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The Quadratic Gaussian CEO Problem with
Byzantine Agents

Oliver Kosut and Lang Tong

Abstract— The quadratic Gaussian CEO problem is studied
when the agents are under Byzantine attack. That is, an unknown
subset of agents is controlled by an adversary that attempts to
damage the quality of the estimate at the Central Estimation
Officer, or CEO. Inner and outer bounds are presented for the
achievable rate region as a function of the fraction of adversarial
agents. The inner bound is derived from a generalization of the
Berger-Tung quantize-and-bin strategy, which has been shown
to be tight in the non-Byzantine case. The outer bound has
similarities to the Singleton bound in that the traitorous agents
must be prevented from allowing two sources to result in the
same transmitted codewords if their values are too far apart for
the distortion constraint to be satisfied with a single estimate.
The inner and outer bounds on the rate regions are used to find
bounds on the asymptotic proportionality constant in the limit
of a large number of agents and high sum-rate. These bounds
on the proportionality constant differ at most by a factor of 4.

I. INTRODUCTION

Distributed systems are more likely to be susceptible to
physical assault. A malicious intruder could seize a group
of nodes and reprogram them to cooperate to obstruct the
goal of the network, launching a so-called Byzantine attack.
Alternatively, nodes may break down and begin transmitting
spurious information. In either case, it is necessary to design
algorithms and analyze performance in distributed problems
when some of the nodes do not behave as they should.

Consider the CEO problem, a special case of multiterminal
source coding, in which the fusion center or Central Estimation
Officer (CEO), is interested in a sequence {X(t)}∞t=1 but
cannot observe it directly. Instead, each of L agents observe
one of {Yk(t)}∞t=1 for k = 1, . . . , L, where the Yk are condi-
tionally independent given X . Without cooperating, the agents
communicate encoded versions of their measurements to the
CEO, which uses these transmissions to produce an estimate
of X . We investigate a modification of this problem in which
an unknown group of βL agents are traitors. Traitors need not
use the stipulated encoders to produce their transmissions to
the CEO; indeed they may choose their codewords arbitrarily.
We will study how β affects the quality of the CEO’s estimate
with Gaussian sources and quadratic distortion measure.

The CEO problem was first studied by Berger, Zhang,
and Viswanathan [1] for discrete memoryless sources. They
showed that for a large number of agents the achievable
distortion fell exponentially with increasing sum-rate, and they
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characterized the associated error exponent. Viswanathan and
Berger [2] first studied the quadratic Gaussian version in a
similar regime, showing that for many agents the distortion
fell as K/R where R is the sum rate and K is a constant
independent of R, and they found bounds on the proportion-
ality constant K. Oohama [3] showed that their inner bound
was tight, and then [4] simultaneously with Prabhakaran, Tse,
and Ramchandran [5] found the rate region for a finite number
of agents and heterogeneous observations by the agents. All
of these results used only the Berger-Tung inner bound [6],
[7] (also known as quantize-and-bin) to prove achievability.
These results indicate that the Berger-Tung encoding cannot be
improved upon for the quadratic Gaussian CEO problem. It is
curious whether the essential Berger-Tung technique remains
optimal when some agents are compromised.

The notion of Byzantine attack has its root in the Byzantine
Generals Problem [8], [9], in which a clique of traitorous
generals conspire to prevent loyal generals from reaching con-
sensus. Byzantine attacks have been applied to many problems
in networks, such as network coding [10], [11]. Distributed
source coding was investigated in [12], which studied the
problem of Slepian-Wolf [13] under Byzantine attack. The
discrete memoryless CEO problem under Byzantine attack
was investigated in [14], [15], both of which studied the error
exponent originally characterized without traitors in [1].

