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Abstract—The separability in parallel Gaussian interference
channels (PGICs) is studied in this paper. We generalize the
separability results in one-sided PGICs (OPGICs) by Sunget
al. to two-sided PGICs (TPGICs). Specifically, for strong and
mixed TPGICs, we show necessary and sufficient conditions for
the separability. For this, we show diagonal covariance matrices
are sum-rate optimal for strong and mixed TPGICs.

I. I NTRODUCTION

Interference is a fundamental problem in wireless commu-
nications. Studying the interference channel (IC) can giveus
insights into how to deal with the problem. Specifically,2-user
single-input single-output (SISO) Gaussian IC (GIC) [1]-[6]
has been studied. The capacity regions of the2-user GICs
have been clarified for very strong [1] and strong [2], [3]
interference cases. Recently, the sum capacity for the very
weak interference has been discovered [4]-[6], where a proper
noisy version of genie is used for the tight upper bound on
the sum capacity.

So far, most of the research on the IC has been focussed on
the GIC itself. Recently, parallel GIC (PGIC) has been studied
with interest. Here, the PGIC has several independent GICs
as sub-channels. In the PGIC, joint coding and independent
coding can be considered, where joint coding means coding
over multiple sub-channels, and independent coding refersto
coding over each sub-channel separately.

In 2-user PGICs, there have been investigations into whether
independent coding suffices to achieve the (sum) capacity, i.e.,
whether the separability holds or not. In [7], the separability
has been considered for one-sided PGIC (OPGIC), which has
been further studied in the ergodic sense in [8]. Recently,
the independent coding has been shown to achieve the sum
capacity in the noisy interference regime [9], where treating
interference as noise in each sub-channel is optimal in the
sense of the sum capacity.

The main contribution of this paper is in considering the
separability in a class of strong, mixed, and weak PGICs. This
paper is organized as follows. In Section II, the channel model
is described. In Section III, we show our separability results
in the sense of the sum capacity. Then, we conclude the paper
in Section IV.

II. CHANNEL MODEL

We consider PGICs described as

Y1 = H11X1 +H21X2 +N1 (1)

and

Y2 = H12X1 +H22X2 +N2, (2)

where Yk = [yk1 yk2 · · · ykM ]T ∈ R
M , Xk =

[xk1 xk2 · · · xkM ]T ∈ R
M , k = 1, 2, whereM is the number

of sub-channels,ykm (xkm) is the received (transmitted) signal
at thek-th receiver (transmitter) in them-th sub-channel for
m = 1, 2, · · · , M , and

Hkl =











hkl,1 0 · · · 0
0 hkl,2 · · · 0
...

...
. . .

...
0 0 · · · hkl,M











is a diagonal channel matrix whose(m,m)-th component is
the non-zero channel coefficient from thek-th transmitter to
the l-th receiver in them-th sub-channel. The noise vectors
N1 andN2 are additive white Gaussian with zero mean and
covariance matrix ofIM . Here,IM denotes theM×M identity
matrix.

At thek-th transmitter, a messageMk uniformly distributed
over the message index set{1, 2, · · · , 2nRk} is mapped
to the transmitted codeword[Xk,1, Xk,2, · · · , Xk,n] of
length n, where Xk,i = [xk1,i xk2,i · · ·xkM,i]

T for i =
1, 2, · · · , n, which is subject to an average power constraint
per sub-channel, i.e.,

1

n

n
∑

i=1

|xkm,i|
2 ≤ Pkm. (3)

At the k-th receiver, the block ofn received signal vector
[Yk,1, Yk,2, · · · ,Yk,n] is used to decode the message and
an error happens when the output of the decoderM̂k 6= Mk.

The error probability for thek-th user is given by

λk,n = Pr(M̂k 6= Mk) (4)

assuming uniform distribution for messages. A rate pair
(R1, R2) is said to be achievable if we have a sequence of
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encoding and decoding functions such thatλn → 0 asn → ∞,
where λn is the maximum ofλ1,n and λ2,n. The capacity
region for the PGIC is defined as the closure of the set of all
achievable rate pairs.

Note that the PGIC of(1) and(2) is a special form of the
general multiple-input multiple-output (MIMO) GIC [10] with
diagonalHkl’s for k, l = 1, 2.

III. SUM CAPACITY

In this section, we analyze the sum capacity under joint
coding and under independent coding. Then, we investigate
whether the separability holds or not for some classes of
TPGICs. We start by stating the following lemma.

Lemma 1: Let w = [1 w2 · · · wK ]T be a weight vector
whosek-th element is the weight for thek-user’s rate with
wk ≥ 0. A covariance matrix for thek-th user is denoted
as Sk with constraint diag(Sk) ≤ Pk, where diag(Sk) and
Pk are diagonal matrices of sizeM × M whose (m,m)-
th components are the(m,m)-th element ofSk and Pkm,
respectively. Then, the weighted sum capacity of MIMO
IC denoted asf(w, P1, P2, · · · , PK) is concave in
(P1, P2, · · · , PK).

