
ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Universal Rewriting in Constrained Memories
Anxiao (Andrew) Jiang

Computer Science Department
Texas A&M University

College Station, TX 77843, U.S.A.
ajiang@cs. tamu. edu

Michael Langberg Moshe Schwartz
Computer Science Division Electrical and Computer Eng.
Open University of Israel Ben-Gurion University

Raanana 43107, Israel Beer Sheva 84105, Israel
mikel@openu. ac. if schwartz@ee. bgu. ac. if

Jehoshua Bruck
EE & CNS Dept.

Caltech
Pasadena, CA 91125, U.S.A.
bruck@paradise. caltech. edu

Abstract-A constrained memory is a storage device whose
elements change their states under some constraints. A typical
example is flash memories, in which cell levels are easy to increase
but hard to decrease. In a general rewriting model, the stored
data changes with some pattern determined by the application. In
a constrained memory, an appropriate representation is needed
for the stored data to enable efficient rewriting.

In this paper, we define the general rewriting problem using
a graph model. This model generalizes many known rewriting
models such as floating codes, WOM codes, buffer codes, etc. We
present a novel rewriting scheme for the flash-memory model and
prove it is asymptotically optimal in a wide range of scenarios.

We further study randomization and probability distributions
to data rewriting and study the expected performance. We
present a randomized code for all rewriting sequences and a
deterministic code for rewriting following any i.i.d, distribution.
Both codes are shown to be optimal asymptotically.

I. INTRODUCTION

Many storage media have constraints on their state transi
tions. A typical example is flash memory, the most widely used
type of non-volatile electronic memory [4]. A multi-level flash
memory cell has q levels: 0, I, ... , q-1. It is easy to increase a
cell level but very costly to decrease it because to decrease the
level of a single cell, a whole block of rv 105 cells needs to be
erased and reprogrammed [4]. Other storage media, including
magnetic recording, optical recording and some new memory
materials, have constraints on state transitions as well.

A storage medium needs to change its state when the
stored data changes its value. Depending on the applications,
the data often changes under some constrained patterns. For
example, the data may change altogether or have its individual
components rewritten asynchronously [9]. In another example,
when the data represents an information stream, it changes in
a sliding window fashion [2]. Thus, an appropriate represen
tation is needed for the data to enable efficient rewriting.

We present the general model of constrained memories and
rewriting using graph notation.

Definition 1. (CONSTRAINED MEMORY) A constrained mem
ory is represented by a directed graph M == (VM, EM)' The
vertices VM represent all the memory states. There is a directed
edge (u, v) from u E VM to v E VM iff the memory can
change from state u to state v without going through any other
intermediate states. M is called the memory graph.

Example 2. (FLASH MEMORY MODEL) For a flash mem
ory with n cells of q levels each, the memory graph M
has q" vertices. Every vertex can be represented by a vec
tor (CI,C2, . . . , cn), where c, E {O, 1, ... , q - I} is the i-th
cell level, for i == 1, ... , n. There is a directed edge from

(CI,C2, ... , Cn) to (C~' C~' ..• , c~) iff there exists exactly one
index i E {I, ... , n} such that c~ == Ci + 1 while cj == Cj for
j == I, ... , i-I, i + I, ... , n.

Definition 3. (GENERALIZED REWRITING) The stored data is
represented by a directed graph V == (Vv,Ev). The vertices
Vv represent all the values that the data can take. There is a
directed edge (u, v) from u E Vv to v E Vv, v i- u, iff a
rewriting operation may change the stored data from value u to
value v. The graph V is called the data graph and the number of
its vertices, corresponding to the input-alphabet size, is denoted
by L == 1VV I. Throughout the paper we assume all data graphs
to be strongly connected.