One could consider a range of models for network failures.
For example, [10] investigated several different Byzantine
models for network coding, and showed that different rates are
achievable depending on the insidiousness of the compromised
part of the network. For multiterminal source coding, perhaps
the simplest model would be one in which failed nodes
transmit nothing to the CEO, and therefore their identities are
immediately known. Such a model was considered in [16], in
which the decoder sought to produce a higher quality estimate
when fewer nodes fail; here, we are merely interested in the
worst case performance with a limited number of failures. In
this case, fully-identified failed nodes can be dealt with simply
by decoding based on whatever information is received by
the CEO. It is easy to see that the tightness of the Berger-
Tung achievable region for the Gaussian CEO problem extends
to this form of node failures. Even if failed nodes, instead
of making themselves immediately known, transmit random
information to the CEO, the problem is easy, because agents
are expected to send correlated information, so a node sending
a codeword independent from the rest is easy to identify and
ignore. On the other end of the spectrum, compromised nodes
may be Byzantine, with full access to all the sources, the
ability to cooperate, and knowledge of the code. Also, honest
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nodes are forced to use deterministic encoders. (Alternatively,
honest encoders may be random, but this randomness is known
to the traitors.) We will consider this model in the present
paper, for two reasons. First, assuming very powerful traitors
ensures robustness of performance even when they are not.
Secondly, after studying some weaker traitor models in [12],
[14], [15], such as one in which honest nodes can generate
independent randomness that is unknown to the traitors, we
have found that the most extreme model, if perhaps overly
pessimistic, is the most tractable problem that captures the
nature of defeating Byzantine attacks.

In this paper, we present inner and outer bounds on the
rate region for the quadratic Gaussian CEO problem under
Byzantine attack. Our inner bound is an extension of the
Berger-Tung inner bound, and can similarly be applied to a
great variety of problems. As it is for the quadratic Gaussion
CEO problem without traitors, we conjecture that this inner
bound is tight. Our outer bound is a direct generalization of the
converses in [3] and [5]. It also has elements of the Singleton
bound from coding theory, in that we wish to prevent errors
(or, in our case, codeword manipulation by the traitors) from
bringing two points together that must remain distinguishable.
A similar generalization of the Singleton bound was found in
the context of network coding in [11]. We use our bounds on
the rate region to bound the proportionality constant originally
studied in [2], giving the constant as a function of β to
within a factor of 4. We also observe that our bounds on the
proportionality constant have dramatically different behaviors
for small β, indicating that a small number of traitors may
have an unexpectedly harsh effect on performance.

The paper is structured as follows. Section II formally
presents the model and states our results. The inner bound is
proved in Section III, the outer bound in Section IV, and the
bounds on the asymptotic constant in Section V. We conclude
in Section VI.

Notation. The superscript n denotes n-length sequences
across time (e.g. Xn = (X(1), . . . , X(n))), the superscript
L denotes L-length sequences across space (e.g. Y L), and the
superscript nL denotes sequences across time and space (e.g.
Y nL). By XA for A ⊂ {1, . . . , L} we mean (Xk)k∈A. The
n-length typical set parameterized by ε is written T

(n)
ε (X),

with joint and condition typical sets written similarly.

II. MODEL AND RESULTS

Let X(t) for t = 1, . . . , n be an i.i.d. Gaussian sequence
with zero mean and variance σ2

X . For k = 1, . . . , L, let
Yk(t) = X(t) + Nk(t) where Nk(t) is an i.i.d. Gaussian
sequence with zero mean and variance σ2

Nk
, and where the

Nk are independent of X and of each other. Agent k receives
the sequence Y nk and encodes it using the encoding function
fk : Rn → {1, . . . , 2nRk}. The agents are divided into two
groups, labeled honest agents and traitors. There are βL
traitors, where β is assumed to be known to the CEO, but
the identity of this group is unknown at the time of the code
construction, so the code must be prepared for any possible
set of traitors. If agent k is honest, then the codeword Ck that
it transmits to the CEO is Ck = fk(Y nk ). However, if k is a

traitor, then it may choose Ck any way it likes, based on full
knowledge of the sources X,Y L, the code, and cooperation
with other traitors. The CEO’s decoding function is

g :
L∏
k=1

{1, . . . , 2nRk} → Rn (1)

from which it produces an estimate X̂n = g(C1, . . . , CL).
For a given pair (xn, ynL), we define the maximum possible
distortion over all possible actions of the traitors to be

D(xn, ynL) = max
H⊂{1,...,L}:
|H|=(1−β)L

max
CHc

1
n

n∑
t=1

(x(t)− x̂(t))2. (2)

In this expression H runs over all possible sets of honest
agents, where Hc is the set of traitors. We also maximize
over CHc , the codewords sent by the traitors, ensuring that any
potentially traitor actions are considered. Observe that even the
choice of which agents to capture may be a function of the
source values. Note also that in (2) x̂n is a function of CL

given by g, and CH is in turn a function of ynH given by the
fi.

