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Abstract—This article is concerned with decentralized sequen-
tial testing of a normal mean µ with two-sided alternatives. It
is assumed that in a single-sensor network system with limited
local memory, i.i.d. normal raw observations are observed at
the local sensor, and quantized into binary messages that are
sent to the fusion center, which makes a final decision between
the null hypothesisH0 : µ = 0 and the alternative hypothesis
H1 : µ = ±1. We propose a decentralized sequential test
using the idea of tandem quantizers (or equivalently, a one-
shot feedback). Surprisingly, our proposed test only uses the
quantizers of the form I(Xn ≥ λ), but it is shown to be
asymptotically Bayes. Moreover, by adopting the principleof
invariance, we also investigate decentralized invariant tests with
the stationary quantizers of the form I(|Xn| > λ), and show
that λ = 0.5 only leads to a suboptimal decentralized invariant
sequential test. Numerical simulations are conducted to support
our arguments.

I. I NTRODUCTION

Decentralized sequential detection has many important ap-
plications such as signal detection and sensor networks, see,
for example, Blum, Kassam, and Poor [1]. Veeravalli, Basar,
and Poor [7] characterizes the Bayesian solutions in the system
with limited local memory and full feedback. Recently Mei
[5] develops the first complete asymptotic theory for decen-
tralized sequential detection. However, existing research only
focuses on the simplest model when both null and alternative
hypotheses are completely specified.

In this article, we will consider a more flexible model of
decentralized sequential detection in which hypotheses are
composite. To highlight our main ideas, we focus on the
following specific problem in a single-sensor network system,
since the extension to the system with multiple (condition-
ally independent) sensors is straightforward. Assume thatthe
single local sensor observes a sequence of raw observations
X1, X2, · · · over timen and theXn’s are i.i.d. having a normal
distributionN(µ, 1). Suppose we are interested in testing

H0 : µ = 0 versus H1 : µ = ±1. (1)

In the centralized context, one uses the raw observationsXi’s
to decide which ofH0 andH1 is true, and such a problem
has been well studied in the mature field of sequential analysis
(Wald [9]). In the context of decentralized detection, due to
data compression and communication constraints, the local
sensor needs to quantize the dataXn’s and send a binary
messageUn ∈ {0, 1} to the fusion center, which then utilize

the quantized messagesUn’s to decide which ofH0 andH1 is
true. Following Veeravalli, Basar, and Poor [7] and Mei [5],it
is assumed that at timen, the quantized messageUn sent from
the sensor to the fusion center only depends on the current raw
observationXn and possibly feedback from the fusion center.
In other words, at timen, quantized messageUn satisfies

Un = φn(Xn;Vn−1) ∈ {0, 1}, (2)

where the feedbackVn−1 only depends on past sen-
sor messages:Vn−1 = ψn(U[1,n−1]); where U[1,n−1] =
(U1, . . . , Un−1).

In the decentralized sequential detection problems, one
wants to determine how to design sensor quantizers{φn} in
(2) and how to make a sequential decision at the fusion center,
so that the overall performance of the system is optimal (in
some suitable senses). A central challenge is to determine
the form of (binary) quantizersφn’s for (asymptotically)
optimal decentralized tests. In the simplest model when both
null and alternative hypotheses are completely specified, the
best quantizers are of the form of monotone likelihood ratio
quantizers (MLRQ), see Tsitsiklis [6], and take the following
simple form in the case of testing normal means:

φ(X) = I(X ≥ λ). (3)

When the hypothesis is composite, the MLRQ is no longer
applicable. In particular, it is unclear whether the quantizers
in (3) still lead to (asymptotically) optimal decentralized
solutions when testing the hypotheses in (1). Indeed, our
intuition may suggest us that a (more) attractive candidate
can beφ(X) = I(|X | ≤ 0.5), or more generally,φ(X) =
I(λ1 ≤ X ≤ λ2). Moreover, it is unclear whether other more
complicated quantizers are necessary or not.

In this article, we tackle the form of binary quantizers by
using the concept of unambiguous likelihood quantizer (ULQ)
proposed by Tsitsiklis [6] (the MLRQ is a special case of
ULQ). Surprisingly, by combining the ULQ with the idea
of tandem quantizer in Mei [5], we show that at most one
switch between two different quantizers of the form in (3) is
sufficient to construct the asymptotically optimal decentralized
sequential test when testing the composite hypotheses in (1).