Example 4. (REWRITING IN FLOATING CODES [9]) The data
consists of k variables, each of which takes its value from the
alphabet {O, I, ... , g - I}. Every rewrite changes the value of
one variable. Hence, the data graph V has L == gk vertices,
each of incoming and outgoing degree k(g - 1). The floating
code model reduces to the write-once memory (WOM) code
model [15] when k == 1. It can be seen that the data graph V is
a generalized hypercube ofk dimensions. When k == 1, it is a
complete graph oforder g.

Definition 5. (CODE FOR REWRITING) A code for rewriting
has a decoding function Fd and an update function Fu. The
decoding function Fd : VM ----* Vv maps a memory state S E

VM to the stored data Fd(s) E Vv . The update function (which
represents a rewriting operation), Fu : VM x Vv ----* VM, maps
the current memory state S E VM and the new data v E Vv
to a memory state Fu(s,v) E VM such that Fd(Fu(s,v)) == v.
Clearly, there should be a directed path from s to Fu (s, v) in the
memory graph M.

A sequence of rewrites is a sequence (vo, VI, v2 ...) such
that the i-th rewrite changes the stored data from Vi-l to Vi.

Given a storage code for rewriting C, we denote by t(C) the
number of rewrites that C guarantees to support for all rewrite
sequences. Thus, t(C) is a worst-case performance measure
of the code. The code C is said to be optimal if t(C) is
maximized. On the other side, if a probabilistic model for
rewriting or randomization for code construction is used, the
expected rewriting performance can be defined accordingly.

In this paper, we study general rewriting for the flash
memory model.' We present a novel code construction, the
traj ectory code, based on tracing the changes of data in the

1The codes here are more suitable for NOR flash memories, which allow
random access of cells. NAND flash memories have much more restricted
access modes for cell pages, which limit usable coding schemes on rewriting.

978-1-4244-4313-0/09/$25.00 ©2009 IEEE 1219

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

TABLE I
A SUMMARY OF THE CODES FOR REWRITING WITH ASYMPTOTICALLY

OPTIMAL PERFORMANCE (UP TO CONSTANT FACTORS). HERE n, k,f, L
ARE AS DEFINED IN EXAMPLES 2, 4.

WOM code (D is t (C) is asymptotically optimal [15]
a complete graph)
WOM code (D is t(C) is asymptotically optimal [6]
a complete graph) when f = 8(1)
floating code (D t(C) is asymptotically optimal [9]
is a hypercube) when k = 8(1) and f = 8(1) [10]
floating code (D t (C) is asymptotically optimal [9]
is a hypercube) when n = O(klogk) and f = [10]

8(1)
floating code (D t (C) is asymptotically optimal [19]
is a hypercube) when n = O(k2) and f = 8(1)
buffer code (D is t(C) is asymptotically optimal [2]
a de Bruijn graph) when n = O(k) and f = 8(1) [18]
floating code (D weakly robust codes [7]
is a hypercube) when k = 8(1) and f = 2
WOM code (D is t (C) is asymptotically optimal this
a complete graph) when n = 0 (log2 f) paper
more general t (C) is asymptotically optimal this
coding (D has when n = O(L), or when n = paper

maximum out- o (log2 L) and 11 = O(~~~gLn).

degree 11. For When n = o (log2 L), t(C) is
floating codes, asymptotically optimal in
11 = k(f - 1).) the worst case sense (worst

case over all data graphs D).
robust coding Strongly robust codes when this

L210gL = o(qn). Weakly paper
robust codes when L = 8(1).

A. Trajectory Code Outline

Let no, nl, n2, . . . , nd be d + 1 positive integers and let
n == Lf=o ru, where n denotes the number of flash cells, each
of q levels. We partition the n cells into d + 1 groups, each
with no, nl, ... , nd cells, respectively. We call them registers
50,51, ... , 5d, respectively.