Let the expected distortion be

D = E(D(Xn, Y nL)). (3)

We say that a tuple (R1, . . . , RL, D) is achievable if for
sufficiently large n there exist encoders (f1, . . . , fL) operating
at these rates and a decoder g such that the distortion is
arbitrarily close to D.

We have assumed above that the decoder is deterministic. In
general, that need not be the case, and for certain Byzantine
problems it may be that randomization at the decoder can
improve performance. However, the convexity of the quadratic
distortion function implies it cannot do so for this problem. In
particular, given any random decoder, consider the determin-
istic decoder that simply takes the expectation of the random
estimate given the received codewords. This decoder cannot
do worse than the random one, even though the traitors may
change their behavior based on which decoder is to be used.

We now state our inner bound.
Theorem 1: The tuple (R1, . . . , RL, D) is achievable if

there exist rk for k = 1, . . . , L and for each matrix Σ ∈ RL×L
constants ck(Σ) such that

A) for all S ⊂ {1, . . . , L} with |S| = (1 − 2β)L and all
A ⊂ S,

∑
k∈A

Rk ≥
∑
k∈A

rk +
1
2

log

(
1
σ2
X

+
∑
k∈S

1− exp(−2rk)
σ2
Nk

)

− 1
2

log

 1
σ2
X

+
∑

k∈S\A

1− exp(−2rk)
σ2
Nk

 (4)

B) for every H ⊂ L with |H| = (1−β)L and every vector
λ ∈ RL for which

Σj,k = σ2
X +

σ2
Nk

1− exp(−2rk)
δj,k for all j, k ∈ H (5)
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and λk = σ2
X for k ∈ H ,

D ≥ EΣ,λ

(
X −

L∑
k=1

ck(Σ)Uk

)2

(6)

where by EΣ,λ we mean an expectation taken over
a distribution on the variables (X,U1, . . . , UL) with
covariance matrix (

σ2
X λT

λ Σ

)
. (7)

We offer the following intuition for this result. Agent k will
send to the CEO a corrupted version of its measurement
represented by Uk. These will be designed so that if all agents
were honest, the covariances between them would be

E(UjUk) = σ2
X +

σ2
Nk

1− exp(−2rk)
δj,k. (8)

However, due to the presence of the traitors, the joint distribu-
tion of X,UL that actually occurs, which is represented by the
covariance matrix in (7), may not match the distribution that
would result with no traitors. This alternative distribution is
parameterized by Σ and λ, where Σ is the covariance matrix
of UL, and λ is the covariance vector between X and UL.
Since the CEO can observe only UL, it can only recover
Σ, from which it must choose an estimator. From Σ, the
CEO can identify possible sets of honest agents as the ones
satisfying (5), because the honest agents are guaranteed to
transmit information using the proper distribution. However,
there may be several possible sets that are indistinguishable
to the CEO, and for each set many possibilities for λ. The
CEO must construct its estimate by choosing constants ck that
satisfy the distortion constraint for each of these possibilities,
as (6) stipulates.

This inner bound is a natural extension of the Berger-Tung
inner bound for the non-Byzantine setting. This bound is tight
in the non-Byzantine setting, and we conjecture that our inner
bound is likewise tight, in which case the rate region would be
given by conditions (A) and (B) above. However, this region
does not match that of our outer bound, stated as follows.

Theorem 2: If the tuple (R1, . . . , RL, D) is achievable, then
there exist rk for k = 1, . . . , L such that for all S ⊂
{1, . . . , L} with |S| = (1− 2β)L and all A ⊂ S,∑
k∈A

Rk ≥
∑
k∈A

rk +
1
2

log
1
D

− 1
2

log

 1
σ2
X

+
∑

k∈S\A

1− exp(−2rk)
σ2
Nk

 , (9)

1
D
≤ 1
σ2
X

+
∑
k∈S

1− exp(−2rk)
σ2
Nk

. (10)

The region specified in our outer bound in Theorem 2 is
identical to the rate region for the non-Byzantine problem
given in [4], [5] except that the two conditions on {1, . . . , L}
have been replaced with conditions on S for all sets of size
(1− 2β)L. In fact, Theorems 1 and 2 reduce to the result in
[4], [5] when β = 0.

