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Abstract—This article is concerned with decentralized sequen- the quantized messages'’s to decide which offy and H; is
tial testing of a normal mean p with two-sided alternatives. It trye. Following Veeravalli, Basar, and Poor [7] and Mei [i5],
is assumed that in a single-sensor network system with lined is assumed that at time the quantized messagg, sent from

local memory, i.i.d. normal raw observations are observed & th to the fusi ¢ v d d th t
the local sensor, and quantized into binary messages that ar € sensorto the fusion center only depends on the curnent ra

sent to the fusion center, which makes a final decision betwae ObservationX,, and possibly feedback from the fusion center.
the null hypothesis Ho : © = 0 and the alternative hypothesis In other words, at time:, quantized messagdé, satisfies

H, : p = +£1. We propose a decentralized sequential test

using the idea of tandem quantizers (or equivalently, a one- Un = ¢n(Xn; V1) €{0,1}, (2
shot feedback). Surprisingly, our proposed test only useshe

quantizers of the form I(X, > X), but it is shown to be where the feedbackl,,, only depends on past sen-

asymptotically Bayes. Moreover, by adopting the principleof Sor messagesV,,—1 = 9, (Up ,-1)); where Up 1) =
invariance, we also investigate decentralized invariantests with (U, ..., U,—1).
the stationary quantizers of the form I(|X| > X), and show  |n the decentralized sequential detection problems, one

that A = 0.5 only leads to a suboptimal decentralized invariant
sequential test. Numerical simulations are conducted to qport
our arguments.

wants to determine how to design sensor quantiférst in

(2) and how to make a sequential decision at the fusion genter
so that the overall performance of the system is optimal (in
|. INTRODUCTION some suitable senses). A central challenge is to determine
the form of (binary) quantizersy,’s for (asymptotically)
o : . timal decentralized tests. In the simplest model wheh bot
plications such as signal detection and sensor networks, Il and alternative hypotheses are completely specifiee, t

for de;ampl7e ’ Elum,tKassa?], aBnd qur mi \t/_eera_vallrlt,eBasaéest guantizers are of the form of monotone likelihood ratio
an _oo_r[ ] characterizes the Bayesian solutions in thiesys gquantizers (MLRQ), see Tsitsiklis [6], and take the follogi
with limited local memory and full feedback. Recently Melsimple form in the case of testing normal means:

[5] develops the first complete asymptotic theory for decen-
tralized sequential detection. However, existing redeandy d(X)=I(X > \). 3)

focuses on the simplest model when both null and aIternativ\%en the hypothesis is composite, the MLRQ is no longer
hypotheses are completely specified. '

In thi ic| i id fexibl del fapplicable. In particular, it is unclear whether the queer$
n this article, we will consider a more flexible model of, (3 still lead to (asymptotically) optimal decentrakize

decentralized sequential detection in which hypotheses ab|utions when testing the hypotheses (1). Indeed, our

comp(_)site. TO. _highlight our mgin ideas, we focus on ﬂWﬁtuition may suggest us that a (more) attractive candidate
following specific problem in a single-sensor network syste can be¢(X) = I(]X| < 0.5), or more generallyp(X) =

since the extension to the system with multiple (c:onditior}y—(/\1 < X < \2). Moreover, it is unclear whether other more
ally independent) sensors is straightforward. Assume tthat compﬁcate_d quantizers aré necessary or not

single local sensor observes a sequence of raw observationm this article, we tackle the form of binary quantizers by

