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Abstract—The separability in parallel Gaussian interference Il. CHANNEL MODEL

channels (PGICs) is studied in this paper. We generalize the
separability results in one-sided PGICs (OPGICs) by Sunget
al. to two-sided PGICs (TPGICs). Specifically, for strong and

We consider PGICs described as

mixed TPGICs, we show necessary and sufficient conditions rfo Y1 =HuXy + HuXo + Ny )
the separability. For this, we show diagonal covariance maices and
are sum-rate optimal for strong and mixed TPGICs.
Y2 = Hi2X; + Hp2Xs + N, (2)
[. INTRODUCTION where Yy = [ym wre - wem]’ € RM, X, =

(k1 Tr2 - o]t € RM ) k=1, 2, whereM is the number
Interference is a fundamental problem in wireless commuf sub-channelsyy,,, (zrm) is the received (transmitted) signal
nications. Studying the interference channel (IC) can gise at the k-th receiver (transmitter) in the:-th sub-channel for
insights into how to deal with the problem. Specificallyiser m =1, 2, ..., M, and
single-input single-output (SISO) Gaussian IC (GIC) [@]-[

has been studied. The capacity regions of Zheser GICs hii1 hO 0

have been clarified for very stron@l[1] and strong [2], [3] H,, — 0 k1,2 0

interference cases. Recently, the sum capacity for the very : : - :

wgak interference ha§ peen discovered [zl]-[G], where agrrop 0 0 - huwm

noisy version of genie is used for the tight upper bound an ) ) )
the sum capacity. is a diagonal channel matrix whos$e:, m)-th component is

So far, most of the research on the IC has been focussedﬂ?)% non-zero channel coefficient from theth transmitter to

the GIC itself. Recently, parallel GIC (PGIC) has been stddi the [-th receiver in them-th sub-channel. The noise vectors

with interest. Here, the PGIC has several independent GleTé and N are additive white Gaussian with zero mean and

as sub-channels. In the PGIC, joint coding and independgﬁtvt?iz'(ance matrix ol . Here.Iy, denotes thed x M identity

coding can be considered, where joint coding means codi

over multiple sub-channels, and independent coding refers At ttr;]e k-th transmllttgr, a mIess2aqek ””'QZ;T'V .dlstnbute((jj
coding over each sub-channel separately. over the message index sgf, 2, ---, } is mappe
to the transmitted codeworfXy 1, Xgo2, -+, Xgn] Of

In 2-user PGICs, there have been investigations into Whetrrg
independent coding §gfﬁces to achieve the (sum) capafeity,. il, 2, ---, n, which is subject to an average power constraint
whether the separability holds or not. [n [7], the sepaiigbil er sub-channel. i.e
has been considered for one-sided PGIC (OPGIC), which Has B
been further studied in the ergodic senselih [8]. Recently, 1 @& 9
the independent coding has been shown to achieve the sum n Z |Zkmi|” < Pl ®)
capacity in the noisy interference regime [9], where tresti =t
interference as noise in each sub-channel is optimal in tAé the k-th receiver, the block of. received signal vector
sense of the sum capacity. [Yr1, Yeo, -+, Ygn] is used to decode the message and

The main contribution of this paper is in considering th@n error happens when the output of the decader# M.
separability in a class of strong, mixed, and weak PGICss Thi The error probability for thet-th user is given by
paper is organized as follows. In Section I, the channelehod _ v
is described. In Section 1ll, we show our separability resul Aen = Pr(My # M) @
in the sense of the sum capacity. Then, we conclude the pagssuming uniform distribution for messages. A rate pair
in Section IV. (R1, R2) is said to be achievable if we have a sequence of

I .
ngth n, where Xki = [ackl,i T2 ---ka’i]T for ¢ =
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encoding and decoding functions such that— 0 asn — oo,
where )\,

is the maximum of), , and A, ,,. The capacity

form=1, 2, ---, M.