Our encoding uses the following basic scheme: we start by
using register So, called the anchor, to record the value of the
initial data Vo E Vv . For the next d rewrite operations we use
a differential scheme: denote by VI, . . . , Vd E Vv the next d
values of the rewritten data. In the i-th rewrite, 1 :(; i :(; d, we
store in register Si the identity of the edge (Vi-l,Vi) E Ev .
We do not require a unique label for all edges globally, but
rather require that locally, for each vertex in Vv, its out-going
edges have unique labels from {I, ... , A}, where ~ denotes
the maximal out-degree in the data graph V.

Intuitively, the first d rewrite operations are achieved by
encoding the trajectory taken by the input sequence starting
with the anchor data. After d such rewrites, we repeat the
process by rewriting the next input from Vv in the anchor So,
and then continuing with d edge labels in 51, ... , 5d .

Let us assume a sequence of s rewrites have been stored
thus far. To decode the last stored value all we need to know
is s mod (d + 1). This is easily achieved by using rt / ql
more cells (not specified in the previous d + 1 registers), where

data graph V. The code is asymptotically optimal (up to
constant factors) for a very wide range of scenarios. It includes
floating codes, WOM codes, and buffer codes as special cases,
and is a substantial improvement compared to known results.

We further study randomization and probability distributions
to data rewriting and study the expected performance. A code
is called strongly robust if its asymptotic expected performance
is optimal for all rewriting sequences. It is called weakly robust
if the asymptotic expected performance is optimal for rewriting
following any i.i.d. distribution. We present a randomized
construction for strongly robust code and a deterministic
construction for weakly robust code.

Both our codes for general rewriting and our robust codes
are optimal up to constant factors (factors independent of the
problem parameters). Namely, for a constant r :(; 1, we present
codes C for which t (C) is at least r times that of the optimal
code. We would like to note that for our robust codes the
constant involved is arbitrarily close to 1.

Due to the space limitation, we skip some details in multiple
places. Interested readers are referred to [11].

II. OVERVIEW OF RELATED RESULTS

There has been distinguished theoretical study on con
strained memories. They include defective memories [12],
write once memory (WOM) [15], write unidirectional memory
(WUM) [16], [17], and write efficient memory [1]. Among
them, WOM is the most related to the flash memory model
studied in this paper. In a WOM, a cell's state can change from
o to 1 but not from 1 to o. This model was later generalized
with more cell states in [6], [8]. The objective of WOM codes
is to maximize the number of times that the stored data can
be rewritten. A number of very interesting WOM codes have
been presented over the years [5] [6] [14] [15]. (For a more
detailed survey, please see [11].) In all the above works, the
rewriting model assumes no constraints on the data, namely,
the data graph V is a complete graph.

With the increasing importance of flash memories, the flash
memory model was proposed and studied recently in [2], [9].
The rewriting schemes include floating codes [9], [10] and
buffer codes [2]. Both types of codes use the joint coding of
multiple variables for better rewriting capability. Their data
graphs V are generalized hypercubes and de Bruijn graphs,
respectively. Multiple floating codes have been presented,
including the code constructions in [9], [10], the flash codes
in [13], [19], and the constructions based on Gray codes in [7]
that optimize the expected rewriting performance.

Compared to existing codes, the codes in this paper are
not only for a more general rewriting model, but also pro
vide asymptotically-optimal performance for a wider range
of cases. This can be seen clearly from Table I, where the
asymptotically-optimal codes are summarized.

III. TRAJECTORY CODE

We use the flash memory model of Example 2 and the
generalized rewriting model of Definition 3 in the rest of this
paper. We first present a novel code construction, the trajectory
code, then show its asymptotically-optimal performance.

TYPE I ASYMPTOTIC OPTIMALITY REF.

1220

t is the total number of rewrite operations we would like to
guarantee. For these rt I ql cells we employ a simple encoding
scheme: in every rewrite operation we arbitrarily choose one
of those cells and raise its level by one. Thus, the total level
in these cells equals s.

The decoding process takes the value of the anchor So
and then follows (s - 1) mod (d + 1) edges which are read
consecutively from 51,52, Notice that this scheme is
appealing in cases where the maximum out-degree of V is
significantly lower than the state space Vv .

