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Abstract— THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. The closure of the set of entropy functions
associated with n discrete variables, Γ

∗

n
, is a convex cone in

(2n − 1)-dimensional space, but its full characterization remains
an open problem. In this paper, we mapΓ

∗

n
to an n-dimensional

region Φ
∗

n
by averaging the joint entropies with the same number

of variables, and show that the simplerΦ
∗

n
can be characterized

solely by the Shannon-type information inequalities.

I. I NTRODUCTION

Given an n-dimensional discrete random vectorX =
(X1, . . . , Xn), for each non-empty subsetα of N =
{1, 2, . . . , n} there is a joint entropyH(Xα) with Xα =
(Xi)i∈α, and the2n − 1 joint entropies form the entropy
function (H(Xα))α⊆N ,α6=∅ of X. We can then defineΓ∗

n ⊆
R2n−1 as the set of all possible entropy functions involving
n discrete random variables, andΓ

∗
n as its closure. A vector

H ∈ R2n−1 is called entropic ifH ∈ Γ∗
n, and almost entropic

if H ∈ Γ
∗
n [1].

All H = (Hα)α⊂N ,α6=∅ ∈ Γ
∗
n satisfy the following

Shannon-type information inequalities for any subsetsα, β

of N (we letH∅ = 0 for convenience):

Hα ≥ 0, (1)

Hα ≤ Hβ , α ⊆ β, (2)

Hα +Hβ ≥ H(α∪β) +H(α∩β). (3)

However, (1)–(3) are not sufficient conditions for anH ∈
R2n−1 to be almost entropic whenn ≥ 4 [2]. In other words,
denoting byΓn the set of vectors inR2n−1 satisfying (1)–(3),
we have

Γ
∗
n ( Γn, n ≥ 4. (4)

A number of non-Shannon-type information inequalities sat-
isfied by the members ofΓ

∗
n have subsequently been found in

[2]–[4], but the full characterization ofΓ
∗
n remains an open

problem.
In this paper, we will show that an averaged version ofΓ

∗
n

can be more easily characterized.
Definition 1: For a vectorH = (Hα)α⊂N ,α6=∅ ∈ R2n−1,

we define its average as

Ψ(H) , (h1, . . . , hn), (5)

wherehk =
(
n
k

)−1 ∑

|α|=k Hα. If H is the entropy function
of random vectorX, we callh = Ψ(H) the average entropy
function. Ψ then mapsΓ∗

n to the setΦ∗
n , Ψ(Γ∗

n) of all

average entropy functions,Γ
∗
n to the closureΦ

∗
n, andΓn to

Φn , Ψ(Γn).
From the definition (1)–(3) ofΓn, Φn can be given by

Φn = {(h1, . . . , hn) |hk−1 − 2hk + hk+1 ≤ 0,

k = 1, . . . , n},
(6)

where we leth0 = 0 andhn+1 = hn for convenience.Φ
∗
n is

obviously a subset ofΦn sinceΓ
∗
n ⊆ Γn, but we will show that

they are actually equal. In other words,Φ
∗
n is characterizable

solely with the Shannon-type information inequalities.

Theorem 1:Φ
∗
n = Φn.

This theorem will be proved in the next section.

II. PROOF OF THETHEOREM

It is only necessary to prove thatΦn ⊆ Φ
∗
n. We first

introduce a one-to-one transform to giveΦn a simpler form.
Definition 2: For a vectorh = (h1, . . . , hn) ∈ Rn, we

define its second-order difference as

Θ(h) = (g1, . . . , gn), (7)

wheregk = hk−1 − 2hk + hk+1, k = 1, . . . , n, with h0 = 0
andhn+1 = hn. Θ mapsΦ∗

n to Λ∗
n , Θ(Φ∗

n), Φ
∗
n to Λ

∗
n, and

Φn to Λn , Θ(Φn).
From (6), we have

Λn = {(g1, . . . , gn) | gk ≤ 0, k = 1, . . . , n}. (8)

As Ψ andΘ are both linear maps, andΓ
∗
n is a convex cone

[5], Φ
∗
n andΛ

∗
n are both convex cones as well. Therefore, to

prove thatΦn ⊆ Φ
∗
n or equivalentlyΛn ⊆ Λ

∗
n, it is sufficient

to prove that

gk , (0, . . . , 0
︸ ︷︷ ︸

k−1

,−a, 0, . . . , 0) ∈ Λ∗
n (9)

for k = 1, . . . , n and somea > 0. In other words, for each
k we need to find a random vectorX whose average entropy
function is

hk , Θ−1(gk) = a · (1, 2, . . . , k, . . . , k). (10)

This X can be constructed from a Reed-Solomon code.
Specifically, letq be a power-of-two larger thann, C be the
codeword set of an(n, k) Reed-Solomon code onGF(q),
and X = (X1, . . . , Xn) be a random codeword uniformly
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distributed overC, then the entropy function ofX is (10) with
a = log q, as shown below.

Let j1, . . . , jn be distinct indices in1, . . . , n. Accord-
ing to the properties of Reed-Solomon codes, given any
x∗
j1
, . . . , x∗

jk
∈ GF(q), there exists a uniquex =

(x1, . . . , xn) ∈ C with xjl = x∗
jl

, l = 1, . . . , k. For anyx∗
j1

∈
GF(q), there are thusqk−1 codewordsx ∈ C with xj1 = x∗

j1
,

one for each value combination onk − 1 other positions, and
sinceX is equal to each codeword with probabilityq−k, we
have p(Xj1 = x∗

j1
) = q−1, so H(Xj1) = log q. Similarly,

H(Xj1 , Xj2) = 2 log q, . . . , H(Xj1 , . . . , Xjk) = k log q. For
l = k+1, . . . , n, givenxj1 , . . . , xjl , there is either one match-
ing codeword inC or none, thereforep(Xj1 = xj1 , . . . , Xjl =
xjl) is q−k on its support, andH(Xj1 , . . . , Xjl) = k log q.
Consequently, the average entropy function ofX is (10) with
a = log q as desired, and for eachl, all

(
n
l

)
l-variable joint

entropies ofX that are being averaged actually have the same
value.

III. D ISCUSSION

Determination ofΓ
∗
n is important due to its close connection

to the capacity region of general multi-source multi-sink wired
networks [6], [7], but this seems to be a difficult problem,
and even if a full characterization is found, computational
difficulties due to Γ

∗
n’s high dimensionality and complex

structure might reduce its usefulness in practice [8]. Whatwe
have shown is that the regionΦ

∗
n obtained by averaging the

k-variable joint entropies has a much simpler structure: it is
not affected by the non-Shannon information inequalities,and
the linear Reed-Solomon codes used in the proof suggest that
the suboptimality of linear network coding is also hidden by
this averaging. On one hand, this means that further work
on the characterization ofΓ

∗
n must focus on the variation

among thek-variable entropies, not just their averages. On
the other hand, many practically interesting networks havea
somewhat symmetric structure, possibly in a statistical sense,
and an appropriately averaged version ofΓ

∗
n (not necessarily

as simplistic asΦ
∗
n) might provide a tractable method for the

determination of their capacity regions.
Average entropy functions are also closely related to the

MAP EXIT functions discussed in e.g. [9] for largen.
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