53] and
8= PI‘[CA =Cci N Cf% =cp | (]\/[S,CS) = (mg,c§) /\53].

Pr[MX = Mg | 51] > ZEESI Pg

Ee€S, PE
= PI‘[MR = ]\/[5 | 51]
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S (Ms,Cs) A (Ca0,Ca2) R (Cr)
P X YT = P X1V P1 X,
£1(Ms, Cs) blocksY;
X2, Xé}g = Xa2Ys XY, =
Jo(P1Y1,Ca2) fo(P1X1,CR)
blocksYs,
X3Ys = Xs¥s computesM | = X Mp =

f3(M57X2}/2/705) g(P1X17X3ch)

g(P1Y1,Y3,Ca9)

Fig. 6. An execution ofI with order[S — R — S|, whereC4¢ = 1 and S uses the public channel in round 1.

§ (Ms,Cs) A (Cao0) E (CRr)
selects ,
= X1Y; X1,
., ) - Ma Car, Osa) -
’ X1Y] = fo(Ma, Car)
Py X5 Py X2Ys P XYy =
blocks Y2 J2(X1Y{,CR)
X3Y3; = X3Y3 Xéygl = X3Yy Mp =
fs(Ms, P, X5,Cs) f3(Ma, PyY, Cay) 9(X1 X1, X5Yy, Cr)
Fig. 7. An execution ofI with order[S — R — S|, whereC 49 = 1 and R uses the public channel in round 2.
S (Ms.0s) A (can) R (on)
selects /
X117 = X1Y; X1Y,
£1(s, Cs) - Ma O, Oaz) -
’ X1Y] = fa(Ma,Cax)
XoYy XYy = XaYs XoYs =
f2(X1Y1, Caz) f2(X1Y{,Cr)
blocksYs,
Py X3Y3 = P3X3Ys 3 P3Xs Mp =

computesM | =

Mg, XYy, C
fs(Ms, X5Y3,Cs) 9(X1Y1, P3Y3, Caz)

9(X1Y{, P3sX3,CR)

Fig. 8. An execution ofI with order[S — R — S|, whereC 49 = 1 and S uses the public channel in round 3.

Obviously, it hasa = & as (Ms,Cs) = (Mg,Cg). The  fi(ma,ca1). Since Cay is uniformly selected from®, we

following is to proves = 3. Since(Ma, Ca1) = (M4,C4,), havePr[Cas =caz | X] = I%' Furthermore, wher¥’ occurs,

this is equivalent to proving from the definition of W3 we have thatCj is in ®, which
. . o R ) o L . .
Pr[Cas = cas A Cr = e | X] impliesPr[Cp = cp | X] = 37 Similarly, we get
= Pr[C;,=ci, NCp=cp|X] ©) >
A2 A2 R R ’ PI‘[CR:CR|X]:PI‘[OA2:CA2 |X]
where X' denotes the event thatMs,Cs) = (ms,cs) A e thus prove the equality of EGI(9), which implies that
(Ma,Ca0,Ca1) = (ma,cao,ca1) A Es3, and X denotes pE = pp, and then
the event that(Mg,Cg) = (mg,cg) A (M4, C40,Cay) = E
(mAchochl)/\g3' PI‘[MZ = Mg | 53] 2 ZEGSapE
Note thatC is uniformly selected bR andC 4, is selected = Ees, PE
by A in the first round without seeing any information about = Pr[Mg = Mg | &).
Cr. HenceCy, andCr are independent. Similarly; ;, and -
Cﬁ_zr are 'Edepe”de”g . Claim 5: Pr[Mp # Mg | Ms # Ma A &] > Pr[Mp =
en Eql(®) can be expressed as Ms | Mg # Ma A &s).
Pr[Cuas = caz | X]Pr[Cr = cg | X] Proof: Denote byE, the set of all executions whe®

occurs. LetS; C E, denote the set of executions in whigh
outputsMpr = Mg given thatM 4 # Mg.

Let ® = {c | f2(X|Y1,c) doesn't use public chanfel ~ We define a relatiofW, C E, x E, such that(E, E) €
where X{Y; comes fromX Y, = fi(ms,cs) and X;Y/ = W,y if: (i) Cr remains unchanged in the two executions; (ii)

= Pr[C4, =c4y | X]Pr[Ch =cp | X].



CAO D OAO =1, (III) CAl = Og,CS = OAI; and (iV)MS =
M, M = M.

