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Abstract— Explicit characterization and computation of the
multi-source network coding capacity region (or even bounds)
is long standing open problem. In fact, finding the capacity
region requires determination of the set of all entropic vectors
Γ∗, which is known to be an extremely hard problem. On the
other hand, calculating the explicitly known linear programming
bound is very hard in practice due to an exponential growth
in complexity as a function of network size. We give a new,
easily computable outer bound, based on characterization of
all functional dependencies in networks. We also show that the
proposed bound is tighter than some known bounds.

I. INTRODUCTION

The network coding approach introduced in [1], [2] general-
izes routing by allowing intermediate nodes to forward packets
that are coded combinations of all received data packets. This
yields many benefits that are by now well documented in
the literature [3]–[6]. One fundamental open problem is to
characterize the capacity region and the classes of codes that
achieve capacity. The single session multicast problem is well
understood. In this case, the capacity region is characterized by
max-flow/min-cut bounds and linear network codes maximize
throughput [2].

Significant complications arise in more general scenarios,
involving more than one session. Linear network codes are not
sufficient for the multi-source problem [7], [8]. Furthermore,
a computable characterization of the capacity region is still
unknown. One approach is to bound the capacity region by the
intersection of a set of hyperplanes (specified by the network
topology and sink demands) and the set of entropy functions
Γ∗ (inner bound), or its closure Γ̄∗ (outer bound) [3], [9], [10].
An exact expression for the capacity region does exist, again
in terms of Γ∗ [11]. Unfortunately, this expression, or even
the bounds [3], [9], [10] cannot be computed in practice, due
to the lack of an explicit characterization of the set of entropy
functions for more than three random variables. In fact, it is
now known that Γ∗ cannot be described as the intersection
of finitely many half-spaces [12]. The difficulties arising from
the structure of Γ∗ are not simply an artifact of the way the
capacity region and bounds are written. In fact it has been
shown that the problem of determining the capacity region
for multi-source network coding is completely equivalent to
characterization of Γ∗ [8].

One way to resolve this difficulty is via relaxation of the
bound, replacing the set of entropy functions with the set
of polymatroids Γ (which has a finite characterization). In

practice however, the number of variables and constraints
increase exponentially with the number of links in the network,
and this prevents practical computation for any meaningful
case of interest.

In this paper, we provide an easily computable relaxation of
the LP bound. The main idea is to find sets of edges which are
determined by the source constraints and sink demands such
that the total capacity of these sets bounds the total throughput.
The resulting bound is tighter than the network sharing bound
[13] and the bounds based on information dominance [14].

Section II provides some background on pseudo-variables
and pseudo entropy functions (which generalize entropy func-
tions) [8]. These pseudo variables are used to describe a family
of linear programming bounds on the capacity region for
network coding. In Section III we give an abstract definition
of a functional dependence graph, which expresses a set of
local dependencies between pseudo variables (in fact a set
of constraints on the pseudo entropy). Our definition extends
that introduced by Kramer [15] to accommodate cycles. This
section also provides the main technical ingredients for our
new bound. In particular, we describe a test for functional
dependence, and give a basic result relating local and global
dependence. The main result is presented in Section IV.

Notation: Sets will be denoted with calligraphic typeface,
e.g. X . Set complement is denoted by the superscript X c

(where the universal set will be clear from context). Set
subscripts identify the set of objects indexed by the subscript:
XA = {Xa, a ∈ A}. The power set 2X = {A,A ⊆ X} is the
collection of all subsets of X . Where no confusion will arise,
set union will be denoted by juxtaposition, A∪B = AB, and
singletons will be written without braces.

II. BACKGROUND

A. Pseudo Variables

We give a brief revision of the concept of pseudo-variables,
introduced in [8]. Let N = {1, 2, . . . , N} be a finite set, and
let XN = {X1, X2, . . . , XN} be a ground set associated with
a real-valued function g : 2XN 7→ R defined on subsets of XN ,
with g(∅) = 0. We refer to the elements of XN as pseudo-
variables and the function g as a pseudo-entropy function.
Pseudo-variables and pseudo-entropy generalize the familiar
concepts of random variables and entropy. Pseudo-variables
do not necessarily take values, and there may be no associated
joint probability distribution. A pseudo-entropy function may
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assign values to subsets of XN in a way that is not consistent
with any distribution on a set of N random variables. A
pseudo-entropy function g can be viewed as a point in a 2N

dimensional Euclidean space, where each coordinate of the
space is indexed by a subset of XN .