Note that each register 5i, for i == 0, ... , d, can be seen as a
smaller rewriting code whose data graph is a complete graph
of either L vertices (for 50) or 11 vertices (for 51, ... ,5d). We
let d == 0 if V is a complete graph, and describe how to set d
when V is not a complete graph in section III-C. The encoding
used by each register is described in the next section.

B. Analysis for a Complete Data Graph

In this section we present an efficiently encodable and
decodable code that enables us to store and rewrite symbols
from an input alphabet Vv of size L ~ 2, and where V is a
complete graph. The information is stored in n flash cells of
q levels each. (To use the code for register S, with i > 0, we
just need to replace L by 11.)

We first state a scheme that allows approximately nqI 8
rewrites in the case in which 2 ~ L ~ n. We then extend it to
hold for general Land n. We present the quality of our code
constructions (namely the number of possible rewrites they
perform) using the 8(f) notation. Here, for functions f and
g, we say that g == 8(f) if g is asymptotically bounded both
above and below by f up to a constant factor independent of
the variables of f and g.

1) The Case 2 ~ L ~ n: In this section we present a code
for small values of L. The code we present is essentially the
one presented in [15].

Construction 6. Let 2 ~ L ~ n. This construction is an
efficiently encodable and decodable rewriting code C for a

complete data graph V with L states, and flash memory with
n cells with q states each.

Let us first assume n == L. Denote the n cell levels by c ==
(co, C1, ... , CL-1), where Ci E {O,I, ... , q - I} is the level of
the i-th cell for i == 0, I, ... , L - 1. Denote the alphabet of
data by Vv == {O,1, ... , L - I}. We first use only cell levels
oand 1, and the data stored in the cells is r,f;:Ol ic, (mod L).
With each rewrite, we increase the minimum number of cell
levels from 0 to 1 so that the new cell state represents the new
data. (Clearly, Co remains untouched as 0.) When the code can
no longer supportrewriting, we increase all cells (includingco)
from 0 to 1, andstartusing cell levels 1 and2 to storedata in the
same way as above, except that the data stored in the cells uses
the formula r,f;:d itc, - 1) (mod L). This process is repeated
q - 1 times in total. The generaldecoding function is therefore
defined as

L-1

Fd(C) == E iic, - co) (mod L).
i=O

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

We now extend the above code to n ~ L cells. We divide
the n cells into b == ln I LJ groups of size L (some cells may
remain unused). We firstapply the code above to the firstgroup
ofL cells, then to the second group, and so on.

Theorem 7. Let 2 ~ L ~ n. The code C in Construction 6
guarantees t(C) == n(q - 1)18 == 8(nq) rewrites.

Proof: First assume n == L. When cell levels j - 1 and j
are used to store data (for j == 1, ... , q - 1), by the analysis
in [15], even if only one or two cells increase their levels with
each rewrite, at least (L +4) I 4 rewrites can be supported. So
the L cells can support at least (L+1~(q-1) rewrites. Now let

n ~ L. When b == lnl LJ, it is easy to see that bL ~ n12.
The b groups of cells can guarantee t(C) == b(L+41(q-1) ~

n(q~l) == 8(nq) rewrites. •
2) The Case of Large L: We now consider the typical

setting in which L is larger than n. The rewriting code we
present reduces the general case to that of the case n == L
studied above. We start by assuming that n < L ~ 2vfn . We
will address the general case at the end of this section.

Let b be the smallest positive integer value that satisfies
lnlbJb~L.

Claim 8. For16 ~ n ~ L ~ 2vfn it holds that b ~ 2t:;nL.

Construction 9. Let n < L ~ 2vfn . This construction is
an efficiently encodable and decodable rewriting code C for a
complete data graph V with L states, and flash memory with n
cells with q states each.