Xy, X5, - overtimen and theX,’s are i.i.d. having a normal using the concept of unambiguous likelihood quantizer (YLQ
distribution N' (i, 1). Suppose we are interested in testing proposed by Tsitsiklis [6] (the MLRQ is a special case of
Hy:p=0 versus Hi:pu=+1. 1) ULQ). Surprising_ly, by combining the ULQ with the idea
of tandem quantizer in Mei [5], we show that at most one
In the centralized context, one uses the raw observafigiss switch between two different quantizers of the form[ih (3) is
to decide which ofH, and H; is true, and such a problemsufficient to construct the asymptotically optimal decelited
has been well studied in the mature field of sequential aisalysequential test when testing the composite hypotheség.in (1
(Wald [9]). In the context of decentralized detection, doe t Observing the symmetries of the densities, it is also nat-
data compression and communication constraints, the locahl to adopt the principle of invariance (see, for example,
sensor needs to quantize the dafa’s and send a binary Lehmann [4]). Specifically, if we considéX,,|, the problem
messagd/,, € {0, 1} to the fusion center, which then utilizeof testing hypothesis if{1) becomes one of testing a simple

Decentralized sequential detection has many important
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null versus a simple alternative hypothesis p%,|. This Problem (P1):Minimize the Bayes riskR.(¢) in (4) among
viewpoint allows us to apply the asymptotic theory in Meall possible decentralized sequential tests.

[5] to investigate decentralizemhvariant sequential tests. It
is interesting to note that among stationary quantizerdef t
form ¢(X) = I(|X]| > A), the intuitive choice ofA = 0.5
leads suboptimal decentralized invariant sequentia$ test

Let d5(c) denote a Bayes solution to the decentralized
sequential detection problem, i.é5(c) = argming{R.(9)}.
Since it is extremely difficult, if possible at all, to find the

The remainder of this article is organized as follows. Secti exact form Of(.sB(C) whe_n hypotheses are comp_osne, we gdopt
the asymptotically optimal approach, i.e., to find a famify o

Il provides a formal mathematical formulation of decernbed !

sequential hypothesis testing problem. In Section I, W%ecentrallzed testp(c)} such that
propose a family of decentralized sequential tests, andegsro lim R.(65(c))/Re(d(c)) = 1.
its asymptotic optimality properties. The nontrivial part 0

the proof is in Subsection III.C, which characterize optima

guantizers via unambiguous likelihood quantizers (UL@c-S [1l. OUR PROPOSEDTESTJ;(c)
tion IV focuses on the decentralizewariantsequential tests. | this section we propose a family of tests;(c)} that
Section V reports numerical simulations. is asymptotically Bayes. Our proposed test is a two-stage

procedure, and it assumes that the fusion center will send a

one-shot feedback taking values ir{0, 1, 2}, representing a

Il. PROBLEM FORMULATION preliminary decision ory, g1 or gs.
Assume that the raw data&;, X,,--- are i.i.d. with o

N(u, 1), and suppose that over time the quantized message™ Definition of Test;(c).

U, € {0,1}, defined in[(2), only depends aK,, and possibly ~ Our proposed tesi;(c) is defined as follows.

V,._1, a feedback summarizing past history of all quantized 1) First Stage:Choose positive values(c) < 1/2 satisfying

messaged/; ,,—1). Here we intentionally do not put any log u(c)

restrictions on the range or frequency of the feedbiégk;, u(c) -0 and omc — 0. (5)
as it turns out that a simple one-shot feedback is sufficent t ) & )

construct an asymptotic optimal solution. In the first stage, the local sensor quantizes the raw Hata

For three hypotheses ifil(1), denote By g1 and g» the DY @ stationary quantizes®(X) = I(X > 0). Based on the
probability densities ofX,’s when = 0, —1,1 respectively. duantized message, = ¢°(X,) at each timen, the fusion
Also denote the corresponding probability measures and &enter updates the poste_zrior distribution of the three itleas
pectations by{P;,E,}, {P,,,E,, } and{P,, . E,, }. Assume a (7fn Tgi,n, Tgo,n) r€CUISively. For example wheli, = 1,

priori distributionm = (7, 7y, ,mg,) iS assigned to the three Tpm1Pp(U, = 1)
states of nature, and let Tfmn = ' —
) ) Zie{fyglygz} Pi(Un - 1)
P, =Py + Z” P,; E.=mEs+ Z” E The fusion center stops the first stage at time
T gi® gi» ™ 9i —9gi*
i=1 i=1 Ny =min{n > 1 : max{7m;n, Tg,n, Tgo,n} > 1 —u(c)},