Proof: It is directly from [9]. Specifically, the set of
all achievable schemes with diag(Sk) ≤ Pk always in-
cludes TDM/FDM between any two achievable schemes with
diag(Sk) ≤ P

′
k and diag(Sk) ≤ P

′′
k , wherePk = λP′

k +(1−
λ)P′′

k for 0 ≤ λ ≤ 1.

A. Capacity region for PGICs

Notation 1: For full-rank square matricesS andT, S ≥ T

(S > T) means thatS − T is positive semidefinite (def-
inite). Let H

[m] denote (h11,m, h12,m, h21,m, h22,m) for
m = 1, 2, · · · , M . For notational convenience, we use the
following notations:

Am =
1

2
log2

(

1 + |h11,m|2P1m

)

, (5)

Bm =
1

2
log2

(

1 + |h12,m|2P1m

)

, (6)

Cm =
1

2
log2

(

1 + |h21,m|2P2m

)

, (7)

Dm =
1

2
log2

(

1 + |h22,m|2P2m

)

, (8)

Em =
1

2
log2

(

1 + |h11,m|2P1m + |h21,m|2P2m

)

, (9)

Fm =
1

2
log2

(

1 + |h12,m|2P1m + |h22,m|2P2m

)

, (10)

Gm =
1

2
log2

(

1 +
|h11,m|2P1m

1 + |h21,m|2P2m

)

, (11)

Hm =
1

2
log2

(

1 +
|h22,m|2P2m

1 + |h12,m|2P1m

)

, (12)

Im =
1

2
log2

(

1 + |h21,m|2P2 +
|h11,m|2P1

1 + |h12,m|2P1

)

, (13)

and

Jm =
1

2
log2

(

1 + |h12,m|2P1 +
|h22,m|2P2

1 + |h21,m|2P2

)

(14)

for m = 1, 2, · · · , M .
1) Strong TPGIC:
Lemma 2: For strong TPGIC, i.e.,H2

12 ≥ H
2
11 andH2

21 ≥
H

2
22, the capacity region is given by

⋃

diag(Sk)≤Pk, k=1, 2

{(R1, R2)|

0 ≤ R1 ≤ 1
2 log2

∣

∣IM +H11S1H
T
11

∣

∣ ,

0 ≤ R2 ≤ 1
2 log2

∣

∣IM +H22S2H
T
22

∣

∣ ,

0 ≤ R1 +R2 ≤ 1
2 log2

∣

∣IM +
(

H11S1H
T
11 +H21S2H

T
21

)∣

∣ ,

0 ≤ R1 +R2 ≤ 1
2 log2

∣

∣IM +
(

H12S1H
T
12 +H22S2H

T
22

)∣

∣















,(15)

where the corresponding sum capacity is given by

min

(

M
∑

m=1

Am +Dm,

M
∑

m=1

Em,

M
∑

m=1

Fm

)

, (16)

whereSk is the covariance matrix ofXk for k = 1, 2.
Proof: First, the capacity region(15) follows from [11].

Second, using Hadamard’s inequality [12], we see that diago-
nal matricesS1 andS2 suffice to achieve all the rate pairs in
the capacity region(15), from which we get(16).

Corollary 1: When we use each sub-channel instance in-
dependently in the strong TPGIC, the following is the sum
capacity.

M
∑

m=1

min (Am +Dm, Em, Fm) . (17)

Proof: It follows from Lemma 2.
Lemma 3: In the low signal-to-noise ratio(SNR) regime,

the sum capacity for strong TPGIC under joint coding coin-
cides asymptotically with that under independent coding, i.e.,

lim
max
k,m

Pkm→0

min
(

∑M

m=1 Am +Dm,
∑M

m=1 Em,
∑M

m=1 Fm

)

∑M

m=1 min (Am +Dm, Em, Fm)

= 1.

(18)

Proof: We refer readers to [16].
2) Mixed TPGIC:
Lemma 4: For mixed TPGIC withH2

12 ≥ H
2
11 andH2

21 ≤
H

2
22, the sum capacity is given by

min

(

M
∑

m=1

Fm,

M
∑

m=1

Dm +Gm

)

. (19)

Proof: The sum capacity for the mixed TPGIC is given
by

max
diag(Sk)≤Pk, k=1, 2

min











1
2 log2

∣

∣IM +H12S1H
T
12 +H22S2H

T
22

∣

∣ ,
1
2 log2

∣

∣

∣IM +H11S1H
T
11

(

IM +H21S2H
T
21

)−1
∣

∣

∣

+ 1
2 log2

∣

∣IM +H22S2H
T
22

∣

∣











,

(20)



which follows from [11]. Note that the following condition
∣

∣IM +H
2
22S2

∣

∣

|IM +H2
21S2|

≤

∣

∣IM +H
2
22P2

∣

∣

|IM +H2
21P2|

(21)

for any S2 with P2 = diag (S2) is sufficient to show that
diagonal covariance matricesP1 andP2 are optimal for the
sum capacity. Since(21) is satisfied wheneverH2

21 ≤ H
2
22

1,
(20) becomes(19), which completes the proof.