For i == 1,2, ... , b, let Vi be a symbol from an alphabet of
size lnlbJ ~ L1/ b. We may representany symbol V E Vvas
a vector of symbols (VI, V2, ... , Vb). Partition the n flash cells
into b groups, each with lnibJ cells (some cells may remain
unused). Encoding the symbol V into n cells is equivalent to
the encoding ofeachVi into the corresponding group of lnibJ
cells. As the alphabetsize ofeachVi equals the number ofcells
it is to be encoded into, we can use Construction 6 to storeVi.

Theorem 10. Let 16 ~ n ~ L ~ 2vfn . The code C in
Construction 9 guarantees

t(C) = n(q -1) logn = O (nqlogn)
16 log L logL

rewrites.

Proof: Using Construction 9, the number of rewrites
possible is bounded by the number of rewrites possible for
each of the b cell groups. By Theorem 7 and Claim 8, this is
tIt l!1 J . q-1 ~ (n log n_1) q-1 - 8 (nq log n) •a eas b 8:;/ 2log L 8 - log L .

C. Analysis for a Bounded Out-Degree Data Graph

We now return to the outline of the trajectory code from
Section III-A and apply it in full detail using the codes from
Section III-B2 to the case of data graphs V with bounded out
degree 11. We refer to such graphs as l1-restricted. To simplify
our presentation, in the theorems below we will again use
the 8(f) notation freely, however, as opposed to the previous
section we will no longer state or make an attempt to optimize

1221

the constants involved in our calculations. We assume that
n ~ L ~ 2vn.Notice that for L ~ n, Construction 6 can be
used to obtain optimal codes (up to constant factors).

Using the notation of Section III-A, to realize the trajectory
code we need to specify the sizes n, and the value of d. We
consider two cases: the case in which ~ is small compared to
n, and the case in which ~ is large.

Construction 11. Let f".. ~ l~~~:2 J. We build an efficiently
encodable and decodable rewriting code C for any /s-restricted
data graph V with L vertices and n flash cells of q levels as
follows. For the trajectory code, let d == llog LI log n j ==
8(log LI log n). Set the size of the d + 1 registers to no ==
lnl2j and n, == lnl (2d)j ~ ~ for i == 1, ... d. (We obviously
have L n, ~ n.)

The update and decoding functions of the trajectory code C
are defined as follows: Consider using the encoding scheme
specified in Construction 9 for the encoding of symbols from
Vv in the no flash cells of50 corresponding to the anchor, and
using the scheme specified in Construction 6 for the encoding
of one of {I, ... , ~} in the flash cells of S, (i == 1, ... , d).
Notice that the latter is possible as ni ~ ~ for i == I, ... d.

Theorem 12. Let f".. ~ l~~~f2 J. The code C of Construc
tion 11 guarantees t (C) == 8 (nq) rewrites.

Proof' By Theorems 10 and 7, the number of rewrites
possible in 50 is equal (up to constant factors) to that of 5i
(i ~ 1):

8 (noq log no) == 8 (nq logn) == 8 (nq) == 8 (niq)
log L log L d

Thus the total number of rewrites in the scheme outlined in
Section III-A is d + 1 times the bound for each register 5i,
and so t(C) == 8(nq). _

Construction 13. Let l~~~:2J ~ f".. ~ L. We build an
efficiently encodable ana decodeble rewriting code C for any
/s-restrictcd data graph V with L vertices and n flash cells
of q levels as follows. For the trajectory code, let d ==
llogL/log~j == 8(logL/log~). Set the size of the reg
isters to no == lnl2j end n, == lnl(2d)j fori == 1, .. . d.

The update and decoding functions of the trajectory code C
are defined as follows: Consider using the encoding scheme
specified in Construction 9 for both the encoding of symbols
from Vv in the no flash cells of50 corresponding to the anchor,
and the encoding of one of {I, ... , A] in the flash cells of S,
(i == I, ... , d).

Theorem 14. Let l~~~:2J ~ f".. ~ L. The code C ofConstruc

tion 13 guarantees t(C) = e (nio1;r) rewrites.