ThenR cannot distinguish two swapped executi¢is £)
in W, and if E € S,, we haveE ¢ So. Moreover, for any
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M x {0,1}*, then computesY|Y, = f1(Ca2) and replaces
Y1 by Y7,

Round 2 (i) if R uses public channel in this round or public
channel has been used in round4Ljust blocks the corrupted

E ¢ E,, a proof similar to case (ii) in Clairl 4 can be useavires. (ii) Otherwise, suppose responses(,Y5, it hasCr €

to prove thatpr = p;. We thus have,
Pr[Mg # Mg | Mg # Ma A &

Pr[E ¢ S2]

ZEESz pE

EGSsz
PI‘[MR:MS | M57£MA/\52].

vl

From Claim4 and5, we have

Pr[M = Mg]
Z PI‘[]\f;xr = MS | 51] Pr[El]
+PI‘[MX = MS | 53] PI‘[53]
> Pr[Mp = Mg A& ]+ Pr[Mgr = Mg A Es]

(10)

and

Pr[Mp # Mg]

PI‘[MR 75 MS | 52] PY[EQ]
PI‘[MR#MS | M57£MA/\52]
~PI‘[M5 # MA | 52] PI‘[EQ]
PI"[MRZMS | Ms#MA/\EQ]
-Pr[Ms#MA/\gg]
PI‘[MR:Ms/\gg]

(1 =Pr[Mg =My | Mg = Mg A &)
PI‘[MR = Mg A 52] — PI‘[MA = Ms]

>
2

Y

(11)

>

Moreover, we also hav®r[M, = Mg] < e+ ﬁ as
otherwise by choosing/} to be M4, we havePr[M |
Ms] > & + g7, Which contradicts Lemmi 2.

Hence, it has

Pr[M} = Mg] + Pr[Mp # Ms]

> Pr[Mp = Mg A& ]+ Pr[Mgr = Mg A Es]
—‘rPI‘[MR = Mg /\52] — PI‘[MA = Ms]
PI"[MR = Ms] — Pr[MA = ]\/fs].

Thus, by noting thatPr[My = Ms] < ¢+ g
Pr[My = Ms] < e+ g and Pr[Ms # Mg] < 9,
wegets+62%—ﬁ. [ |

2) Proof of Lemmal6:AssumeC 4o = 1, we illustrateA’s
strategy as follows.

Round 1 (i) if R uses public channeld just blocks thet
corrupted wires. Thet! selects(M 4, C41) + M x {0,1}*,
and setdC'yo = L.

(i) Otherwise, assumé& sends outX;Y;. Consider the
following two sets

def

Q1 = {c]ece{0,1}* s.t. fi(c) involves no public
channel communicatign
Q « {c| c € s.t. fa(c) involves no public

channel communicatign

Obviously,Cr € ©;. Then if |Qs| > 0, A selectsC 4o + Qo;
otherwise, select§'42 < Q. A also choose$M 4, Cy1)

Q9, then the selection o4, ensures thatd can produce
messageX, Y, without public channel communicatiod thus
replacesy; by Y3.

Round 3:(i) If S sends outP;X3Y3, A just blocksYs,
and computeﬂ/[j,r = g(P3Y3,C42). (ii) Otherwise, assum&
sends outX3Ys, it implies that public channel has been used
in the first two rounds,A thus computes\’Yy and replaces
Y3 by Y.

Then by a similar calculation of Ed._({L0) arild{11), we get

Pr[Mpg # Mjs)|
> Pr[Mp=MgA&]+Pr[Mgr = MgA&)]
—2Pr[Mg = M4

and

Pr[M} = Ms] Pr[M} = Mg A &]

>
> PI‘[MR = Mg /\53],

whereé&y, & denote the events th& uses the public channel
in round 1 and 2 respectively, arfi} denotes the event that
S uses the public channel in round 3. Finally we obtain
3
3) Proof of Lemmal7:
A’s strategy withC'4o = 1 is described as follows.
Round 1 (i) If R uses public channeld just blocks thet
corrupted wires; (ii) otherwise, assurfiesends outX; Y7, A
selectsC' 4o from the set of

def

O {c]c€{0,1}" s.t. fi(c) involves no public

channel communicatign

and computest(Y; = f1(Caz2), then replaced by Y.

In the latter two rounds(i) If R doesnot use the public
channel in round 1, it say§ will be the invoker of public
channel, thusA just blocks the corrupted wires. (i) Otherwise,
A chooseM4,Ca1) + M x {0,1}* and computes,Yy
and XYy, then modifies the corrupted wires.

We note that the impossibility proof in this scenario is
similar to Lemmd.b, and thus omit it here. |
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