A function g is called polymatroidal if it satisfies the
polymatroid axioms.

g(∅) = 0 (1)
g(XA) ≥ g(XB), if B ⊆ A non-decreasing

(2)
g(XA) + g(XB) ≥ g(XA∪B) + g(XA∩B) submodular (3)

It is called Ingletonian if it satisfies Ingleton’s inequalities
(note that Ingletonian g are also polymatroids) [16]. A function
g is entropic if it corresponds to a valid assignment of joint
entropies on N random variables, i.e. there exists a joint
distribution on N discrete finite random variables Y1, . . . , YN

with g(XA) = H(YA),A ⊆ N . Finally, g is almost entropic
if there exists a sequence of entropic functions h(k) such that
limk→∞ h(k) = g. Let Γ∗ ⊂ Γ̄∗ ⊂ ΓIn ⊂ Γ respectively
denote the sets of all entropic, almost entropic, Ingletonian
and polymatroidal, functions.

Both Γ and ΓIn are polyhedra. They can be expressed as
the intersection of a finite number of half-spaces in RN .
In particular, every g ∈ Γ satisfies, (1)-(3), which can be
expressed minimally in terms of

N +
(
N

2

)
2N−2

linear inequalities involving 2N−1 variables [9]. Each g ∈ ΓIn

satisfies an additional
1
4

6N − 5N +
3
2

4N − 3N +
1
4

2N

linear inequalities [16].
Definition 1: Let A,B ⊆ X be subsets of a set of pseudo-

variables X with pseudo-entropy g. Define1

g (B | A) , g (AB)− g(A). (4)

A pseudo-variable X ∈ X is said to be a function of a set of
pseudo-variables A ⊆ X if g (X | A) = 0.

Definition 2: Two subsets of pseudo-variables A and B are
called independent if g (AB) = g(A) + g(B), denoted by
A⊥B.

B. Network Coding and Capacity Bounds

Let the directed acyclic graph G = (V, E) serve as a
simplified model of a communication network with error-
free point-to-point communication links. Edges e ∈ E have
capacity Ce > 0. For edges e, f ∈ E , write f → e as shorthand
for head(f) = tail(e). Similarly, for an edge f ∈ E and a node
u ∈ V , the notations f → u and u → f respectively denote
head(f) = u and tail(f) = u.

1Note that this yields the chain rule for pseudo-entropies to be true by
definition.

Let S be an index set for a number of multicast sessions,
and let {Ys : s ∈ S} be the set of source variables. These
sources are available at the nodes identified by the mapping
a : S 7→ V . Each source may be demanded by multiple sink
nodes, identified by the mapping b : S 7→ 2V . Each edge
e ∈ E carries a variable Ue which is a function of incident
edge variables and source variables.

Definition 3: Given a network G = (V, E), with sessions
S , source locations a and sink demands b, and a subset of
pseudo-entropy functions ∆ ⊂ R2|S|+|E| on pseudo-variables
YS , UE , let R(∆) = {(Rs, s ∈ S)} be the set of source rate
tuples for which there exists a g ∈ ∆ satisfying

⊥s∈S Ys (C1)
g (Ue | {Ys : a(s)→ e}, {Uf : f → e}) = 0, e ∈ E (C2)

g (Ys | Ue : e→ u) = 0, u ∈ b(s) (C3)
g(Ue) ≤ Ce, e ∈ E (C4)
g(Ys) ≥ Rs, s ∈ S

It is known that R(Γ∗) and R(Γ̄∗) are inner and outer bounds
for the set of achievable rates (i.e. rates for which there exist
network codes with arbitrarily small probability of decoding
error).

It is known that R(Γ) is an outer bound for the set of
achievable rates [9]. Similarly,R(ΓIn) is an outer bound for the
set of rates achievable with linear network codes [8]. Clearly
R(ΓIn) ⊂ R(Γ). The sum-rate bounds induced by R(ΓIn) and
R(Γ) can in principle be computed using linear programming,
since they may be reformulated as

max
∑
s∈S

g(Ys) subject to

g ∈ C1 ∩ C2 ∩ C3 ∩ C4 ∩∆
(5)

where ∆ is either Γ or ΓIn, and C1, C2, C3, C4 are the subsets of
pseudo-entropy functions satisfying the so-labeled constraints
above. Clearly the constraint set C1∩C2∩C3∩C4∩∆ is linear.