When β ≥ 1/2, (10) reduces to D ≥ σ2
X . That is, no matter

how high the communication rate from the agents, the quality

of the CEO’s estimate can never improve over the a priori
variance. The reason for this is that once traitors control at least
half of the network, it is impossible for the CEO to distinguish
the group of traitors from the group of honest agents, so the
traitors can simply report a completely different value of X
than the true one, and the CEO will never know which one is
the truth. For this reason, we focus mainly on the nontrivial
regime β < 1/2.

We now define the asymptotic proportionality constant. Let
D(R,L) be the minimum achievable distortion for L agents
where the sum-rate is at most R. In the case that all agents
have the same quality of observation (i.e. σ2

Nk
= σ2

N for all
k), let D(R) = limL→∞D(R,L). Finally define

K(σ2
X , σ

2
N , β) = lim

R→∞
R
D(R)
σ2
X

. (11)

That is, D(R) goes like Kσ2
X/R for large R. The following

theorem bounds K.
Theorem 3:

σ2
N

2σ2
X

1
1− 2β

≤ K(σ2
X , σ

2
N , β)

≤ σ2
N

2σ2
X

√
1− β +

√
β

(1− β)(
√

1− β −
√
β)
. (12)

At β = 0, the two bounds meet at σ2
N/(2σ

2
X), matching the

result of [3]. They also both diverge at β = 1/2. The ratio
between them is monotonically increasing in β and is never
more than 4.

We do not make the same conjecture for our upper bound
on K as we did for our inner bound on the rate region. The
complexity of the statement of Theorem 1 makes it difficult
to calculate the best value of K that would result from it, and
it may be possible to improve on the upper bound in (12).
However, though we omit the proof of this in the interest of
space, it is true that any upper bound on K resulting from
Theorem 1 would have no better behavior for small β than
the upper bound in (12). That is, if our conjecture on the
tightness of Theorem 1 holds, then for β � 1,

K(σ2
X , σ

2
Nk
, β) ' σ2

N

2σ2
X

(1 + 2
√
β). (13)

Compare this to our lower bound from Theorem 3, which
states that for small β,

K(σ2
X , σ

2
Nk
, β) ?

σ2
N

2σ2
X

(1 + 2β). (14)

Observe that (13) increases rapidly with β near β = 0 as
compared to (14).

III. INNER BOUND PROOF

Fix Rk, D, rk, and ck(Σ) satisfying conditions (A) and
(B) in the statement of Theorem 1. We will present a coding
scheme to show that (R1, . . . , RL, D) is achievable. First
define for each agent k an auxiliary random variable Uk =
Yk+Wk, where Wk ∼ N (0, σ2

Wk
) and the Wk are independent

from each other and X,Y L. The variance σ2
Wk

is chosen so
that

rk = I(Yk;Uk|X) =
1
2

log
σ2
Nk

+ σ2
Wk

σ2
Wk

. (15)
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Descriptions of the codebook, and the encoding and decoding
rules follow.

1) Random Code Structure: Each agent k forms its code-
book in the following way. It generates 2n(I(Yk;Uk)+ε) n-length
codewords from the marginal distribution of Uk. Let C(n)

k be
the codeword set. These codewords are then placed into 2nRk

bins uniformly at random.
2) Encoding Rule: Upon receiving Y nk , agent k selects at

random an element of

C(n)
k ∩ T (n)

ε (Uk|Y nk ) (16)

which it denotes Unk . Agent k then sends to the CEO the index
of the bin containing Unk .

3) Decoding Rule: For each H ⊂ {1, . . . , L} with |H| =
(1 − β)L, the CEO looks for a group of codewords in
T

(n)
ε (UH) that matches the received bins from all agents in
H . If there is exactly one such a sequence, call it Ûnk [H] for
all k ∈ H . If there is no such sequence or more than one,
define this to be null.