To characterize a decentralized sequential destenote by . L :

: . ) 7 and makes a preliminary decisiafi at time NV
N the time when the tesgtdecides to stop taking observations, _.. . . P y €{f 9192} !
: ) . $atisfying
i.e., N is the sample size of. Once stopped, the test (the
fusion center) makes a decisiane {0, 1}, corresponding to g0, Ny, = MAX{Tf Ny, Tg, Ny, Mg, Ny }-
H, and Hy, based on the information it receives up to that
time. In summary, a decentralized sequential feisicludes a
sequence of quantizefg;, ¢-, ... }, a sequence of feedbac
functions{yn, v, ... }, a stopping timéV at the fusion center,

and a decision functiord € {0, 1}.

2) Second Stagdn this stage, it is essential for the sensor
o switch to one of the following three “optimal” quantizers

depending on the preliminary decision of the fusion center i
the first stage:

As in Wald [9] and Veeravalli, Basar, and Poor [7], define P5(X) = I(X>0);
a Bayes risk of a decentralized sequential teat 6 (X) = I(X > —0.7941);
Rc(é) = Wf[CEf(N) + Wfpf{d = 1}] Qb:;z (X) e I(X > 0.7941).

2 Specifically, after the fusion center stops at the first stdge
+ Z 7g; [cBgi (N) + Wy, Py, {d = 0}], (4)  will send its preliminary decisior® € {f, g1, g»} back to the
=1 local sensor as a one-shot feedb&tkThen the local sensor
with ¢ the incremental cost of each sample answitch to the above optimal quantizet, and use it for all
{Wy, Wy, , Wy} cost of making incorrect decisions.incoming raw data.
The Bayes formulation of decentralized sequential hymithe In the second stage, the fusion center continues to
testing problems can then be stated as follows. recursively update the posterior distributions with data



Un,+1,Un,+2,... and it decides to stop the second stagé/ith our implementation of random quantizers, for a given

at time random quantizer that assigns probability mass, ..., p,

) ' TrnWs 1 onto ¢1, ..., ¢y, it is easy to see that the corresponding K-L

N =min{n > Ny : —5————r W ¢ (c, g)} information numberd?(f, g;) (at the fusion center) is
>ic1 Mg W,
with a final decisiord = 0 (d = 1) if upper (lower) bound is & o - 1
crossed. 1'(f,g1)——;g;pvl (f,91)- (8)
B. Asymptotic Optimality of;(c). Similarly, we can also define the quantitieE’(f,go),
The asymptotic optimality properties of teft(c) are sum- 1?(f, g2), or I?(g;, f), I®(gs, f) fori =1,2.

marized in the following theorem and its corollary: We are now ready to rigorously define the optimal quan-

tizers and the corresponding K-L information number. Define

Th 1.Fo d tralized tial t if . . .
eorem rany decentralized sequential tegtc)}, i the optimal quantizer with respect tg as

P, (decision incorrect= O(clog ¢), (6) _ - ,

? o B g, = argsup{I®(g;, )}, i=1,2
for ¢ € {f, 91,92}, then the stopping timé& of §(c) satisfies P

Ef(N) > (14 0(1))|logc|/0.3137 and define the optimal quantizer with respectftas

Eg (N) = (14 0(1))[log c[/0.3186 ) o :argspp{min{[qg(f,gl),qu(f,gg)}}. 9

Eg (V) > (14 0(1))|logc|/0.3186, pe
and our proposed test&s;(c)} attain all three lower bounds ~ Moreover, define the corresponding K-L information num-
in (7) simultaneously. ber of these two quantizers ds, = 1% (g;, f), i = 1,2 and

If = mln{ltgf (f7 91)7 I(Ef (fa 92)}

With these notation, let us state the following proposition
without proof, as it is just a special case of Theorem 2 of
T Tgy + Tgy } Chernoff [2] and Section V of Kiefer and Sacks [3].