Observing the symmetries of the densities, it is also nat-
ural to adopt the principle of invariance (see, for example,
Lehmann [4]). Specifically, if we consider|Xn|, the problem
of testing hypothesis in (1) becomes one of testing a simple
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null versus a simple alternative hypothesis on|Xn|. This
viewpoint allows us to apply the asymptotic theory in Mei
[5] to investigate decentralizedinvariant sequential tests. It
is interesting to note that among stationary quantizers of the
form φ(X) = I(|X | ≥ λ), the intuitive choice ofλ = 0.5
leads suboptimal decentralized invariant sequential tests.

The remainder of this article is organized as follows. Section
II provides a formal mathematical formulation of decentralized
sequential hypothesis testing problem. In Section III, we
propose a family of decentralized sequential tests, and proves
its asymptotic optimality properties. The nontrivial partof
the proof is in Subsection III.C, which characterize optimal
quantizers via unambiguous likelihood quantizers (ULQ). Sec-
tion IV focuses on the decentralizedinvariant sequential tests.
Section V reports numerical simulations.

II. PROBLEM FORMULATION

Assume that the raw dataX1, X2, · · · are i.i.d. with
N(µ, 1), and suppose that over timen, the quantized message
Un ∈ {0, 1}, defined in (2), only depends onXn and possibly
Vn−1, a feedback summarizing past history of all quantized
messagesU[1,n−1]. Here we intentionally do not put any
restrictions on the range or frequency of the feedbackVn−1,
as it turns out that a simple one-shot feedback is sufficient to
construct an asymptotic optimal solution.

For three hypotheses in (1), denote byf , g1 and g2 the
probability densities ofXn’s whenµ = 0,−1, 1 respectively.
Also denote the corresponding probability measures and ex-
pectations by{Pf ,Ef}, {Pg1 ,Eg1} and{Pg2 ,Eg2}. Assume a
priori distributionπ = (πf , πg1 , πg2) is assigned to the three
states of nature, and let

Pπ = πfPf +

2
∑

i=1

πgiPgi ; Eπ = πfEf +

2
∑

i=1

πgiEgi .

To characterize a decentralized sequential testδ, denote by
N the time when the testδ decides to stop taking observations,
i.e., N is the sample size ofδ. Once stopped, the test (the
fusion center) makes a decisiond ∈ {0, 1}, corresponding to
H0 andH1, based on the information it receives up to that
time. In summary, a decentralized sequential testδ includes a
sequence of quantizers{φ1, φ2, . . . }, a sequence of feedback
functions{ψ1, ψ2, . . . }, a stopping timeN at the fusion center,
and a decision functiond ∈ {0, 1}.

As in Wald [9] and Veeravalli, Basar, and Poor [7], define
a Bayes risk of a decentralized sequential testδ as

Rc(δ) = πf [cEf (N) +WfPf{d = 1}]

+
2

∑

i=1

πgi [cEgi(N) +WgiPgi{d = 0}], (4)

with c the incremental cost of each sample and
{Wf ,Wg1 ,Wg2} cost of making incorrect decisions.
The Bayes formulation of decentralized sequential hypothesis
testing problems can then be stated as follows.

Problem (P1):Minimize the Bayes riskRc(δ) in (4) among
all possible decentralized sequential tests.

Let δ∗B(c) denote a Bayes solution to the decentralized
sequential detection problem, i.e.,δ∗B(c) = argminδ{Rc(δ)}.
Since it is extremely difficult, if possible at all, to find the
exact form ofδ∗B(c) when hypotheses are composite, we adopt
the asymptotically optimal approach, i.e., to find a family of
decentralized tests{δ(c)} such that

lim
c→0

Rc(δ
∗
B(c))/Rc(δ(c)) = 1.

III. O UR PROPOSEDTESTδI(c)

In this section we propose a family of tests{δI(c)} that
is asymptotically Bayes. Our proposed test is a two-stage
procedure, and it assumes that the fusion center will send a
one-shot feedbackV taking values in{0, 1, 2}, representing a
preliminary decision onf, g1 or g2.

A. Definition of TestδI(c).

Our proposed testδI(c) is defined as follows.
1) First Stage:Choose positive valuesu(c) < 1/2 satisfying

u(c) → 0 and
log u(c)

log c
→ 0. (5)

In the first stage, the local sensor quantizes the raw dataXn’s
by a stationary quantizerφ0(X) = I(X ≥ 0). Based on the
quantized messageUn = φ0(Xn) at each timen, the fusion
center updates the posterior distribution of the three densities
(πf,n, πg1,n, πg2,n) recursively. For example whenUn = 1,

πf,n =
πf,n−1Pf (Un = 1)

∑

i∈{f,g1,g2}
Pi(Un = 1)

.

