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Abstract— THIS PAPER IS ELIGIBLE FOR THE STUDENT  average entropy functionf‘, to the closure®
PAPER AWARD. The closure of the set of entropy functions ¢, £ U(Ty,).

associated withn discrete variables, Fn, is a convex cone in L ;
(2™ — 1)-dimensional space, but its full charactenzatlon remains From the definition[{1)&(3) of', &, can be given by
.. ,hn) | hp_1— 2hg + hk+1 <0,

an open problem In this paper, we mapL,, to an n-dimensional &, = {(hy,.
k=1,...,n},

andT,, to

n

(6)

region ®,, by averaging the joint entroples with the same number
of varlables and show that the simpler®,, can be characterized

solely by the Shannon-type information inequalities. . —
where we lethy = 0 and h,,+1 = h,, for convenience®,, is

. INTRODUCTION obviously a subset ob,, sincefz C I', but we will show that
they are actually equal. In other wordB,, is characterizable

Given an n-dimensional discrete random vectdf = . ) S "
" solely with the Shannon-type information inequalities.

(X1,...,X,), for each non-empty subset of N =
{1,2,...,n} there is a joint entropyH (X,) with X, = Theorem 1.3, = ®,,.
(Xi)ica,» and the2™ — 1 joint entropies form the entropy
function (H(X4))aca,a2e Of X. We can then defing’;, C

R?"~1 as the set of all possible entropy functions mvolvmg Il. PROOF OF THETHEOREM
n discrete random variables, ai as its closure. A vector

H € R?" ! is called entropic iff € I'*, and almost entropic 't 'S only necessary to prove thak, C ®,. We first
if He T [1] introduce a one-to-one transform to gi®e a simpler form.
» 1]

Definition 2: For a vectorh = (hq,...,h,) € R", we
define its second-order difference as

This theorem will be proved in the next section.

Al H = (Hu)acnazo € T, satisfy the following
Shannon-type information inequalities for any subsetss

of N (we let Hy = 0 for convenience): O(h) = (g1 gn) @)
Ho 20, (1) wheregy = hi—1 — 2hi + hysr, k = 1,...,n, with hy = 0
H, < Hs, aCSp, (2) andh,i1 = h,. © mapsd* to A* £ O(d*), d, to A, and
A
H,+ Hg ZH(auﬁ) +H(amﬁ)- 3) ®, to A, :G(q)n)-

From [8), we have
However, [[1)4(B) are not sufficient conditions for &h €

R2"~! to be almost entropic when > 4 [2]. In other words, Ap={(g1,---,9n) | <0, k=1,...,n}. (8)
denoting byl',, the set of vectors ifiR?" ~! satisfying [1)-I(B),

As ¥ and® are both linear maps, arfd, is a convex cone
we have

[5], @, andA,, are both convex cones as well. Therefore, to
prove that®,, C @, or equivalentlyA,, C A, it is sufficient

A number of non-Shannon-type information inequalities salo prove that

isfied by the members df have subsequently been found in

*

T,cl,, n>4 4)

A *

[2]-[4], but the full characterization of, remains an open 8k = (u’ —0,0,-..,0) €A, ©
problem. k=1

In this paper, we will show that an averaged versiorfbf for k = 1,...,n and somez > 0. In other words, for each
can be more easily characterized. k we need to find a random vect® whose average entropy

Definition 1: For a vectorH = (Ho)acarazo € R? 71, function is
we define its average as

hy 20 gy =a-(1,2,...,k,..., k). (10)

This X can be constructed from a Reed-Solomon code.
wherehy = (’,;)_1 Zm:k H,. If H is the entropy function Specifically, letq be a power-of-two larger than, C be the
of random vectoiX, we callh = ¥(H) the average entropy codeword set of an(n,k) Reed-Solomon code ofF(q),
function. U then mapsl'’ to the set®* £ W(I'*) of all and X = (Xi,...,X,) be a random codeword uniformly
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distributed ovelC, then the entropy function & is (I0) with [5]
a = log g, as shown below.

Let ji,...,j, be distinct indices inl,...,n. Accord- [6]
ing to the properties of Reed-Solomon codes, given any
af,...,xl, € GF(q), there exists a uniquex =

(x1,...,2n) €Cwith z;, =27, 1 =1,...,k Foranyz} €
GF(q), there are thug*~! codewordsx € C with z;, = zj,
one for each value combination @&n- 1 other positions, and (8]
sinceX is equal to each codeword with probabilifgy*, we 9]
have p(X;, = z3) = ¢~', so H(X;,) = logq. Similarly,
H(X;,X;,) =2logq, ..., HXj,,...,X,,) = klogq. For
l=k+1,...,n,givenz;, ,...,z;, there is either one match-
ing codeword inC or none, thereforg(X;, = z;,,...,X; =

x;) is ¢~* on its support, and?(Xj,,...,X;,) = klogg.
Consequently, the average entropy functioriXofs (I0) with

a = logq as desired, and for eadh all (7) l-variable joint
entropies ofX that are being averaged actually have the same
value. [ |

IIl. DISCUSSION

Determination of",, is important due to its close connection
to the capacity region of general multi-source multi-sirikeat
networks [6], [7], but this seems to be a difficult problem,
and even if a full characterization is found, computational
difficulties due ton’s high dimensionality and complex
structure might reduce its usefulness in practice [8]. Winat
have shown is that the regio_hz obtained by averaging the
k-variable joint entropies has a much simpler structuresit i
not affected by the non-Shannon information inequalithes)
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the linear Reed-Solomon codes used in the proof suggest that

the suboptimality of linear network coding is also hidden by
this averaging. On one hand, this means that further work
on the characterization of, must focus on the variation
among thek-variable entropies, not just their averages. On
the other hand, many practically interesting networks heave
somewhat symmetric structure, possibly in a statisticabsge
and an appropriately averaged versionﬁif (not necessarily
as simplistic asffl) might provide a tractable method for the
determination of their capacity regions.

Average entropy functions are also closely related to the
MAP EXIT functions discussed in e.g. [9] for large
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