Proof' By Theorem 10, the number of rewrites possi
ble in 50 is' e (noqlog no) == 8 (nq

log n) Similarly the. log L logL

number of rewrites possible in s, (i ~ 1): e (nii;;ri) =

e (~ql~~g;) = e (ni;;r) .Here we use the fact that as d ~
log L it holds that d == 0 (n) and log n, == 8 (log n - log d) ==

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

e (log n). Notice that the two expressions above are equal.
Thus, as in Theorem 12, we conclude that the total number of
rewrites in the scheme outlined in Section III-A is d + 1 times
the bound for each register Si, and so t(C) = e (ni;;r) .•
D. Optimality of the Schemes

We describe upper bounds on the number of rewrites in
general rewriting schemes to complement the lower bounds
induced by our constructions. We first note that any rewriting
code C that stores symbols from some data graph V in n
flash cells of q levels supports at most t (C) ~ n(q - 1) ==
o(nq) rewrites (as each rewrite increases at least 1 cell state
by at least 1). For large values of L, we can improve the
upper bound. First, let r denote the largest integer such that
(r+~-l) < L -1.

Claim 15. For all 1 ~ n < L - 1, it holds thatr ~ ll~~\~;~)J.
Theorem 16. When n < L - 1, any rewriting code C that stores
symbols from some data graph V in n flash cells of q levels

supports at mostt(C) = 0 (ni;;r) rewrites.

Proof' Let us examine some state s of the n flash cells,
currently storing some value v E Vv , i.e., Fd(s) == v. Having
no constraint on the input transition graph, the next symbol
we want to store may be any of the L - 1 symbols v' E VV,
v' -1= v.

If we allow ourselves r operations of increasing a single cell
level of the n flash cells (perhaps, operating on the same cell
more than once), we may reach (n+;-l) distinct new states.

However, by our choice (n+;-l) < L - 1 and so we need at
least r + 1 such operations in the worst case. Since we have
a total of n cells with q levels each, the number of rewrite
operations is upper bounded by

(C) n(q -1) n(q -1) _ 0 (nqlogn)t ~ ~ - .
r + 1 llog(L-l) J+ 1 log L

l+logn

Theorem 17. Let f".. > l~ ~~:2J. There exist /s-restricted data
graphs V over a vertex set of size L, such that any rewriting
code C that allows the representation of the corresponding Is
restricted data in n flash cells of q levels supports at most

t(C) = 0 (ni;;r) rewrites.

The proof of Theorem 17 appears in [11]. To prove our
theorem we use ~-restricted graphs V whose diameter d is at

most 0 O~g) (see, e.g., Chapter 10 of [3]).

IV. ROBUST CODE

In this section, we study codes that optimize the expected
rewriting performance. As before, we focus on the flash
memory model, where n cells of q levels are used to store
the data from a data graph V of L vertices. We define a
strongly robust code to be a randomized code that maximizes
the expected number of supported rewrites for every rewriting
sequence. In this section, we present a code such that for every

1222

rewriting sequence, the expected number of supported rewrites
is n(q - 1) - 0 (nq). It is clearly strongly robust.

We define a weakly robust code to be a code that maxi
mizes the expected number of supported rewrites for every
rewriting model that follows an i.i.d. distribution, specified
as follows. Let {O, 1, ... , L - I} denote the alphabet of the
data. Let po, PI, ... , PL-I be L positive probabilities such that
Lf:al Pi == 1. Assume that events happen only at discrete
times tl, t2, t3, ... , and at time tj (for j == 1,2,3, ...), the data
follows an i.i.d. distribution: it has value i with probability Pi,

for i == 0, I, ... , L -1. If at time tj, the data changes to a value
different from that of time tj-l, then there is a rewrite. Clearly,
if at some moment the data is i, the next rewrite will change
it to j i- i with probability Pj/ LkE{O,...,i-l,i+I,...,L-I} Pk. In
this section, we present a deterministic code such that for
any positive probability set (Po, PI, ... , PL-I), the expected
number of supported rewrites is n(q - 1) - o(nq). This code
is clearly weakly robust.