The fusion center stops the first stage at time

N1 = min{n ≥ 1 : max{πf,n, πg1,n, πg2,n} ≥ 1− u(c)},

and makes a preliminary decisiond0 ∈ {f, g1, g2} at timeN1

satisfying

πd0,N1
= max{πf,N1 , πg1,N1 , πg2,N1}.

2) Second Stage:In this stage, it is essential for the sensor
to switch to one of the following three “optimal” quantizers,
depending on the preliminary decision of the fusion center in
the first stage:

φ∗f (X) = I(X ≥ 0);

φ∗g1(X) = I(X ≥ −0.7941);

φ∗g2(X) = I(X ≥ 0.7941).

Specifically, after the fusion center stops at the first stage, it
will send its preliminary decisiond0 ∈ {f, g1, g2} back to the
local sensor as a one-shot feedbackV . Then the local sensor
switch to the above optimal quantizerφ∗d0 and use it for all
incoming raw data.

In the second stage, the fusion center continues to
recursively update the posterior distributions with data



UN1+1, UN1+2, . . . and it decides to stop the second stage
at time

N = min{n ≥ N1 :
πf,nWf

∑2
i=1 πgi,nWgi

6∈ (c,
1

c
)}

with a final decisiond = 0 (d = 1) if upper (lower) bound is
crossed.

B. Asymptotic Optimality ofδI(c).

The asymptotic optimality properties of testδI(c) are sum-
marized in the following theorem and its corollary:

Theorem 1. For any decentralized sequential tests{δ(c)}, if

Pϕ(decision incorrect) = O(c log c), (6)

for ϕ ∈ {f, g1, g2}, then the stopping timeN of δ(c) satisfies

Ef (N) ≥ (1 + o(1))| log c|/0.3137
Eg1(N) ≥ (1 + o(1))| log c|/0.3186
Eg2(N) ≥ (1 + o(1))| log c|/0.3186,

(7)

and our proposed tests{δI(c)} attain all three lower bounds
in (7) simultaneously.

Corollary 1. Tests{δI(c)} are asymptotically Bayes. More-
over, both{δI(c)} and Bayes solutionδ∗B(c) satisfy asc→ 0,

Rc(δI(c)) = c| log c|(1 + o(1))
[ πf
0.3137

+
πg1 + πg2
0.3186

]

.

Note that the asymptotic optimality properties in Theorem 1
do not depend on either the priori distributionπ or the loss for
incorrect decisions{Wf ,Wg1 ,Wg2}. This is consistent with
the centralized sequential hypothesis testing, see, Chernoff [2].

Before proving Theorem 1, let us first introduce some
necessary notation. Denote byΦ the set of deterministic
quantizers that consists of all (deterministic) measurable func-
tions fromR to {0, 1}. Define a “random quantizer”̄φ as a
probability measure that assigns certain masses{pi} on a finite
subset{φi} ∈ Φ, and denote bȳΦ the set of all quantizers,
deterministic or random. Note that a deterministic quantizer
can be thought of as a special case of random quantizer that
assigns a probability of1 to itself.

In the context of decentralized detection, we adopt the fol-
lowing implementation for a random quantizerφ̄ : The fusion
center first selects a deterministic quantizerφ ∈ Φ randomly
according to the probability measure{pi} assigned bȳφ, and
then the local sensor quantizes the raw data by the chosen
deterministic quantizerφ. Such a procedure repeats whenever
the local sensor uses̄φ to quantize a new raw observation. We
want to emphasize that it is essential to assume that if a random
quantizerφ̄ is applied, the fusion center retains the information
about which deterministic quantizer it chooses (otherwisethe
fusion center will lose significant information).

Observe that for a given deterministic quantizerφ, the K-L
information numberIφ(f, g1) is

Iφ(f, g1) =

1
∑

i=0

Pf (φ(X) = i) log
Pf (φ(X) = i)

Pg1(φ(X) = i)
.

With our implementation of random quantizers, for a given
random quantizer̄φ that assigns probability massp1, . . . , pn
ontoφ1, . . . , φn, it is easy to see that the corresponding K-L
information numberI φ̄(f, g1) (at the fusion center) is

I φ̄(f, g1) =

n
∑

i=1

piI
φi(f, g1). (8)

Similarly, we can also define the quantitiesIφ(f, g2),
I φ̄(f, g2), or Iφ(gi, f), I φ̄(gi, f) for i = 1, 2.

