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Dirty Paper Coding for the MIMO Cognitive Radio
Channel with Imperfect CSIT

Chinmay S. Vaze and Mahesh K. Varanasi

Abstract—A Dirty Paper Coding (DPC) based trans-
mission scheme for the Gaussian multiple-input multiple-
output (MIMO) cognitive radio channel (CRC) is studied
when there is imperfect and perfect channel knowledge at
the transmitters (CSIT) and the receivers, respectively. In
particular, the problem of optimizing the sum-rate of the
MIMO CRC over the transmit covariance matrices is dealt
with. Such an optimization, under the DPC-based trans-
mission strategy, needs to be performed jointly with an op-
timization over the inflation factor. To this end, first the
problem of determination of inflation factor over the MIMO
channel Y = H1X +H2S+Z with imperfect CSIT is investi-
gated. For this problem, two iterative algorithms, which
generalize the corresponding algorithms proposed for the
channel Y = H(X +S) +Z, are developed. Later, the neces-
sary conditions for maximizing the sum-rate of the MIMO
CRC over the transmit covariances for a given choice of in-
flation factor are derived. Using these necessary conditions
and the algorithms for the determination of the inflation
factor, an iterative, numerical algorithm for the joint op-
timization is proposed. Some interesting observations are
made from the numerical results obtained from the algo-
rithm. Furthermore, the high-SNR sum-rate scaling factor
achievable over the CRC with imperfect CSIT is obtained.

Index Terms—Cognitive radio, dirty paper coding, infla-
tion factor, covariance optimization.

I. Introduction

THE cognitive radio channel (CRC) was introduced in
[1]. A cognitive radio is a device that can sense its

environment in real time and can accordingly adapt its
transmission strategy. These are of current interest be-
cause of the dramatically high spectral efficiency they can
achieve [1]. In [1], the authors introduced a more general
cognitive protocol under which the CRC is an interference
channel with degraded message sets [2].

The Gaussian multiple-input multiple-output (MIMO)
interference channel consists of two transmitter-receiver
pairs with each transmitter having a message for its paired
receiver and the received signals are defined via equations
Y1 = H11X1 +H21X2 + Z1, Y2 = H12X1 +H22X2 + Z2.
Here, {Hij}2i,j=1 are the fading channel matrices of dimen-
sions rj × ti; the transmitted signals X1 ∼ CN (0,Σ1) and
X2 ∼ CN (0,Σ2) are subject to the power constraints1 of
tr(Σ1) ≤ P1 and tr(Σ2) ≤ P2; and Z1 ∼ CN (0, Ir1) and
Z2 ∼ CN (0, Ir2) are the additive noises [2]. The Gaussian
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1 Notation: For a square matrix A, tr(A), |A|, and rank(A) denote
its trace, determinant, and rank, respectively. For any general matrix
A, A∗ and A+ denote the complex-conjugate transpose and pseudo-
inverse of matrix A, respectively. vec(A) denotes the vector obtained
by stacking the columns of A. Im is the m×m identity matrix. EH

denotes expectation over the random variable H.

MIMO CRC is defined as the Gaussian MIMO interfer-
ence channel in which the second transmitter (correspond-
ing to signal X2) or the cognitive transmitter (CT) knows
the message (or the codeword) of the first or the primary
transmitter (corresponding to signal X1) non-causally [1].

An achievable-rate region for the Gaussian MIMO CRC
has been proposed in [3]. In their coding scheme, the CT,
because of its non-causal knowledge, acts as a relay to aid
the primary receiver and also transmits its own message to
its paired (or cognitive) receiver. It employs dirty paper
coding (DPC) [4] to cancel the interference at the cogni-
tive receiver due to the signals intended for the primary
receiver. With the assumption that the required channel
matrices are known at the transmitters and the receivers,
it is further shown in [3] that their achievable-rate region
includes points corresponding to the sum-capacity of the
MIMO CRC under certain conditions. Now, to achieve the
sum-capacity, an optimization over the transmit covari-
ances is required. This problem is studied in [5] where the
authors propose the so-called adaptive sum-power iterative
waterfilling algorithm which computes the sum-capacity
and the optimal transmit covariances.