1) Srong TPGIC:

region for the PGIC is defined as the closure of the set of allLemma 2: For strong TPGIC, i.eH?, > H?, andH3, >

achievable rate pairs.

Note that the PGIC of)) and (@) is a special form of the

general multiple-input multiple-output (MIMO) GIC [10] i
diagonalHy,;'s for k, [ =1, 2.

Il. SUM CAPACITY

In this section, we analyze the sum capacity under joint) < Ry + Ry <
coding and under independent coding. Then, we investigate < R, + Ry <
whether the separability holds or not for some classes 0

TPGICs. We start by stating the following lemma.
Levma l: Letw = [1 wy ---

wr]T be a weight vector
whosek-th element is the weight for thg-user’s rate with
wg, > 0. A covariance matrix for the-th user is denoted

H2,, the capacity region is given by
U {(R1, Ry)|

0< Ry SllogQ
0§R2§§10g2

In +Hi1S1HY
Ins + HooSoHI, || A15)
1 10g2 Iy + §H1181H11 + HQlSQHQl])T’ )

)

1 10g2 Ins + H1281H12 + H2282H22)

Iwere the corresponding sum capamty is given by

min (Z Ap + Dy, Z Em, Z Fm) )
m=1 m=1 m=1

(16)

as Sy with constraint dia¢S;) < P, where diagS;) and whereS, is the covariance matrix oX; for £ =1, 2.

P, are diagonal matrices of siz& x M whose (m,m)-
th components are thén,m)-th element ofS; and Py,

Proof: First, the capacity regiofl5) follows from [11].
Second, using Hadamard’s inequality [12], we see that diago

respectively. Then, the weighted sum capacity of MIM®@al matricesS; andS, suffice to achieve all the rate pairs in

IC denoted asf(w, Pi, P,
(P17 P27 Tty PK)

-, Px) is concave in the capacity regiofl5), from which we get(16). []

Corollary 1: When we use each sub-channel instance in-

Proof: It is directly from [9]. Specifically, the set of dependently in the strong TPGIC, the following is the sum

all achievable schemes with di&.) < P, always in- capacity.

cludes TDM/FDM between any two achievable schemes with M

diagSy) < Py, and diagS;) < P{, whereP;, = AP} + (1 — Z min (A + D, Epmy Fn). (17)
AP} for 0 < A < 1. [ ] 1

A. Capacity region for PGICs Proof: It follows from Lemma[2. [}

Notation 1. For full-rank square matrice8 andT, S > T

Lemma 3: In the low signal-to-noise rati¢SNR) regime,

(S > T) means thatS — T is positive semidefinite (def- the sum capacity for strong TPGIC under joint coding coin-

inite). Let HI™ denote (h11.m, hi2.m, hoim, hoom) fOr
m=1, 2,
following notations:

Am :% log, (1+ |h117m|2P1m) , (5)
; logy (1 + [h12,m|*Pim) » (6)

Cp :% logy (1 + |ho1,m|*Pom) (7)
D, :% logy (1 + |ho2,m|*Pom) (8)
E, :% 108, (1 + |P11,m|* Pim + |h21,m|* Pom) 9)
F,, :; 1085 (1 + |P12,m|* Pim + |h22,m|* Pom) (10)
G =2 o, (1 ; 1|+h|12m[f 1;2m) (1)
, ~jlog, (14 lazelm ) 12)
;logQ (1 + |horm]2Ps + %) (13)

and

I =g 106, (1+ iz P+ 122 aa)

, M. For notational convenience, we use the

cides asymptotically with that under independent codirey, i

min (27]\521 Am + Dma Z%:l Em7 21]\7'{:1 Fm)

lim i -
max Py —0 Yomeymin (A, + Dy, Ery, Fry)
=1.
(18)
Proof: We refer readers td_[16]. [ ]
2) Mixed TPGIC:

Lemma 4: For mixed TPGIC withH?, > H?, andH3, <
H32,, the sum capacity is given by