One practical difficulty with computation of (5) is the
number of variables and the number of constraints due to Γ (or
ΓIn), both of which increase exponentially with |E|. The aim
of this paper is to find a simpler outer bound. One approach
is to use the functional dependence structure induced by the
network topology to eliminate variables or constraints from
Γ [17]. Here we will take a related approach, that directly
delivers an easily computable bound.

III. FUNCTIONAL DEPENDENCE GRAPHS

Definition 4 (Functional Dependence Graph): Let X =
{X1, . . . , XN} be a set of pseudo-variables with pseudo-
entropy function g. A directed graph G = (V, E) with |V| = N
is called a functional dependence graph for X if and only if
for all i = 1, 2, . . . , N

g (Xi | {Xj : (j, i) ∈ E}) = 0. (6)
With an identification of Xi and node i ∈ V , this Definition
requires that each pseudo-variable Xi is a function (in the



sense of Definition 1) of the pseudo-variables associated with
its parent nodes. To this end, define

π(i) = {j ∈ V : (j, i) ∈ E}.

Where it does not cause confusion, we will abuse notation and
identify pseudo-variables and nodes in the FDG, e.g. (6) will
be written g (i | π(i)) = 0.

Definition 4 is more general than the functional dependence
graph of [15, Chapter 2]. Firstly, in our definition there is
no distinction between source and non-source random vari-
ables. The graph simply characterizes functional dependence
between variables. In fact, our definition admits cyclic directed
graphs, and there may be no nodes with in-degree zero
(which are source nodes in [15]). We also do not require
independence between sources (when they exist), which is
implied by the acyclic constraint in [15]. Our definition of
an FDG admits pseduo-entropy functions g with additional
functional dependence relationships that are not represented by
the graph. It only specifies a certain set of conditional pseudo-
entropies which must be zero. Finally, our definition holds for
a wide class of objects, namely pseudo-variables, rather than
just random variables.

Clearly a functional dependence graph in the sense of [15]
satisfies the conditions of Definition 4, but the converse is not
true. Henceforth when we refer to a functional dependence
graph (FDG), we mean in the sense of Definition 4. Further-
more, an FDG is acyclic if G has no directed cycles. A graph
will be called cyclic if every node is a member of a directed
cycle.2

Definition 4 specifies an FDG in terms of local dependence
structure. Given such local dependence constraints, it is of
great interest to determine all implied functional dependence
relations. In other words, we wish to find all sets A and B
such that g(AB) = g(A).

Definition 5: For disjoint sets A,B ⊂ V we say A deter-
mines B in the directed graph G = (V, E), denoted A → B,
if there are no elements of B remaining after the following
procedure:

Remove all edges outgoing from nodes in A and subse-
quently remove all nodes and edges with no incoming edges
and nodes respectively.
For a given set A, let φ(A) ⊆ V be the set of nodes deleted
by the procedure of Definition 5. Clearly φ(A) is the largest
set of nodes with A → φ(A).

Lemma 1 (Grandparent lemma): Let G = (V, E) be a func-
tional dependence graph for a polymatroidal pseudo-entropy
function g ∈ Γ. For any j ∈ V with i ∈ π(j) 6= ∅

g (j | π(i), π(j) \ i) = 0.
Proof: By hypothesis, g(k | π(k)) = 0 for any k ∈ V .

Furthermore, note that for any g ∈ Γ, conditioning cannot
increase pseudo-entropy3 and hence g(k | π(k),A) = 0 for

2In this paper we do not consider graphs that are neither cyclic or acyclic.
3This is a direct consequence of submodularity, (3).

any A ⊆ V . Now using this property, and the chain rule

0 = g(j | π(j))
= g(j | π(j), π(i))
= g(j, π(j), π(i))− g(π(j), π(i))
= g(j, π(j) \ i, π(i))− g(π(j), π(i))
= g(j, π(j) \ i, π(i))− g(π(j) \ i, π(i))
= g(j | π(i), π(j) \ i).

We emphasize that in the proof of Lemma 1 we have only
used the submodular property of polymatroids, together with
the hypothesized local dependence structure specified by the
FDG.