We are now ready to rigorously define the optimal quan-
tizers and the corresponding K-L information number. Define
the optimal quantizer with respect togi as

φ̄gi = arg sup
φ̄∈Φ̄

{I φ̄(gi, f)}, i = 1, 2

and define the optimal quantizer with respect tof as

φ̄f = arg sup
φ̄∈Φ̄

{min{I φ̄(f, g1), I φ̄(f, g2)}}. (9)

Moreover, define the corresponding K-L information num-
ber of these two quantizers asIgi = I φ̄gi (gi, f), i = 1, 2 and
If = min{I φ̄f (f, g1), I

φ̄f (f, g2)}.
With these notation, let us state the following proposition

without proof, as it is just a special case of Theorem 2 of
Chernoff [2] and Section V of Kiefer and Sacks [3].

Proposition 1. For decentralized sequential tests{δ(c)} sat-
isfying (6) in Theorem 1, forϕ ∈ {f, g1, g2}, as c→ 0,

Eϕ(N) ≤ (1 + o(1))| log c|/Iϕ. (10)

To achieve the lower bounds in (10) simultaneously, one only
needs to use the two-stage procedure as described in Section
III for test δI(c), but for the second stage,φ∗f , φ∗g1 and φ∗g2
should be substituted by the optimal (random) quantizersφ̄f ,
φ̄g1 and φ̄g2 respectively.

A comparison of Theorem 1 and Proposition 1 shows that
to prove Theorem 1, it suffices to show that in the context of
testing a normal mean stated in (1), the optimal quantizers
φ̄f , φ̄g1 , φ̄g2 becomeφ∗f , φ

∗
g1
, φ∗g2 described in Section III.

Sinceφ∗g1 or φ∗g2 only involves two densities, the correspond-
ing result follows immediately from the optimality of MLRQ’s
established in Tsitsiklis [6]. Therefore, it remains to show that

φ̄f = φ∗f , (11)

which will be proved in the next subsection.

C. Optimal Quantizer with respect tof

The main objective of this subsection is to prove (11), i.e.,
the optimal (randomized) quantizer̄φf (x) with respect tof
becomes the deterministic quantizerφ∗f (x) = I(x ≥ 0) when
f = N(0, 1), g1 = N(−1, 1) andg = N(1, 1).

To prove this, for a given deterministic quantizerφ ∈ Φ,
define fori = 0, 1,

qi(φ|ϕ) = Pϕ(φ(X) = i) andq(φ|ϕ) = (q0(φ|ϕ), q1(φ|ϕ)),



whereϕ ∈ {f, g1, g2}, and denote

q(φ) = (q(φ|f); q(φ|g1); q(φ|g2)), (12)

then q(φ) completely characterizes the distribution of quan-
tized message induced by the deterministic quantizerφ, in
the sense that ifq(φ1) = q(φ2), the quantized dataφ1(X)
and φ2(X) have the same distribution, which implies that
Iφ1(f, g1) = Iφ2(f, g2).

Let
Q = {q(φ), φ ∈ Φ}

be a subset ofR6 and Q̃ be the convex hull ofQ. (Here we
do not use the usual symbol̄Q to avoid confusion withΦ̄.)
For q̃ ∈ Q̃, as in (8) and (12), definẽq = (q̃(f); q̃(g1); q̃(g2))
and

I q̃(f, g1) =

1
∑

i=0

q̃i(f) log
q̃i(f)

q̃i(g1)
, (13)

and quantities such asI q̃(f, gi) with i = 1 or 2 in an obvious
extension. Note that the K-L definition in (13) is consistent
with that in (8), since for a deterministic quantizerφ, we have
Iq(φ)(f, g1) = Iφ(f, g1).

Now let us state the concept of unambiguous likelihood
quantizer (ULQ) proposed in Tsitsiklis [6]. Let

vi(X) =
gi(X)/f(X)

1 + g1(X)/f(X) + g2(X)/f(X)
, i = 1, 2.