Although the MIMO CRC is increasingly being stud-
ied under the assumption of perfect transmitter-channel-
knowledge (CSIT) [6], [3], [5], [7], etc., not many papers
[8] exist which deal with the practically important scenario
of imperfect-CSIT CRC. We find it timely to consider the
aforementioned problem of covariance optimization under
imperfect CSIT. Towards this end, one needs to seek an-
swers to the following two questions:

1) DPC at the CT under imperfect CSIT: Since the
channel seen by the cognitive receiver is of the form Y =
H1X +H2S +Z (this will become more clear in Section
III), where S is the interference known non-causally at the
CT but not at its receiver, it is imperative to first study
the problem of DPC over this channel when there is im-
perfect CSIT of H1 and H2. This problem is equivalent to
the determination of the optimal inflation factor (see [4])
under imperfect CSIT. We studied a similar problem for
the fading dirty paper channel (FDPC) Y =H(X+S)+Z

in [9] and developed two iterative algorithms for determi-
nation of inflation factor. These algorithms significantly
improve the prior attempts mentioned therein. The same
problem for the channel Y =H1X+H2S+Z, which we call
the Generalized FDPC (G-FDPC), has been considered in
[10], but only in the special case of (all) single-antenna ter-
minals, and a suboptimal solution is proposed. We study
this important problem in Section II of this paper.

2) Covariance optimization under imperfect CSIT: The
problem of covariance optimization is considerably in-
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volved, even under perfect CSIT. In [5], rather than using
the achievable-rate region of [3], the authors formulate the
problem in terms of an outer-bound (obtained in [3]) to
the capacity region which includes points corresponding to
the sum-capacity of the MIMO CRC. This is a non-convex
optimization problem and is converted into an equivalent
convex-concave game using the ‘MAC-BC’ transformations
[11]. Then, for the resulting optimization, an iterative nu-
merical algorithm is proposed. Unfortunately, the algo-
rithm can not always guarantee the optimum solution.
The use of the outer-bound or the ‘MAC-BC’ transfor-

mations is not possible under imperfect CSIT. Also, unlike
the perfect-CSIT case (under which the interference can
be assumed to be canceled perfectly by DPC), under im-
perfect CSIT, an additional optimization over the inflation
factor needs to be performed jointly with the transmit co-
variances. Furthermore, the problem becomes more com-
plicated because the sum-rate optimal solution need not
necessarily have the power constraints satisfied with equal-
ity (this point is detailed later). Thus the imperfect-CSIT
version of this problem is also quite challenging.
A slightly different (due to a constraint on the rate of

primary user) version of the problem is considered in [8],
[12] for the CRC with all single-antenna terminals. The
authors of [8], [12] consider the amplify-and-forward strat-
egy for relaying at the CT, and in this sense, their scheme
is less general than the one studied here.

II. DPC over the G-FDPC

Motivation to study this problem will become more clear
in Section III. But, as noted before, this is an important
step in the overall joint optimization. The G-FDPC is
defined via equation Y = H1X +H2S +Z. Here, H1 and
H2 are the channel matrices of dimensions r×tx and r×ts,
respectively; the transmitted signal X ∼ CN (0,ΣX) has
a power constraint of P ; the interference S ∼ CN (0,ΣS)
is known non-causally at the transmitter but not at the
receiver; Z ∼ CN (0,ΣZ) is the additive noise; and X , S,
and Z are independent. Assume perfect receiver channel
knowledge but imperfect CSIT 2. Assume |ΣX |, |ΣZ | > 0;
let tr(ΣS) = Q, tr(ΣZ) = N . Define SNR = P

N
3. Select

the auxiliary random variable (see [13] for definition) as
U =X+WS, i.e., Costa’s choice [4] extended to the MIMO
case, where the tx × ts matrix W is the inflation factor 4.
Similar to [9], we obtain the achievable rate as given by

R=max
W

EH log
|ΣX ||ΣZ +H1ΣXH∗

1 +H2ΣSH
∗
2 |

|M|
(1)

with M=

[

ΣX +WΣSW
∗ ΣXH∗

1 +WΣSH
∗
2

H1ΣX +H2ΣSW
∗ ΣZ +H1ΣXH∗

1 +H2ΣSH
∗
2

]