Rel0r(e)) = cllogel(1 + o(1)) {0-3137 0.3186 Proposition 1. For decentralized sequential tesf§(c)} sat-
Note that the asymptotic optimality properties in Theofémisfying [6) in Theoreril1, fop € {f, 91,92}, asc — 0,

do not depend on either the priori distributigror the loss for

incorrect decision W, W, , W,,}. This is consistent with Eo(N) < (1+0(1))|logc| /L. (10)

the centralized sequential hypothesis testing, see, Of¢R). 14 5chieve the lower bounds I{10) simultaneously, one only

Before proving Theoreni]1, let us first introduce somgqe g 1g yse the two-stage procedure as described in Section
necessary notauon.l Denote bl the_spt_ of deterministic Mfor test 6;(c), but for the second stag 5, 5, and ¢,
quanuzers that consists of.all (deterministic) me_asma[aluhc— should be substituted by the optimal (random) quantiz&;»r,s
tions fromR to {0,1}. Define a “random quantizerd as a &, and ¢, respectively

ili i i i 91 g2 :
probability measure that assigns certain magggson a finite
subset{¢;} € ®, and denote byp the set of all quantizers, A comparison of Theorerl 1 and Propositldn 1 shows that
deterministic or random. Note that a deterministic quamtizto prove Theoreriil1, it suffices to show that in the context of
can be thought of as a special case of random quantizer ttesting a normal mean stated inl (1), the optimal quantizers
assigns a probability of to itself. Of, g, , 0g, beECOME gb}, o0 Oy, described in Section_1ll.

In the context of decentralized detection, we adopt the fdbinceg¢;, or ¢, only involves two densities, the correspond-
lowing implementation for a random quantizger The fusion ing result follows immediately from the optimality of MLR®’
center first selects a deterministic quantizee ® randomly established in Tsitsiklis [6]. Therefore, it remains to wtibat
according to the probability measufg, } assigned bys, and - .
then the local sensor quantizes the raw data by the chosen ¢ = 97, (11)
deterministic quantizep. Such a procedure repeats whenevefhich will be proved in the next subsection.
the local sensor usesto quantize a new raw observation. We

want to emphasize that it is essential to assume that if arandC. Optimal Quantizer with respect tp

quantizerp is applied, the fusion center retains the information The main objective of this subsection is to prowel (11), i.e.
about which deterministic quantizer it chooses (othentlige 1,4 optimal (randomized) quantizer; (z) with respect tof

fusion center will lose significant information). becomes the deterministic quantizﬁ;(x) — I(z > 0) when
Observe that for a given deterministic quantizethe K-L f=N(0,1),g = N(~1,1) andg = N(1, 1). N

information numbetd ®(f, g) is

Corollary 1. Tests{d;(c)} are asymptotically Bayes. More-
over, both{d;(c)} and Bayes solutiony(c) satisfy asc — 0,

To prove this, for a given deterministic quantizerc ,
1 . in ) =
( 1()() Z) define fors: O, 1,

P.
I°(f,91) = Y Prd(X) =i)log L2l — )
o ; =1 ® Py, (6(X) = 1) 4i(8]) = Pu(6(X) = i) andq(d]e) = (q0(ole), 1 (]9)),



wherey € {f, 91,92}, and denote Proof: Let Q, be the exposed points af), then by
_ _ Corollary 5.1 of Tsitsiklis [6],¢q € Q. if and only if there
a(¢) = (a(¢1f); a(dl91); a(1g2)), (12)  oxists a ULQ¢ such thaty = ¢(¢). By the compactness of

then ¢(¢) completely characterizes the distribution of quarihe set{(vi(X),v2(X))}, it is straightforward to show that
tized message induced by the deterministic quantizem o is identical with the extremal points .

the sense that ifi(¢1) = ¢(¢2), the quantized data (X) From [8), it is sufficient to provd (17) for deterministic
and ¢»(X) have the same distribution, which implies thaBy the extreme properties of the ULQ's, there exist ULQ's