Remark 1: Maximizing power for each sub-channel is op-
timal for (20).

Corollary 2: For mixed TPGICs withH2
12 ≥ H

2
11 and

H
2
21 ≤ H

2
22, the sum capacity under independent coding is

given by

M
∑

m=1

min (Fm, Dm +Gm) . (22)

Proof: It follows from Lemma 4.
Lemma 5: In the lowSNR regime, for mixed TPGICs with

H
2
12 ≥ H

2
11 andH

2
21 ≤ H

2
22, the sum capacity under joint

coding coincides asymptotically with that under independent
coding, i.e.,

lim
max
k, m

Pkm→0

min
(

∑M

m=1 Fm,
∑M

m=1 Dm +Gm

)

∑M

m=1 min (Fm, Dm +Gm)
= 1. (23)

Proof: We refer readers to [16].
3) Noisy-interference TPGIC:
Lemma 6: There exist TPGICs that are separable when

the channel realizationH[m] at the m-th sub-channel is
included in Nm =

{

H
[m]
∣

∣

∣

|h21,m|
|h22,m| +

|h12,m|
|h11,m| ≤ 1

}

for all
m = 1, 2, · · · , M .

Proof: It follows from [9], where the separability is
proven when the power constraints satisfy a certain condition.

Remark 2: For the TPGIC where the channel realization
H

[m] at them-th sub-channel satisfies

|h21,m|

|h22,m|
+

|h12,m|

|h11,m|
> 1,

|h21,m|

|h22,m|
≤ 1, and

|h12,m|

|h11,m|
≤ 1

for all m = 1, 2, · · · , M , the sum capacity is not known
even for the TPGIC under independent coding.

B. Separability

1) Strong TPGIC:
Theorem 1: The strong TPGIC is separable iff

H
[m] ∈ S1m for all m = 1, 2, · · · , M, (24)

H
[m] ∈ S2m for all m = 1, 2, · · · , M, (25)

or

H
[m] ∈ S3m for all m = 1, 2, · · · , M, (26)

1We omit this proof due to space limitations. We refer readersto [16] for
the proof of this.

where

S1m =

{

H
[m]

∣

∣

∣

∣

1 + |h11,m|2P1m ≤
|h21,m|2

|h22,m|2
,

1 + |h22,m|2P2m ≤
|h12,m|2

|h11,m|2

}

,

S2m =

{

H
[m]

∣

∣

∣

∣

1 + |h11,m|2P1m >
|h21,m|2

|h22,m|2
≥ 1,

|h12,m|2

|h11,m|2
≥

|h22,m|2P2m

|h11,m|2P1m
·

(

|h21,m|2

|h22,m|2
− 1

)

+ 1

}

,

and

S3m =

{

H
[m]

∣

∣

∣

∣

1 + |h22,m|2P2m >
|h12,m|2

|h11,m|2
≥ 1,

|h12,m|2

|h11,m|2
<

|h22,m|2P2m

|h11,m|2P1m
·

(

|h21,m|2

|h22,m|2
− 1

)

+ 1

}

.

Proof: Since(16) is always greater than or equal to(17),
we only need to consider the condition for equality in the
following:

min

(

M
∑

m=1

Am +Dm,

M
∑

m=1

Em,

M
∑

m=1

Fm

)

≥

M
∑

m=1

min {Am +Dm, Em, Fm} . (27)

A necessary and sufficient condition for the equality is given
by

Am +Dm ≤ min{Em, Fm}, for all m = 1, 2, · · · , M,

Em ≤ min{Am +Dm, Fm}, for all m = 1, 2, · · · , M,

or

Fm ≤ min{Am +Dm, Em} for all m = 1, 2, · · · , M,

which completes the proof.
2) Mixed TPGIC:
Theorem 2: The mixed TPGIC withH2

12 ≥ H
2
11 and

H
2
21 ≤ H

2
22 is separable iff

H
[m] ∈ M

[1]
1m for all m = 1, 2, · · · , M (28)

or

H
[m] ∈ M

[1]
2m for all m = 1, 2, · · · , M, (29)

where

M
[1]
1m =

{

H
[m]

∣

∣

∣

∣

|h12,m|2

|h11,m|2
≤

1 + |h22,m|2P2,m

1 + |h21,m|2P2,m

}

(30)

and

M
[1]
2m =

{

H
[m]