In our context (also see Lemma 2 below), a quantizerφ ∈ Φ
is a ULQ if there exists real numbera0, a1, a2 such that

φ(X) = I(a0 + a1v1(X) + a2v2(X) > 0) (14)

and forϕ ∈ {f, g1, g2},

Pϕ(a0 + a1v1(X) + a2v2(X) = 0) = 0. (15)

Lemma 1. Let φ ∈ Φ be a ULQ, then up to a permutation of
the values it takes, w.p.1 (under all f, g1, g2):

φ(X) = I(λ1 ≤ X ≤ λ2) or φ(X) = I(X ≥ λ). (16)

Proof: As X goes from−∞ to ∞, both 1 − v1 and
v2 strictly increase from0 to 1. Hence it suffices to show
φ(X) = I(t1 ≤ v1(X) ≤ t2) with 0 ≤ t1 ≤ t2 ≤ 1.

By (14) and (15), ULQ’s can be interpreted as: draw a
straight line onR2 which intersects{(v1(X), v2(X))} at a
zero-probability set (under allf, g1, g2), φ will take value0
if (v1, v2) stays in one side of the line and take value1 if it
stays in the other. Sinced

2v2
dv2

1
< 0 for any 0 < v1 < 1, a line

intersects{(v1(X), v2(X))} at at most two points, and thus
relation (16) holds.

The following lemma shows that the best quantizers can be
found from the class of the ULQ’s.

Lemma 2. For a given quantizer̄φ ∈ Φ̄, there always exists
another quantizer̄φ′ ∈ Φ̄ that assigns probability masses only
to the ULQ’s and

I φ̄
′

(f, gi) ≥ I φ̄(f, gi); i = 1, 2. (17)

Proof: Let Qα be the exposed points of̃Q, then by
Corollary 5.1 of Tsitsiklis [6],q ∈ Qα if and only if there
exists a ULQφ such thatq = q(φ). By the compactness of
the set{(v1(X), v2(X))}, it is straightforward to show that
Qα is identical with the extremal points of̃Q.

From (8), it is sufficient to prove (17) for deterministicφ.
By the extreme properties of the ULQ’s, there exist ULQ’s
φ1, . . . , φn and positive numberp1, . . . , pn such that

q(φ) =
n
∑

k=1

pkq(φk);
n
∑

k=1

pk = 1.

Let φ̄′ be a random quantizer assigning masspi to φi for
i = 1, . . . , n. By (8), for i = 1, 2,

I φ̄
′

(f, gi) =

n
∑

k=1

pkI
φk(f, gi) ≥ Iq(φ)(f, gi) = Iφ(f, gi).

Proof of Relation (11): By Lemma 2, φ̄f can be
achieved by randomizing ULQ’s of the formφ(X) =
I(X ≥ λ) or φ(X) = I(λ1 ≤ X ≤ λ2). Since
supφ̄∈Φ̄{min{I φ̄(f, g1), I φ̄(f, g2)}} must be reached on the
boundary of a two dimensional convex set, it suffices to focus
on quantizers that randomize between at most two ULQ’s.

Numerically, we can simply optimize over discrete (finite)
setsΠ1 = {λi : λi ∈ R} and Π2 = {(λ1,i, λ2,i) : λ1,i <
λ2,i}. For each quantizer̄φ that randomize between at most
two ULQ’s (with the values ofλ and (λ1, λ2) in Π1 or Π2,
respectively), we can calculate the value

min{I φ̄(f, g1), I φ̄(f, g2)},

and the quantizer̄φ with the maximum value will be the ap-
proximation of the best quantizer. Our numerical computations
support the optimality of quantizerφ∗f (X) = I(X > 0) in the
sense of (9) to the precision of four digits after the decimal
point.

IV. I NVARIANT TESTS

One popular approach to tackle hypothesis testing with
composite hypotheses is the principle of invariance, see for
example Lehmann [4]. In our case, the two densities inH1

are reflections to each other, so if we pretend that{|Xn|} are
taken as the raw data, the problem in (1) becomes a simple
hypothesis-testing problem with

H0 : |Xn| ∼ f̃ and H1 : |Xn| ∼ g̃,

wheref̃ and g̃ are probability densities of the forms:

f̃(x) =
2√
2π
e−

x2

2 1{x ≥ 0}

g̃(x) =
1√
2π

(e−
(x−1)2

2 + e−
(x+1)2

2 )1{x ≥ 0}.

Therefore, with|Xn|, we can develop “good” decentralized
invariant sequential tests based on the asymptotic optimality
theory in Mei [5]. Below we will use the same notation as in
previous sections, for instance, denote byN the sample size,



and denote byπf̃ ,n andπg̃,n the posterior distributions, resp.
Similarly, {Wf̃ ,Wg̃} is the cost of making incorrect decisions.