In the trajectory code, the basic building block is a code
whose data graph V is a complete graph and where n :? L.
In this section, we focus on robust codes with n :? L. There
is no restriction on their data graphs.

Let (CI, C2, ... , cn) denote the n cell levels in the flash
memory model. Given c == (CI, C2, ... , cn) , define its weight
w(c) as w(c) == Lt=l c.. Clearly, 0~ w(c) ~ (q -1)n.

Assume n :? L. For i 1,2, ... , L, define gi

{j 11 ~ j ~ n,j == i (mod L)}. For example, if n == B,L ==
3, then gl == {1,4, 7} , g2 == {2,5,B}, g3 == {3,6}. Also
define hi == LjEgi Cj, where Cj is the j-th cell level. In the
following constructions, the cells in the same set gi work as
a "super cell."

A. Strongly Robust Code

Construction 18. (STRONGLy-RoBUST CODE) For all 0 ~

i ~ n(q - 1) - 1, choose the parameter a, independently and
uniformly at random from {O,1, ... , L - I}. Given a cell state
-+ () F (-+) ~L ·h ~w(c)-l dC == CI, C2, ... , Cn ,set d C == LJi=1 1 i + LJi=O a, rna
L. Forevery rewrite, greedily minimize the weight w(c).

The above code has a randomized construction that uses the
random numbers aO,al, ... ,an(q-l)-l. These random numbers
are stored in separate cells from the code, and are unrelated
(that is, unknown) to the rewriting sequences. They are gener
ated only once and can be used by many codes with the same
construction, so their cost can be omitted.

Theorem 19. Let L2 10g L == o(qn), and n mId L == 0(1). For
a code C ofConstruction 18, for every rewritingsequence, the
expectednumber ofrewritesit supports is n(q - 1) - o(nq).

Proof: We present a sketch of proof. For details, please
see [11]. By Construction 18, if we increase hi by one, the data
will increase by i + aw(c) (modulo L). Since aw(c) is uniformly
random, a rewrite will randomly increase some hi by one (for
i == 1, ... , L). See the L super cells as L bins each of which
can contain n(q;l) balls. Each rewrite simulates the act of
throwing a ball uniformly at random into one of the bins, until
some bin is full. Suppose that n(q -1) - cJn(q - 1) balls are
uniformly randomly thrown into L bins. Here C is sufficiently

ISIT 2009, Seoul, Korea, June 28 - July 3,2009

large and L2 10g L == 0(c2) , c2 == o(qn). By the Chernoff
bound, the probability that a fixed bin contains more than (q -
1) . lI J balls is less than e-O (c

2
j L

2
) . By the union bound, the

probability that any bin is full is is less than Le-O (c
2

j L
2

) ==
0(1). Since n(q -1) - cJn(q -1) == n(q -1) - o(nq), we
get the conclusion. •

B. Weak Robustness

Construction 20. (WEAKLY ROBUST CODE) Given a cell
-+ () F (-+) ~L ·h ~w(c)-l. dstate C == CI, C2, ... , Cn, d C == LJi=ll i + LJi=O 1 rna

L. The rewritemethod is the same as in Construction 18.

Theorem 21. Let L :? 3 be a constantand let n be a multiple
of L. For a code C of Construction 20, for any i.i.d. rewriting
model with a positive probability set (Po, PI,' .. , PL-I), the
expectednumber ofrewrites it supports is n(q - 1) - o(nq).

The proof of the above theorem is presented in [11]. Also
in [11], a more general construction of robust codes is shown
and its properties are analyzed.

ACKNOWLEDGMENT

This work was supported in part by the NSF CAREER
Award CCF-0747415, the NSF grant ECCS-0802107, the
ISF grant 480/08, the GIF grant 2179-1785.10/2007, and the
Caltech Lee Center for Advanced Networking.