,

and H = [H1 H2]. The above rate expression is valid only
if |ΣX | > 0. The case of |ΣX | = 0 can be handled as in
[14]. We define the no-interference upper-bound RnoS as

2 We assume that the transmitter only knows the distribution H.
The case of partial CSIT can be handled similarly.

3 Note that N is total noise power.
4 Matrix W is called the inflation factor so as to be consistent with

the terminology introduced by Costa [4].
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Fig. 1

Achievable Rates vs. SNR: Rician Fading.

the rate achievable over the G-FDPC in absence of inter-
ference (i.e., when Q= 0) or RnoS = EH1

log
|ΣZ+H1ΣXH∗

1
|

|ΣZ | .

The problem of determination of inflation factor, i.e., the
maximization in (1) is equivalent to minW E[H1 H2] log |M|.
As noted in [9], this is a non-convex optimization problem,
and it seems intractable to obtain a closed-form solution.
It is possible however to generalize our algorithms in [9]
developed for the FDPC to the G-FDPC. Due to lack of
space, we discuss here the basic idea and omit the details.

In the first algorithm, we minimize the objective function
stepwise, i.e., at each step, we minimize over only one row
of W , while treating all other rows as constants. Note
that only the kth row and the kth column of matrix M

depend on the kth row of W . Therefore, the minimization
over one row of W (while treating other rows as constants)
can be done analytically if the objective function is upper-
bounded by moving the expectation inside the logarithm.
Thus, one iteration of the algorithm consists of successive
(stepwise) minimizations over all rows of W , and these
iterations are repeated until a good choice is obtained.

In the second algorithm, we solve for the stationary
point of the objective function, i.e., solve an equation
d

dW
E[H1 H2] log |M|= 0. Using the obtained necessary con-

ditions, an iterative algorithm is proposed.

Numerical Results: Here, ‘lb’ denotes the rate achiev-
able using W = 0, i.e., by treating the interference as
noise. R denotes the rate achievable using the algorithms.
In Fig. 1, we take H1 and H2 to be independent with
their elements ∼ i.i.d. CN (µ,σ2) with |µ|2 + σ2 = 1 and

µ= |µ| (1+j)√
2
. When µ= 0, the all-zero inflation factor per-

forms almost as well as the inflation factor obtained using
the algorithms. However, as |µ| increases, the algorithms
outperform the simple choice ofW = 0. This type of obser-
vation was also made in [10] in the case of SISO G-FDPC.
It is generalized here to the MIMO case. In Fig. 2, the fad-
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Achievable Rates vs. SNR: H1 and H2 Correlated.

ing coefficients are correlated, i.e., H1, H2 ∼ CN (0,1) with
ρ= E(H∗

1H2). As ρ increases from 0 to 0.7, the algorithms
perform better than simply setting W = 0.

A considerable difference between R and RnoS is seen in
Fig. 1. It should be noted that RnoS corresponds to the
perfect interference-cancelation, while the curve R is for
no CSIT. The gap between the two can be bridged with
the availability of partial CSIT. Additionally, RnoS is loose
in the high-SNR regime because of the difference in the
achievable scaling factors of R and RnoS (see Theorem 1).

Loosely speaking, it appears that for DPC to perform
significantly better than the naive scheme of treating the
interference as noise, it is necessary to have the matrix
E(vec(H1)

∗vec(H2)) ‘non-zero’, i.e., to have H1 and H2

‘correlated’. The ‘more’ non-zero the above matrix is (or
the ‘more highly’ H1 and H2 are correlated), the greater is
the improvement. We believe this to be the fundamental
nature of DPC over the G-FDPC under imperfect CSIT.
Also see the discussion following Theorem 1.

III. Optimization over the Transmit Covariances

As per the coding scheme of [3], let X2 = X21 +X22

where the signal X21 corresponds to relaying and is corre-
lated withX1 whileX22 is the signal intended for the cogni-

tive receiver. Let

[

X1

X21

]

∼ CN

(

0,Σ=

[

Σ1 V

V ∗ Σ21

])

, and

X22 ∼ CN (0,Σ22). Also let Σ = T1T
∗
1 and Σ22 = T2T

∗
2 for

some T1 and T2; and X22 = T2X
′
22 with X ′

22 ∼ CN (0, It2).
The CT would choose the auxiliary random variable as

U = X ′
22 +W

[

X1

X21

]

, where X ′
22 is independent of X1

and X21. Hence Σ2 =Σ22 +Σ21.