I91(f,g1) = I%2(f, g2). &1, ..., ¢, and positive numbepy, ..., p, such that
Let n n
Q= {4(¢),6 € B} a9(6) = > pralér); > px=1.
k=1 k=1

be a subset oR® and Q be the convex hull of). (Here we -, . _—
do not use the usual symb@l to avoid confusion with®.) Le_tf be a I;anddg(;n}o?ga_ntizgr assigning magsto ¢; for
For g € Q, as in [8) and[12), defing = (q(f); d(g1):d(gz)) *— 1ro-o BY E TN =55

and _ n
] ! i 17(f,90) = Y okl (f,9:) = I9O(f, i) = I°(£, 95)-
1, 00) = 3 () log 2L (13) =
i—0 i(91)

B ]
and quantities such ag¥(f, g;) with i = 1 or 2 in an obvious Proof of Relation [(I1): By Lemmal2, ¢; can be
extension. Note that the K-L definition i_{13) is consisterdachieved by randomizing ULQ’s of the formp(X) =
with that in [8), since for a deterministic quantizerwe have I(X > X) or ¢(X) = I(\ < X < )Xg). Since
19O (f, 1) = I°(f, g1). supjeq {min{I%(f, g1). I°(f, g2)}} must be reached on the

Now let us state the concept of unambiguous likelihodabundary of a two dimensional convex set, it suffices to focus
quantizer (ULQ) proposed in Tsitsiklis [6]. Let on guantizers that randomize between at most two ULQ’s.
9:(X)/ (X) Numerically, we can simply optimize over discrete (finite)
’Ul(X) = ! , 1=1,2. setsll; = {/\z T\ € R} andIl, = {(/\171',)\2,1‘) : /\171' <
1+ g1(X)/f(X) + 92(X)/ f(X) A2 }. For each quantizep that randomize between at most
In our context (also see Lemrha 2 below), a quantizer ® two ULQ’s (with the values of\ and (A, \2) in II; or Iy,
is a ULQ if there exists real numbep, a1, a2 such that respectively), we can calculate the value
$(X) = I(ao + arv1(X) + azva(X) > 0)  (14) min{7°(f, g1), I”(f, 92)},
and forp € {f, 91,92}, and the quantizep with the maximum value will be the ap-
proximation of the best quantizer. Our numerical compatesi
PLP(GQ + a1v1 (X) + GQUQ(X) = 0) =0. (15)

support the optimality of quantizer;(X) = I(X > 0) in the
Lemma 1. Let$ € ® be a ULQ, then up to a permutation ofSense of[(9) to the precision of four digits after the decimal
the values it takes, w.p(under all f, g1, g2): point. [ |

HX)=T(\ <X <)) or ¢(X)=I(X>A). (16) IV. INVARIANT TESTS

One popular approach to tackle hypothesis testing with
composite hypotheses is the principle of invariance, see fo
example Lehmann [4]. In our case, the two densitiedin

Proof: As X goes from—oo to oo, both1 — v; and
vo strictly increase fromD to 1. Hence it suffices to show

¢(X) =1I(t1 < v1(X) <t2) With 0 < #; <t < L. are reflections to each other, so if we pretend fHat,|} are

B_y @) and [%5)’ .ULQ.,S can be interpreted as: draw fiken as the raw data, the problem [ih (1) becomes a simple
straight line onR* which intersects{(v;(X),v2(X))} at a hypothesis-testing problem with
zero-probability set (under alf, g1, g2), ¢ will take value0

if (v1,v2) stays in one side of the line and take valud it Hy: |X,.|~f and Hi:|X,|~ g,
. . 2 .
stays in the other. Smc% <0 forany0<wv <1, aline
1

where f and § are probability densities of the forms:
intersects{(v1(X), v2(X))} at at most two points, and thus ! g P Y

relation [16) holds. n flz) = 2 = 1z >0}
The following lemma shows that the best quantizers can be V2T
found from the class of the ULQ’s. §@) = 1 (6_@ 4o Ji{x > 0}.