Clearly the lemma is recursive in nature. For example, it is
valid for g(j | π(j) \ i, π(i) \ k, π(k)) = 0 and so on. The
implication of the lemma is that a pseudo-variable Xj in an
FDG is a function of XA for any A ⊂ V with A → j.

Theorem 1: Let G be a functional dependence graph on
the pseudo-variables X with polymatroidal pseudo-entropy
function g. Then for disjoint subsets A,B ⊂ V ,

A → B =⇒ g(B | A) = 0.
Proof: Let A → B in the FDG G. Then, by Definition

5 there must exist directed paths from some nodes in A to
a every node in B, and there must not exist any directed
path intersecting B that does not also intersect A. Recursively
invoking Lemma 1, the theorem is proved.

Definition 5 describes an efficient graphical procedure to
find implied functional dependencies for pseudo-variables with
local dependence specified by a functional dependence graph
G. It captures the essence of the chain rule (4) for pseudo-
entropies and the fact that pseudo-entropy is non-increasing
with respect to conditioning (3), which are the main arguments
necessary for manual proof of functional dependencies.

One application of Definition 5 is to find a reduction of a
given set C, i.e. to find a disjoint partition of C into A and B
with A → B, which implies g(C) = g(AB) = g(A). On the
other hand, it also tells which sets are irreducible.

Definition 6 (Irreducible set): A set of nodes B in a func-
tional dependence graph is irreducible if there is no A ⊂ B
with A → B.
Clearly, every singleton is irreducible. In addition, in an
acyclic FDG, irreducible sets are basic entropy sets in the
sense of [17]. In fact, irreducible sets generalize the idea of
basic entropy sets to the more general (and possibly cyclic)
functional dependence graphs on pseudo-variables.

A. Acyclic Graphs

In an acyclic graph, let An(A) denote the set of ancestral
nodes, i.e. for every node a ∈ An(A), there is a directed path
from a to some b ∈ A.

Of particular interest are the maximal irreducible sets:
Definition 7: An irreducible set A is maximal in an acyclic

FDG G = (V, E) if V\φ(A)\An(A) , (V\φ(A))\An(A) =
∅, and no proper subset of A has the same property.



Note that for acyclic graphs, every subset of a maximal
irreducible set is irreducible. Conversely, every irreducible set
is a subset of some maximal irreducible set [17]. Irreducible
sets can be augmented in the following way.

Lemma 2 (Augmentation): Let A ⊂ V in an acyclic FDG
G = (V, E). Let B = V \ φ(A) \ An(A). Then A ∪ {b} is
irreducible for every b ∈ B.
This suggests a process of recursive augmentation to find
all maximal irreducible sets in an acyclic FDG (a similar
process of augmentation was used in [17]). Let G be a
topologically sorted4 acyclic functional dependence graph
G = ({0, 1, 2, . . . }, E). Its maximal irreducible sets can be
found recursively via AllMaxSetsA(G, {}) in Algorithm 1. In
fact, AllMaxSetsA(G,A) finds all maximal irreducible sets
containing A.

Algorithm 1 AllMaxSetsA(G,A)
Require: G = (V, E),A ⊂ V
B ← V \ φ(A) \An(A)
if B 6= ∅ then

Output {AllMaxSetsA(G,A ∪ {b}) : b ∈ B}
else

Output A
end if

B. Cyclic Graphs

In cyclic graphs, the notion of a maximal irreducible set is
modified as follows:

Definition 8: An irreducible set A is maximal in a cyclic
FDG G = (V, E) if V \ φ(A) = ∅, and no proper subset of A
has the same property.
For cyclic graphs, every subset of a maximal irreducible set is
irreducible. In contrast to acyclic graphs, the converse is not
true. In fact there can be irreducible sets that are not maximal,
and are not subsets of any maximal irreducible set. It is easy
to show that

Lemma 3: All maximal irreducible sets have the same
pseudo-entropy.
This fact will be used in development of our capacity bound
for network coding in Section IV below. We are interested in
finding every maximal irreducible set for cyclic graphs. This
may be accomplished recursively via AllMaxSetsC(G, {})
in Algorithm 2. Note that in contrast to Algorithm 1,
AllMaxSetsC(G,A) finds all maximal irreducible sets that do
not contain any node in A.