Now the channel between the CT-receiver pair is Y2 =

H22X22 + [H12 H22]

[

X1

X21

]

+ Z2 which resembles the G-

FDPC. Therefore, using the algorithms of Section II, we
can determine the inflation factor to be used at the CT
once Σ (or T1) and Σ22 (or T2) are specified. This explains
the reason to first study DPC over the G-FDPC.

Denote H̄1 = [H11 H21], H̄2 = [H12 H22], and H̄ =
[H̄∗

1 H̄∗
2 ]

∗. Then the achievable sum-rate Rsum = Rp +Rc

under no CSIT and perfect receiver channel knowledge is
given by equation (2) at the bottom of the page.

Since W depends on T1 and T2, we need to optimize
Rsum jointly over T1, T2, and W , as mentioned earlier.
However, since W can be determined given T1 and T2,
let us first consider the optimization of Rsum over T1 and
T2 for a given value of W ; later the algorithm for the
joint optimization can be formulated. Let us consider:
maxT1,T2

Rsum, subject to tr(Σ1)≤ Pp and tr(Σ21+Σ22)≤
Pc. This is a non-convex optimization problem. To obtain
the necessary conditions, we form the lagrangian J ; and
set ∂J

∂T1

= 0 and ∂J
∂T2

= 0. We omit the details of differenti-
ation and directly state the necessary conditions, as given
by equations (3) and (4) at the bottom of the page, where
λ−1
p and λ−1

c are the lagrange multipliers.

Algorithm for the Joint Optimization (Alg. 1):

1. Start with some initial choices T
(0)
1 and T

(0)
2 . For

these choices, determine W (0) using the algorithms
discussed in Section II.

2. At the nth iteration,
• Determine the transmit covariances: to this end, we

set T
(n)
1 =

[

λpIt1 0
0 λcIt2

]

g1(T
(n−1)
1 ,T

(n−1)
2 ,W (n−1))

and T
(n)
2 = λcg2(T

(n−1)
1 , T

(n−1)
2 ,W (n−1)). The re-

quired expectations are evaluated numerically. Find
lagrange multipliers so as to meet the power con-

Rsum = EH̄

{

log
|Ir1 + H̄1T1T

∗
1 H̄

∗
1 +H21T2T

∗
2H

∗
21|

|Ir1 +H21T2T
∗
2H

∗
21|

+log
|Ir2 +H22T2T

∗
2H

∗
22 + H̄2T1T

∗
1 H̄

∗
2 |

∣

∣

∣

∣

It2 +WT1T
∗
1W

∗ T ∗
2H

∗
22 +WT1T

∗
1 H̄

∗
2

H22T2 + H̄2T1T
∗
1W

∗ Ir2 +H22T2T
∗
2H

∗
22 + H̄2T1T

∗
1 H̄

∗
2

∣

∣

∣

∣

}

(2)

[

λ−1
p It1 0
0 λ−1

c It2

]

T1 = EH̄

{

H̄∗
1N

−1
1 H̄∗

1 + H̄∗
2N

−1
2 H̄∗

2 − [W ∗ H̄∗
2 ]D

−1
2

[

W

H̄2

]}

T1 = g1(T1, T2, W ), (3)

λ−1
c T2 = EH̄

{

H∗
21N

−1
1 H21T2−H∗

21D
−1
1 H21T2+H∗

22N
−1
2 H22T2 − [0 H∗

22]D
−1
2 [It2 T ∗

2H
∗
22]

∗} (4)

= g2(T1, T2, W ), · · · where N1 = Ir1 + H̄1T1T
∗
1 H̄1 +H21T2T

∗
2H

∗
21, D1 = Ir1 +H21T2T

∗
2H

∗
21,

N2 = Ir2 +H22T2T
∗
2H

∗
22 + H̄2T1T

∗
1 H̄

∗
2 , and D2 is the block-partitioned matrix in equation (2).
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straints.
• For T

(n)
1 and T

(n)
2 obtained above, determine W (n).