REFERENCES

[1] R. Ahlswede and Z. Zhang, "On multiuser write-efficient memories," IEEE
Trans. on Inform. Theory, vol. 40, no. 3, pp. 674-686, 1994.

[2] V. Bohossian, A. Jiang, and J. Bruck, "Buffer coding for asymmetric multi
level memory," in Proceedings of the 2007 IEEE International Symposium on
Information Theory (ISIT2007) , Nice, France, Jun. 2007, pp. 1186-1190.

[3] B. Bollobas, Random Graphs (2nd Edition). Cambridge University Press, 2001.
[4] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash memories. Kluwer

Academic Publishers, 1999.
[5] G. D. Cohen, P. Godlewski, and F. Merkx, "Linear binary code for write-once

memories," IEEE Trans. on Inform. Theory, vol. IT-32, no. 5, pp. 697-700, Sep.
1986.

[6] A. Fiat and A. Shamir, "Generalized "write-once" memories," IEEE Trans. on
Inform. Theory, vol. IT-30, no. 3, pp. 470-480, May 1984.

[7] H. Finucane, Z. Liu, and M. Mitzenmacher, "Designing floating codes for expected
performance," in Proc. of the Annual Allerton Conference, 2008.

[8] F. Fu and A. 1. Han Vinck, "On the capacity of generalized write-once memory
with state transitions described by an arbitrary directed acyclic graph," in IEEE
Trans. Information Theory, vol. 45, no. 1, pp. 308-313,1999.

[9] A. Jiang, V. Bohossian, and 1. Bruck, "Floating codes for joint information
storage in write asymmetric memories," in Proc. IEEE International Symposium
on Information Theory (ISIT2007), Nice, France, Jun. 2007, pp. 1166-1170.

[10] A. Jiang and J. Bruck, "Joint coding for flash memory storage," in Proceedings
of the 2008 IEEE International Symposium on Information Theory (ISIT2008) ,
Toronto, Canada, Jul. 2008, pp. 1741-1745.

[11] A. Jiang, M. Langberg, M. Schwartz and J. Bruck, "Universal rewrit
ing in constrained memories," Caltech Technical Report, online: http :
/ /www.paradise.caltech.edu/etr.html.

[12] A. V. Kuznetsov and B. S. Tsybakov, "Coding for memories with defective cells,"
Problemy Peredachi Informatsii, vol. 10, no. 2, pp. 52-60, 1974.

[13] H. Mahdavifar, P. H. Siegel, A. Vardy, 1. K. Wolf, and E. Yaakobi, "A nearly
optimal construction of flash codes," in Proc. IEEE International Symposium on
Information Theory (ISIT), Seoul, Korea, June-July 2009.

[14] F. Merkx, "WOM codes constructed with projective geometries," Traitment du
Signal, vol. 1, no. 2-2, pp. 227-231,1984.

[15] R. L. Rivest and A. Shamir, "How to reuse a "write-once" memory," Inform. and
Control, vol. 55, pp. 1-19, 1982.

[16] G. Simonyi, "On write-unidirectional memory codes," IEEE Trans. on Inform. The
ory, vol. 35, no. 3, pp. 663-667, May 1989.

[17] F. M. 1. Willems and A. 1. Vinck, "Repeated recording for an optical disk," in
Proc. 7th Symp. Inform. Theory in the Benelux, May 1986, Delft Univ. Press, pp.
49-53.

[18] E. Yaakobi, P.H. Siegel, and 1. K. Wolf, "Buffer codes for multi-level flash mem
ory," in Proceedings of the 2008 IEEE International Symposium on Information
Theory (ISIT2008) , Toronto, Canada, 2008, poster.

[19] E. Yaakobi, A. Vardy, P.H. Siegel, and 1. K. Wolf, "Multidimensional flash codes,"
in Proc. of the Annual Allerton Conference, 2008.

1223