Let us consider the decentralized invariant test withstation-
ary quantizers of the formUn = I(|Xn| ≤ λ). In this case, the
quantized sensor messagesUn’s are i.i.d. (conditioned on each
hypothesis) and the fusion center faces a classical sequential
hypothesis testing problem. Thus the optimal policy at the
fusion center is an SPRT based onUn’s. That is, the fusion
center stops taking observations at time

N = min{n ≥ 1 :
πf̃ ,nWf

πg̃,nWg̃

6∈ (c,
1

c
)},

and decidesH0 (H1) is true if upper (lower) bound is crossed.
Hence, in the following we will we pay special attention on
how to choose a quantizer of the formUn = I(|Xn| ≤ λ).

Under our setting, one natural choice of quantizer is

φ(|X |) = I(|X | ≤ 0.5) (18)

and denote by{δII(c)} the corresponding decentralized test
with an SPRT at the fusion center.

By asymptotic optimality theory in Mei [5], a better choice
of λ is to find one value that minimizes

πf̃

I(f̃λ, g̃λ)
+

πg̃

I(g̃λ, f̃λ)
,

where f̃λ and g̃λ are the probability mass functions induced
on Un = I(|Xn| ≤ λ) when the distribution of|Xn| is f̃ and
g̃. A simple numerical simulation shows that the best value is
λ = 1.2824, and

φ∗(|X |) = I(|X | ≤ 1.2824). (19)

Denote by{δIII(c)} the corresponding decentralized test with
an SPRT at the fusion center.

V. SIMULATION

In this section we compare the three tests proposed in
previous sections through numerical simulation. We fix a priori
distribution πf = πg1 = πg2 = 1/3 in our problem (by
Theorem 1, this is not essential). This leads toπf̃ = 1/3
and πg̃ = 2/3 for the invariant tests in Section IV. In
our simulations, the cost of making incorrect decisions are
assumed to be1, and we consider three different values for
the cost of taking an observation:c = 10−2, 10−3, 10−4. In
our proposed testδI(c), it has an additional parameteru(c)
satisfying the conditions in (5), and in our simulations we
assume thatu(c) = 0.1.

Table I and II report numerical simulations on
P(decision incorrect) and the expected sample sizesE(N).
Since the probabilities of incorrect decisions are small, we
use the importance sampling approach to simulateP(DI).

For c = 0.01, we haveRc(δI(c)) = 0.204, Rc(δII(c)) =
0.949, Rc(δIII(c)) = 0.465. Hence, the test{δII(c)} with
the intuitive choice of the quantizer in (18) leads to a poor
performance in terms of Bayes risk. Meanwhile, the test
{δIII(c)} with the “best” invariant quantizer in (19) has a
better performance, and our proposed test{δI(c)} in Section
III is the best among all three tests.

TABLE I
EXPECTEDVALUES OF SAMPLE SIZES

E(N) = πfEf (N) + πg1Eg1 (N) + πg2Eg2 (N)

E(N) c = 10−2 c = 10−3 c = 10−4

δI (c) 20.2± 0.2 28.4± 0.2 36.3± 0.2

δII(c) 94.1± 0.7 146.0 ± 1.0 196.4 ± 1.0

δIII (c) 45.7± 0.5 69.0± 0.5 92.2± 0.5

TABLE II
PROBABILITIES OF MAKING INCORRECTDECISIONS

P(DI) c = 10−2 c = 10−3 c = 10−4

δI(c) 4.58 ± 0.03e-3 4.42 ± 0.03e-4 4.61± 0.03e-5

δII (c) 8.84 ± 0.02e-3 8.85 ± 0.02e-4 8.84± 0.02e-5

δIII (c) 8.02 ± 0.02e-3 8.03 ± 0.02e-4 8.02± 0.02e-5

VI. CONCLUSION

In this article, the problem of decentralized testing compos-
ite hypotheses in sensor networks is studied through a concrete
example on testing a normal mean. Asymptotically Bayes tests
{δI(c)} are constructed through a characterization of ULQ’s.
Contrary to our intuition, the quantizers are still of the form
I(Xn > λ). By exploiting the symmetries, we also investigate
invariant stationary SPRT’s. Numerical simulations confirm
the significant advantages of our proposed test{δI(c)}.

While we only consider a special problem of testing a
normal mean, the essential ideas can be easily extended to
other general distributions or the problem of testingK (K ≥
3) hypotheses. It will be interesting to understand when is
possible to characterize the ULQ’s as in (16). Another natural
extension is to study the networks with multiple sensors, where
different sensors may use different quantizers. The details will
be investigated in our future research.
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