3. Repeat the above step until the increase in the achiev-
able sum-rate is negligible.

The statement above regarding the determination of
lagrange multipliers warrants a discussion. Note, the
power transmitted by either transmitter increases with
λp,c. Therefore, the feasible region for the λ’s is of the form
0 < λp,c ≤ λmax

p,c , where (λmax
p , λmax

c ) is a point at which
both the power constraints are satisfied with equality. One
can expect the optimal point to be (λmax

p ,λmax
c ) at which

both the transmitters operate with the maximum available
power. However, since the signal intended for the primary
receiver is an interference for the cognitive receiver and vice
versa, the sum-rate need not necessarily be a nondecreas-
ing function of either λp or λc. Hence, the optimal point
for λ’s, i.e., λopt

p,c can be any interior or boundary point of
the above rectangular region. Note, the choice of λ’s dic-
tates the covariance matrices, and therefore the inflation
factor. Considering the fact that only an algorithmic solu-
tion is available for the inflation factor and all the required
expectations need to be evaluated numerically, the prob-
lem of determination of optimal λ’s looks intractable. In
the numerical examples, we consider a suboptimal solution
of solving the power constraints as strict equalities.
We have developed one more algorithm (Alg. 2) for the

joint optimization which serves as a lower-bound on the
rate achievable using Alg. 1.
1. Assume that T1 = 0. Determine T2 to maximize Rc

subject to tr(Σ22) =
Pc

2 (note the equality here).
2. For given T2, determine T1 to maximize Rp under the
constraints that tr(Σ1) = Pp and tr(Σ21) =

Pc

2 .
3. For given T1, determine T2 and W to maximize Rc

under the constraint that tr(Σ22) =
Pc

2 .
4. Repeat Steps 2 and 3 above until the increase in the
achievable rate is negligible.

Thus Rp and Rc are maximized here greedily over T1 and
(T2, W ), respectively. For these maximizations, the algo-
rithm of joint optimization developed in [14] is used.

IV. High-SNR Analysis: Scaling Factor

Theorem 1: G-FDPC: Assume that the ratio Q
P

is con-
stant as P →∞, and the fading processes are such that for
any positive semi-definite A, rank([H1 H2]A[H1 H2]

∗) =
min(r,rank(A)) with probability 1. The high-SNR scaling
factor achievable over the no-CSIT G-FDPC using DPC
is independent of the choice of W , as long as W is cho-
sen such that the term log |ΣX +WΣSW

∗| scales in the
high-SNR regime as tx log SNR.
Thus, the naive scheme of treating the interference

as noise (i.e., W = 0) achieves the optimal scaling fac-
tor, which is given by min(r, rank(ΣX) + rank(ΣS)) −
min(r, rank(ΣS)). Also note that there is no loss of gen-
erality in choosing W to satisfy the condition stated in
Theorem 1 because W ’s that do not satisfy this condition
can achieve only a suboptimal scaling factor.
The intuition detailed in the paragraph just preceding

Section III can explain the result of Theorem 1. Con-

sider the FDPC with |ΣX | > 0, or equivalently, the G-
FDPC with H1 =H2 =H and tx = ts = t. The high-SNR
scaling factor of min(t, r), which is equal to that of the
corresponding no-interference upper-bound, is achievable
with the choice of W = It [9]. Next consider the FDPC
with |ΣX |= 0 (let ΣX = TT ∗); this channel is then equiv-
alent to the G-FDPC Y =H1X

′+H2S+Z with H1 =HT ,
H2 =H , and X ′ ∼ CN (0, I) (so H1 and H2 not equal). In
this case, the achievable scaling factor may not always be
equal to that of the no-interference upper-bound; but in
most cases, by making an appropriate choice for W (say,
W = T+ [14]), one can achieve a better scaling factor than
that achievable with W = 0. Note, the G-FDPCs in the
two cases above do not satisfy the assumption regarding
H1 and H2 made in Theorem 1. Finally, consider the G-
FDPC that satisfies the assumption of Theorem 1 (for ex-
ample, H1 and H2 are independent and Rayleigh-faded).
Then, as per Theorem 1, there is no advantage in optimiz-
ing over W as far as the scaling factor is concerned. Thus,
the ‘more highly’ H1 and H2 are correlated, the ‘larger’ is
the increase in the scaling factor over that achievable by
treating the interference as noise.
Theorem 2: CRC: Assume that the channel matrices