Lemma 2. For a given quantizer) € ®, there always exists o 27 _
another quantizer’ € ® that assigns probability masses onlyr'herefore, with| X,,|, we can develop “good” decentralized
to the ULQ’s and invariant sequential tests based on the asymptotic optimal

5 3 _ theory in Mei [5]. Below we will use the same notation as in
I (f.9:) =2 I°(f,9:); i=1,2. (17)  previous sections, for instance, denote Bythe sample size,



TABLE |

and denote byr;, andr; ., the posterior distributions, resp. EXPECTEDVALUES OF SAMPLE SIZES

Similarly, {W W 5} is the cost of making incorrect decisions. E(N) = n;Ef(N) + g, Eg, (N) + mgy Egy (N)
Let us conS|der the decentralized invariant test \stttion-

ary quantizers of the fornv,, = I(|X,,| < \). In this case, the EN) [[ e=102 ] ¢=10"2 | c=10"1

guantized sensor messadéss are i.i.d. (conditioned on each 51(c) 202+02 | 284402 | 363+02

hypothesis) and the fusion center faces a classical séglent 611(c) 041+07 | 146.0+1.0 | 1964+1.0

hypothesis testing problem. Thus the optimal policy at the Srir(e) || 45705 | 69.0£05 | 922+05

fusion center is an SPRT based bip’s. That is, the fusion
center stops taking observations at time

TABLE 1|
. anVVf 1 PROBABILITIES OF MAKING INCORRECTDECISIONS
N =min{n 21: —2= & (¢, -)},
TgnWg ¢ PO [ c=10"2 c=10"3 c=10"14
and dec!desHo (H4) is true if upper (lower) bOl_Jnd is crqssed. 31(0) 458 £ 00363 | 442 100364 | 461 % 00365
Hence, in the foIIowmg_ we will we pay special attention on 511(c) || 584 £0.026-3 | 8.85 £ 0.026-4 | 8.81 % 0.0265
how to choose a quantizer of the fom = I(|Xn] < /\)_. 5111() | 5.02 £0.0263 | 8.03 £0.026-4 | 5.02 £ 00265
Under our setting, one natural choice of quantizer is
o(IX|) = I1(| X[ <0.5) (18)

VI. CONCLUSION
and denote by{d;;(c)} the corresponding decentralized test ) ) ] )
with an SPRT at the fusion center. In this article, the problem of decentralized testing cosipo

By asymptotic optimality theory in Mei [5], a better choicdt€ hypotheses in sensor networks is studied through a etncr
of \ is to find one value that minimizes example on testing a normal mean. Asymptotically Bayes test
L 5 {d1(c)} are constructed through a characterization of ULQ’s.
= — =0 Contrary to our intuition, the quantizers are still of thenfo
I(fx.9x)  1(ax, ) I(X, > \). By exploiting the symmetries, we also investigate
where f, and §, are the probability mass functions inducednvariant stationary SPRT’s. Numerical simulations canfir
onU, = I(|X,| < \) when the distribution ofX,| is f and the significant advantages of our proposed {&stc)}.
g. A simple numerical simulation shows that the best value is While we only consider a special problem of testing a
A =1.2824, and normal mean, the essential ideas can be easily extended to
N other general distributions or the problem of testiiig(K >
OT(1X]) = I(1X] < 1.2824). (19) 3) hypotheses. It will be interesting to understand when is
Denote by{d;;7(c)} the corresponding decentralized test witipossible to characterize the ULQ's as[inl(16). Another ratur
an SPRT at the fusion center. extension is to study the networks with multiple sensorgneh
different sensors may use different quantizers. The detall

V. SIMULATION
be investigated in our future research.
In this section we compare the three tests proposed in

previous sections through numerical simulation. We fix ampri ACKNOWLEDGMENT
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