For all k, if there is exactly one non-null value of Ûnk [H]
among all H 3 k, then call this sequence Ûnk . If the values of
Ûnk [H] are all null or they are inconsistent, then set Ûnk = 0n.
Let Σ be the sample covariance of ÛnL, with the exception
that if ÛnH is jointly typical, we reset

Σj,k = σ2
X +

σ2
Nk

1− exp(−2rk)
δj,k (17)

for all j, k ∈ H . This value is identical to E(UjUk), so if the
pair (Uj , Uk) is already jointly typical, this revision does not
change Σ much. Finally, the CEO chooses for its estimate

X̂n =
L∑
k=1

ck(Σ)Ûnk . (18)

A. Error Analysis

Let H be the true set of honest agents. It can be shown
that if (4) is satisfied, then with high probability (Xn, ÛnH)
are jointly typical. Let λ be the sample covariance between
ÛnL and Xn, but again with the exception that we reset λk =
σ2
X for all k ∈ H . As with our construction of Σ, because

E(XUk) = σ2
X , the joint typicality of (Xn, ÛnH) ensures that

this revision is slight. Hence

1
n

n∑
t=1

(X(t)− X̂(t))2 ≤ EΣ,λ

(
X −

L∑
k=1

ck(Σ)Uk

)2

+ ε̇

(19)
where ε̇→ 0 as ε→ 0. Therefore, by (6)

1
n

n∑
t=1

(X(t)− X̂(t))2 ≤ D + ε̇. (20)

Taking the limit as ε→ 0 proves achievability.

IV. OUTER BOUND PROOF

Assume (R1, . . . , RL, D) is achievable, and consider a code
that achieves it with codewords (C1, . . . , CL). We may assume
without loss of generality that the code achieves distortion D

with probability at least 1− ε, because we can always repeat
the code multiple times and apply the law of large numbers.
Fix S ⊂ {1, . . . , L} with |S| = (1 − 2β)L, and A ⊂ S. A
standard inequality train yields∑

k∈A

Rk ≥
1
n
I(Xn;CS)− 1

n
I(Xn;CS\A) +

∑
k∈A

rk (21)

where rk = 1
nI(Y nk ;Ck|Xn). Lemma 3.1 in [5] states that for

any B ⊂ {1, . . . , L},

1
σ2
X

exp
(

2
n
I(Xn;CB)

)
≤ 1
σ2
X

+
∑
k∈B

1− exp(−2rk)
σ2
Nk

(22)

which allows us to bound the second term in (21). We will
proceed to show that

1
n
h(Xn|CS) ≤ 1

2
log 2πeD (23)

which, applied to (21) along with (22), gives (9). Taking A = ∅
yields (10).

We now prove (23). Let H1, H2 be sets of size (1−β)L such
that S = H1 ∩H2. If Hi is the true set of honest agents, for
i = 1 or 2, then they use the deterministic encoding functions
fk to get CHi

from Y nHi
. Meanwhile, the traitors, Hc

i , choose
CHc

i
. The CEO’s estimate X̂n is effectively a deterministic

function of Y nHi
and CHc

i
. Thus we can define the set

SD(X,YHi) =
{

(xn, ynHi
) :

∀cHc
i
,

1
n
d(xn, X̂n(ynHi

, cHc
i
)) ≤ D

}
. (24)

This is the set of all (xn, ynHi
) pairs for which X̂n achieves the

distortion constraint no matter what the traitors do. Because we
assume that distortion D is achieved with probability nearly
one, the probability of the set SD(X,YHi) is also nearly one.

Now define

QD(X,YS) =
{

(xn, ynS) : ∃ynH1\H2
, ynH2\H1

:

(xn, ynH1
) ∈ SD(X,YH1), (xn, ynH2

) ∈ SD(X,YH2)
}
. (25)

That is, QD(X,YS) is the set of pairs (xn, ynS) such that X̂n

may achieve the distortion constraint (depending on the Y
values) if either H1 or H2 is the set of honest agents. Because
the SD sets have probability nearly one, so does QD.

Given a codeword cS , let QD(X|cS) be the set of xn

such that (xn, ynS) ∈ QD(X,YS) for some ynS for which
fS(ynS) = cS . It follows from the high probability property
of QD(X,YS) that QD(X|cS) also has high probability con-
ditioned on cS being sent. Hence

1
n
h(Xn|CS) ≤ 1

n
max
cS

log Vol(QD(X|cH∩S)) + ε̈ (26)

where ε̈→ 0 as ε→ 0.
Consider two elements xn, x′n of QD(X|cS). From the

definition of QD, there must be ynH1
and y′nH2

such that

(xn, ynH1
) ∈ SD(X,YH1), (x′n, y′nH2

) ∈ SD(X,YH2). (27)