∣

∣

∣

∣

|h12,m|2

|h11,m|2
>

1 + |h22,m|2P2,m

1 + |h21,m|2P2,m

}

.(31)

Proof: The sum capacity is given by

min

(

M
∑

m=1

Fm,

M
∑

m=1

Dm +Gm

)



from Lemma 4. Under the independent coding, the sum
capacity is given by

M
∑

m=1

min (Fm, Dm +Gm)

from Corollary 2. Note that

min

(

M
∑

m=1

Fm,

M
∑

m=1

Dm +Gm

)

≥

M
∑

m=1

min (Fm, Dm +Gm) ,

where the necessary and sufficient condition for the equality
is given by

Fm ≤ Dm +Gm for all m = 1, 2, · · · , M (32)

or

Fm > Dm +Gm for all m = 1, 2, · · · , M, (33)

which completes the proof.

Remark 3: In the low SNR regime, strong TPGICs are
separable asymptotically in the sense of the sum capacity,
which follows fromLemma 3. Also, in case of mixed TPGICs
with H

2
12 ≥ H

2
11 and H

2
21 ≤ H

2
22, the separability holds

asymptotically, which is confirmed byLemma 5.

3) Weak TPGIC: From Lemma 6, noisy-interference TPG-
ICs are separable in the sense of the sum capacity. Specif-
ically, single-user decoding at each receiver per sub-channel
is enough to achieve the sum capacity. Except for the noisy-
interference TPGICs, it is not known if weak TPGICs with
H

2
12 ≤ H

2
11 andH

2
21 ≤ H

2
22 are separable or not. However,

we can conclude the separability partially based on some
known inner and outer bounds.

First, for the TPGIC, the sum capacity under independent
coding is upper bounded by

M
∑

m=1

min (Am +Hm, Dm +Gm, Im + Jm) (34)

based on the outer bound results in [13] and [14]. Second,
for the TPGIC, the sum capacity under joint coding is lower
bounded by

max
diag(Skc)≤βkPk, diag(Skp)≤(1−βk)Pk 0≤βk≤1, k=1, 2

min (R1c +R2c, R12c) +R1p +R2p (35)

from the superposition coding based achievable scheme in

[15], where

R1c =min

(

1

2
log2

∣

∣IM +H11S1cH
T
11Z

−1
1

∣

∣ ,

1

2
log2

∣

∣IM +H12S1cH
T
12Z

−1
2

∣

∣

)

,

R2c =min

(

1

2
log2

∣

∣IM +H21S2cH
T
21Z

−1
1

∣

∣ ,

1

2
log2

∣

∣IM +H22S2cH
T
22Z

−1
2

∣

∣

)

,

R12c =min

(

1

2
log2

∣

∣IM +
(

H11S1cH
T
11 +H21S2cH

T
21

)

Z
−1
1

∣

∣ ,

1

2
log2

∣

∣IM +
(

H12S1cH
T
12 +H22S2cH

T
22

)

Z
−1
2

∣

∣

)

,

R1p =
1

2
log2

∣

∣

∣IM +H11S1pH
T
11

(

IM +H21S2pH
T
21

)−1
∣

∣

∣ ,

and

R2p =
1

2
log2

∣

∣

∣IM +H22S2pH
T
22

(

IM +H12S1pH
T
12

)−1
∣

∣

∣ ,

where fork = 1, 2, Skc (Skp) is covariance matrix ofXkc

(Xkp) which is the transmitted signal vector for common
(private) information withXk = Xkc + Xkp, andZk ’s are
defined as

Z1 = IM +H11S1pH
T
11 +H21S2pH

T
21 (36)

and

Z2 = IM +H12S1pH
T
12 +H22S2pH

T
22. (37)

Since we can show there exist TPGICs such that(35) > (34)
is satisfied, it is guaranteed that inseparable TPGICs existin
terms of the sum capacity.

IV. CONCLUSION

We have considered the separability in the sense of the
sum capacity in some TPGICs. Since joint coding is more
complicated to implement than independent coding, separa-
bility result can help us identify channels for which we can
lower complexity without any loss in the sum-rate. We have
shown necessary and sufficient conditions for the separability
for strong and mixed TPGICs. One interesting observation is
that unlike weak OPGICs, independent coding is not always
sum-rate optimal for the strong and mixed TPGICs. However,
in the low SNR regime, the separability holds asymptotically
in the strong and mixed TPGICs.
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Fig. 1. Separable parallel Gaussian interference channelswhose channel
realizations areH[m]

∈ Sim for all m = 1, 2, · · · , M , H[m]
∈ M

[j]
km

for all m = 1, 2, · · · , M , or H[m]
∈ Nm for all m = 1, 2, · · · , M ,

wherei = 1, 2, 3, j = 1, 2, andk = 1, 2.
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