Example 1 (Butterfly network): Figure 1 shows the well-
known butterfly network and Figure 2 shows the corresponding
functional dependence graph. Nodes are labeled with node
numbers and pseudo-variables (The sources variables are Y1

and Y2. The Ui are the edge variables, carried on links
with capacity Ci). Edges in the FDG represent the functional
dependency due to encoding and decoding requirements.

4I.e. Order nodes such that if there is a directed edge from node i to j then
i ≺ j [9, Proposition 11.5].

Algorithm 2 AllMaxSetsC(G,A)
Require: G = (V, E),A ⊂ V

if v 6∈ φ (Ac \ {v}) ,∀v ∈ Ac then
Output Ac

else
for all v ∈ Ac do

if v ∈ φ (Ac \ {v}) then
Output AllMaxSetsC(G,A ∪ {v})

end if
end for

end if

Y1

Y2

U1

U2 U3

U4U5

U6 U7

Y2

Y1

1 2

3

4

5 6

Fig. 1. The butterfly network.

The maximal irreducible sets of the cyclic FDG shown in
Figure 2 are

{1, 2}, {1, 5}, {1, 7}, {1, 8}, {2, 4}, {2, 7}, {2, 9}, {3, 4, 5},
{3, 4, 8}, {3, 7}, {3, 8, 9}, {4, 5, 6}, {5, 6, 9}, {6, 7}, {6, 8, 9}.

IV. FUNCTIONAL DEPENDENCE BOUND

We now give an easily computable outer bound for the total
capacity of a network coding system.

Theorem 2 (Functional Dependence Bound): Let
C1, C2, C3, C4 be given network coding constraint sets.
Let G = (V, E) be a functional dependence graph5 on the

5This FDG will be cyclic due to the sink demands C3

1 2

3 4 5 6

7

8 9

Y1 Y2

U1 U2 U3 U4

U5

U6 U7

Fig. 2. FDG of the butterfly network.



(source and edge) pseudo-variables YS , UE with pseudo-
entropy function g ∈ C1 ∩ C2 ∩ C3 ∩ C4 ∩ Γ. Let BM be
the collection of all maximal irreducible sets not containing
source variables. Then∑

s∈S
g(Ys) ≤ min

B∈BM

∑
e:Ue∈B

Ce.

Proof: Let B ∈ BM , then∑
s∈S

g(Ys)=g(YS) C1

=g(Ue : Ue ∈ B) Lemma 3

≤
∑

Ue∈B
g(Ue) Subadditivity of g ∈ Γ

≤
∑

e:Ue∈B
Ce. C4

Maximal irreducible sets which do not contain source variables
are “information blockers” from sources to corresponding
sinks. They can be interpreted as information theoretic cuts in
in the network. Note that an improved bound can in principle
be obtained by using additional properties of Γ (rather than
just subadditivity). Similarly, bounds for linear network codes
could be obtained by using ΓIn.

Corollary 1: For single source multicast networks, Theo-
rem 2 becomes the max-flow bound [9, Theorem 11.3] and
hence is tight.

Example 2 (Butterfly network): The functional dependence
bound for the butterfly network of Figure 2 is

R1 +R2 ≤ min{C3 + C7, C6 + C7, C3 + C4 + C5,

C3 + C4 + C8, C3 + C8 + C9, C4 + C5 + C6,

C5 + C6 + C9, C6 + C8 + C9}.
To the best of our knowledge, Theorem 2 is the tightest

bound expression for general multi-source multi-sink network
coding (apart from the computationally infeasible LP bound).
Other bounds like the network sharing bound [13] and bounds
based on information dominance [14] use certain functional
dependencies as their main ingredient. In contrast, Theorem 2
uses all the functional dependencies due to network encoding
and decoding constraints.

V. CONCLUSION

Explicit characterization and computation of the multi-
source network coding capacity region requires determination
of the set of all entropic vectors Γ∗, which is known to be an
extremely hard problem. The best known outer bound can in
principle be computed using a linear programming approach.
In practice this is infeasible due to an exponential growth in
the number of constraints and variables with the network size.

We gave an abstract definition of a functional dependence
graph, which extends previous notions to accommodate not
only cyclic graphs, but more abstract notions of dependence. In
particular we considered polymatroidal pseudo-entropy func-
tions, and demonstrated an efficient and systematic method

to find all functional dependencies implied by the given local
dependencies.

This led to our main result, which was a new, easily
computable outer bound, based on characterization of all
functional dependencies in networks. We also show that the
proposed bound is tighter than some known bounds.
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