Consider the case that cS , cH1\H2 = fH1\H2(ynH1\H2
), and

cH2\H1 = fH2\H1(y′nH2\H1
) are sent. First observe that this
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set of messages could have been produced if Xn = xn,
Y nH1

= ynH1
, and H1 were the set of honest agents. Then the

agents in H2 \H1, which are all traitors, could send cH2\H1 .
Since (xn, ynH1

) ∈ SD(X,YH1), by definition the estimate
x̂n produced at the CEO must satisfy 1

nd(xn, x̂n) ≤ D.
However, the same set of messages could have been produced
if Xn = x′n, Y nH2

= ynH2
, and H2 were the set of honest

agents, where H1 \H2 decide to send cH1\H2 . Since the CEO
produces just one estimate given a set of input messages, the
very same estimate x̂n, must satisfy 1

nd(x′n, x̂n) ≤ D. Hence,
by the triangle inequality, for any xn, x′n ∈ QD(X|cS),

‖xn − x′n‖2 ≤ 2
√
nD. (28)

That is, QD(X|cS) has diameter at most 2
√
nD. The follow-

ing lemma bounds the volume of subsets of Rn as a function
of their diameter. The proof, which we omit, makes use of the
Brunn-Minkowski inequality.

Lemma 1: The volume of any subset of Rn is no more than
that of the n-ball with the same diameter.
Hence, the volume of QD(X|cS) is no more than that of
an n-ball with radius

√
nD, which is less than (2πeD)n/2.

Applying this to (26) gives (23), completing the proof.

V. PROOF OF ASYMPTOTIC BOUNDS

The proof of the lower bound in (12) using Theorem 2 is
straightforward and we omit it. We proceed to prove the upper
bound in (12) using Theorem 1.

For a given sum-rate R, we must specify rk and ck to satisfy
conditions (A) and (B) in the statement of Theorem 1. Let
Rk = R/L for all k. Let r be the largest possible value
satisfying (4) where rk = r/L. It is not hard to show that
for large L and R, r is nearly equal to R.

For all A ⊂ {1, . . . , L}, let X̂A = E(X|UA). When X and
UA are related according to the nominal distribution, for fixed
|A|/L and large L and R,

E(X − X̂A)2 ' σ2
N

2R
L

|A|
. (29)

Also observe that if B ⊂ A,

E(X̂A − X̂B)2 = E(X − X̂B)2 − E(X − X̂A)2. (30)

We choose the ck in the following way. Given Σ, we look for
a set Ĥ ⊂ {1, . . . , L} of size (1−β)L that has the anticipated
distribution if Ĥ were the set of honest agents. That is, (5)
holds for Ĥ . If there is more than one such Ĥ , choose between
them arbitrarily. Define ck such that

L∑
k=1

ckUk = X̂Ĥ . (31)

Now we show that this choice satisfies condition (2) for a
value of D giving the upper bound in (12). To do this, we
must consider all possible values of λ. In the worst case,
the true set of honest agents H shares just (1− 2β)L agents
with Ĥ . Because UĤ is distributed according to the nominal
distribution,

EΣ,λ(X̂Ĥ−X̂Ĥ∩H)2 = E(X−X̂Ĥ∩H)2−E(X−X̂Ĥ)2. (32)

Furthermore, since Ĥ ∩H contains only honest agents,

EΣ,λ(X̂Ĥ∩H −X)2 = E(X̂Ĥ∩H −X)2. (33)

The Cauchy-Shwartz inequality and (29) can now be used to
show

EΣ,λ(X̂Ĥ −X)2 >
σ2
N

2R

√
1− β +

√
β

(1− β)(
√

1− β −
√
β)
. (34)

This proves the upper bound in (12).

VI. CONCLUSION

We presented inner and outer bounds for the rate region of
the quadratic Gaussian CEO problem as a function of the size
of a subset of agents reprogrammed by an adversary. These
bounds were used to bound the asymptotic proportionality
constant for many agents and high sum-rates.

We conjectured that our inner bound on the rate region
is tight, which would indicate that our upper bound on the
proportionality constant is approximately tight for a small
fraction of traitors. In particular, if our conjecture holds then
the proportionality constant goes like 1 + 2

√
β near β = 0,

as opposed to our lower bound of 1 + 2β. Hence, if our
conjecture is true, then a small number of traitors would have
a surprisingly damaging effect on the quality of the CEO’s
estimate.
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