{Hij} are full rank and independent; and the ratio
Pp

Pc

remains constant. The high-SNR(= Pp) sum-rate scaling
factor achievable over the no-CSIT CRC is given by

γsum = max
rank(Σ′), rank(Σ22)

γp + γc with

γp =min(r1,rank(Σ
′))−min(r1,rank(Σ22)),

γc =min(r2,rank(Σ
′))−min(r2,rank(Σ

′)− rank(Σ22)),

where Σ′ is the covariance matrix of

[

X1

X2

]

; and the max-

imization is under the constraints of 0< rank(Σ′)≤ t1+t2,
and 0≤ rank(Σ22)≤min(t2,rank(Σ

′)).
Proof: We present the outline here and omit the de-

tails. Given Σ and Σ22, Rp achieves the scaling factor of
γp because the primary receiver treats the interference X22

as noise. γc is achieved by the choice of W = [0 T+
2 ] (see

Theorem 1 above and Theorem 1 of [14]).
The maximization in Theorem 2 is over only finitely many
values; thus, can be done via exhaustive search. Note, the
power constraints are not solved as strict equalities here.

V. Numerical Results for the CRC

In figures, ‘ub’ denotes the sum-rate achievable by op-
timizing over the transmit covariances under the assump-
tion that the interference is perfectly canceled at the cog-
nitive receiver (i.e., the sum-rate with Rc = EH22

log |Ir2 +
H22Σ22H

∗
22|). We quantize each element of the fading ma-

trices separately using an ‘equally spaced level’ quantizer
as defined in [15]. In figures, if B = [Bij ], then Bij denotes
the number of feedback bits used per element of matrix
Hij . Further, Hij are independent. Alg. 1 is unfortunately
sensitive to the initial choices. We take 4 to 5 initial choices
in these examples and then select the best solution.
In Fig. 3, we consider the CRC with elements of {Hij} ∼

i.i.d. N (0.6, 0.64). The improvement in the achievable
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sum-rate with the introduction of partial CSIT is evident.
Here, the scaling factor of 1 is achieved for Rsum by let-
ting the CT to use its entire power for relaying. Hence, the
curve corresponding to B2 merges with that correspond-
ing to the no CSIT at high SNR. For the CRC of Fig.
4, we have the elements of {Hij} ∼ i.i.d. Unif[0,1]. For
this CRC, as per Theorem 2, the optimal solution should
achieve γsum = 2 with γp = 0. This fact can be easily seen
from the plot. In Fig. 5, we have the CRC with elements
of {Hij} ∼ i.i.d. N (0,1). It can be seen that Alg. 1 out-
performs Alg. 2. However, in some cases, for example, the
CRCs in Figs. 3 and 4, Alg. 2 does provide a relatively
tight lower-bound. Coming back to Fig. 3 again, Rsum

achieves the scaling factor of 1 whereas according Theo-
rem 2, γsum = 2. This is achieved by setting Σ1 = 0, i.e.,
the primary transmitter needs to turn off its power. The
apparent inconsistency here is because we have considered
a suboptimal solution of solving the power constraints as
strict equalities. This example emphasizes the importance
of the problem of determination of λ′s.
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Comparison of Alg. 1 and Alg. 2.

VI. Conclusion

This paper is one of the earliest works that studies the
imperfect-CSIT MIMO CRC. To the best of the authors’
knowledge, it proposes for the first time a transmission
strategy for the multi-antenna CRC with imperfect CSIT.
En-route, brings into focus the problem of determination
of λ’s. Furthermore, the paper derives an achievable high-
SNR sum-rate scaling factor. It would be worthwhile to
obtain the highest-achievable sum-rate scaling factor. This
problem can be interesting; recall its counterpart for the
Gaussian MIMO broadcast channel, a problem that is open
even after serious attempts. More efforts are needed to
answer these two open questions.
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