M M
min(Z F,, ZDm—i—Gm> .
m=1 m=1

Proof: The sum capacity for the mixed TPGIC is given
by

(19)

diag(Sk)Igl?’i(, k=1, 2
%10g2
Log, [Ty + Hyy S1HE, (T + HmsQH;fl)’l’ ,
+3 logy [Tas + HaoSoHY, |

min

(20)



which follows from [11]. Note that the following condition where

2
T + B38| _ [Tng + HEPy| @y Svn = {B LB, <
[Tn + H3,S2| — Iy + H3, Py \ ||2 22.m|
for any S, with P, = diag (S2) is sufficient to show that 1+ |ho2,m|* Pom < |h12"m|2 },
diagonal covariance matricd®; and P, are optimal for the 11,m b 5
sum capacity. Sinc€Z]) is satisfied wheneveH3, < H2Jl, @, — {H[m] 1+ [P |* Pim > | 21’m|2 21,
(20 becomeq[19), which completes the proof. | |h22,m|
Remark 1: Maximizing power for each sub-channel is op- |h12,m|? S |ho2,m|* Pom ( |h21,m]* ) 41
timal for (@) |h,117m|2 - |h117m|2P1m |h22_’m|2 ’
Corollary 2: For mixed TPGICs withH;, > Hf; and 4.4
H32, < H3,, the sum capacity under independent coding is " 9
given by Sspy = {H[m] ‘1 + |h22,m|2P2m > :h12,m:2 >1,
11,m
M 2 2 2
S min(Fy. Dy + o). (22) Fazml - Vo] Pom <"‘21=m'2 - 1> 1 } |
o [P11,m] [P11,m |2 Pim \|P22,m]
Proof: Since is always greater than or equal ,
Proof: It follows from Lemma [4. ] a9 Y d qual @)

) . . we only need to consider the condition for equality in the
Lemma 5: In the lowSNR regime, for mixed TPGICs with following:

H?, > H?, andH3, < H3,, the sum capacity under joint

coding coincides asymptotically with that under indeperide . M M M
coding, i.e., min | > Ap+ D, Y Em, > Fu
. (ZM B EM oo . ) Iy m=1 m=1 m=1
min m=1£'m; m= m m i

i - 1 1 =1. (23) > Z min {A;, + Dy, Em, Fn}. (27)

max P —0 Y oy Min (Fry, Dy, + Giy) m=1
A necessary and sufficient condition for the equality is give

Proof: We refer readers to_[16]. m oy

3) Noisy-interference TPGIC: .

Lemma 6: There exist TPGICs that are separable whefim + Dm < min{Ey,, Fn}, forallm=1,2, --- M,
the channel realizatioFI™! at the m-th sub-channel is E,, < min{A,, + D,,, F,,}, forallm=1, 2, ... M,
included in 9, = {HI" |feint 4 fuzal <14 for al

22,m 11,m
m=1,2, ---, M.
Proof: It follows from [9], where the separability is F,, < min{A,, + Dy,, E,,} foralm=1, 2, ---, M,
proven when the power constraints satisfy a certain camditi
which completes the proof. [ ]

2) Mixed TPGIC:
Theorem 2: The mixed TPGIC withH?, > H?, and
H32, < H3, is separable iff

Remark 2: For the TPGIC where the channel realization
HI™l at them-th sub-channel satisfies

|h21,m| |h12,m| |h21,m| |h12,m|

1 <1, and <1 m
32| + 11| > hozm| = hirm| = H™ coml! foralm=1,2, -, M (28)
forallm =1, 2, ---, M, the sum capacity is not knownor
even for the TPGIC under independent coding. H™ e 97{[217]71 forallm=1,2 . M (29)
B. Separability where
1) Srong TPGIC: |h12.m|? 1+ |haz.m|* P
. . . sm[” _ {H[m] 12ml 22.m| L2,m } 30
Theorem 1: The strong TPGIC is separable iff 1m B = 15 v Pomn (30)
H™ €&y, forallm=1,2, ---, M, (24) and
H™ € &,,, foral m=1,2, ---, M, (25 higml?> _ 1+ |hoz.m|>Pom
2 m (25) 931[217]71 _ {H[m] |h12, |2 + |has, |2 2, }.(31)
or |h11,m] 1+ |ha1m|?*Pem
Proof: The sum capacity is given by
H™ € Sy, forallm=1, 2, ---, M, (26)
M M
1We omit this proof due to space limitations. We refer reader[iL6] for min <Z E, Z D + Gm)
the proof of this. m=1 m=1



from Lemma [. Under the independent coding, the surfil5], where
capacity is given by

)

1
Ri, =min (5 logy |Ins + Hi1S1.HY, Z7

M
0 (Fy, Dyo + Gom L >
mZ:l min ( ) 3 log, |Ins + Hi2S1.H{,Z5 ’) ,
. (1 -
from Corollary [2. Note that Rae =min (5 logy |Tar + 18, H3, Z) 1| ’

1
M M —logy |Ins + H2282cH§2Z;1 ) )
min<z Fon, ZDm+Gm> 3% |
m=1 m=1
M

> min (F,,, Dy, + Gn), 1
mz::l 5 logs [Tar + (H12S1.HY, + HoSo HY) 221\) :

. (1 _
Ris. =min <5 logy |Ins + (H11S1:HY; + Ha1S2 HY, ) Z77Y

where the necessary and sufficient condition for the equalitz,,, :% log, ‘IM +Hy;S,H] (In + H21sng§1)7l} ,
is given by

and
F, < Dp+G,foralm=1,2 ---, M (32) 1 1
Ry = 5 log, ’IM + HypS0, HY, (L + HipSy, HY) ’ ,
or where fork = 1, 2, S, (Sgp) IS covariance matrix oXy,
(Xkp) which is the transmitted signal vector for common
Fo > D + G forallm=1, 2, ---, M, (33) (private) information withX;, = Xj. + Xyp, and Z,’s are
defined as
which completes the proof. ]
Remark 3: In the low SNR regime, strong TPGICs are Zy =1y +Hy1S1,HY, + Hy S, HY, (36)

separable asymptotically in the sense of the sum capacity,
which follows fromLemma[3. Also, in case of mixed TPGICs @d
with H?, > H?, and H3, < H3,, the separability holds
asymptotically, which is confirmed blyemma[5.

ICs are separable in the sense of the sum capacity. Spegifsatisfied, it is guaranteed that inseparable TPGICs @xist
ically, single-user decoding at each receiver per substlanierms of the sum capacity.

is enough to achieve the sum capacity. Except for the noisy-
interference TPGICs, it is not known if weak TPGICs with
H?, < H?, and H3, < H2, are separable or not. However,

we can conclude the separability partially based on somewe have considered the separability in the sense of the

Zo =1 + ngslprQ =+ HggSng§2. (37)

IV. CONCLUSION

known inner and outer bounds. sum capacity in some TPGICs. Since joint coding is more
First, for the TPGIC, the sum capacity under independemmmplicated to implement than independent coding, separa-
coding is upper bounded by bility result can help us identify channels for which we can
lower complexity without any loss in the sum-rate. We have
M shown necessary and sufficient conditions for the sepé#sabil
Z min (A, + Hipy Do+ Gy I + Jin) (34) for strong and mixed TPGICs. One interesting observation is
m=1 that unlike weak OPGICs, independent coding is not always

sum-rate optimal for the strong and mixed TPGICs. However,
based on the outer bound results [in![13] and [14]. Second.the low SNR regime, the separability holds asymptotjcall
for the TPGIC, the sum capacity under joint coding is lowen the strong and mixed TPGICs.
bounded by
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Fig. 1. Separable parallel Gaussian interference charnwitse channel
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