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Abstract— The problem of minimizing the total (transmit and
decoding) energy required for communicating over a two-receiver
Gaussian broadcast channel is investigated. For achievinga
specified set of rates, joint broadcast schemes (e.g. superposition
coding) require smaller transmit energy per-bit than the simpler
time-division multiplexing based schemes. However, for short
distance communication, the energy expended in the decoding
can be comparable to that required in the transmission. It
is shown that in some typical short and moderate distance
communication scenarios, time-division multiplexing saves on the
decoding energy, thereby requiring smallertotal energy than any
joint broadcasting scheme for achieving the target rate anderror
probabilities. Further, we observe that TDM outperforms joint
schemes by larger margins when theratio of the distances of the
receivers from the transmitter is closer to 1.

I. I NTRODUCTION

Shannon theory has been quite successful in understanding
the minimum transmit power required for achieving a specified
performance in many wireless network problems. In point-to-
point communication, for example, waterfall curves provide
a complete characterization of the minimum transmit power
required to achieve a given rate and error probability. More
generally, capacity theorems for average input power limited
multiuser wireless network problems can be interpreted as re-
sults on the minimum required transmit power to communicate
reliably at the desired rates. For some multiuser problems of
practical interest, e.g. the multiple-access channel (MAC) and
the Gaussian broadcast channel, the capacity region and hence
the required transmit power(s) to achieve specified rates are
known exactly [1, Pg. 403–407 and Pg. 427–428]. Recent
results [2], [3] have succeeded in finding the required transmit
power to within a constant factor for high rates for relay
networks with single source and single destination as well1.

These results have found enormous applicability in op-
timizing the energy consumption in long distance wireless
communiation networks. At shorter distances (which are of
increasing interest), theprocessing energyis comparable to,
and can even dominate the transmit energy [5], [6]. The natural
problem of interest is therefore to minimize thetotal energy,
that includes the transmit as well as the processing energy.

Processing energy has been addressed extensively in the lit-
erature on wireline networks2. However, an error free channel

1At high SNR, finding the capacity region within a constant number of
bits can in most cases be interpreted as finding the required transmit power(s)
within a constant factor. For a case when this isnot true, see [4].

2We refer the reader to [7] for a survey of the related references.

or a channel that drops packets, though a good model for
wired networks, is not sufficiently rich to capture important
aspects (e.g. noise) of a wireless communication channel.
While the information theoretic perspective on the problem
has mostly been limited to the point-to-point problem [5],
[7], [8] (and hence oversimplifies the network structure),
the obtained results have been insightful. In [8], the authors
model the transmitter as a black-box that consumes energy a
constant amount of energy per unit time when the transmitter
is transmitting (and hence ‘on’). It consumes zero energy
when the transmitter is ‘off’. Unlike the results from Shannon-
theoretic analysis [9], the authors show that the transmissions
need to be ‘bursty’ in that the energy minimizing rate is
non-zero. A more refined model that depends on the system
performance (transmit power, desired rate and target error
probability) is introduced in [7]. This model accounts for
the decoding energyexpended at the receiver. The ensuing
analysis reveals that the there is a tradeoff between the transmit
and the processing energy — to minimize the total energy,
transmit energy should not be studied in isolation. Further,
contrary to the implication of the waterfall curve, the total
energy per-bit increases unboundedly as the desired reliability
increases.

To understand effects of processing energy in the design
of more general networks, the authors in [10] consider the
multiple-access channel (MAC). They model the processing
energy at the transmitters by the black-box model that they
introduced in [8]. Interestingly, the authors show that simple
time-division multiple access based schemes can attain desired
rates with smaller total energy than that required schemes
in which the two transmitters operate simultaneously. The
intuition is similar to that for the bursty strategy in the point-
to-point problem: when using time-division multiplexing,one
transmitter can turn itself off and save on the processing energy
when the other transmitter is operating.

To investigate the impact ofdecoding energyin networks, it
is more pertinent to consider the broadcast channel (ratherthan
the MAC) because it is thereceiversthat expend the decoding
energy. We provide the system model for a Gaussian broadcast
problem in Section II. Of particular interest arejoint broadcast
schemes(e.g. superposition or dirty-paper coding) that can
achieve the minimum transmit power in the limit of small
error probability. In Section III-A, we provide lower bounds
on the required decoding complexity (measured in number of
iterations for a message passing decoder, see Section II-A)



for a Gaussian broadcast system that uses a joint broadcast
scheme. These complexity bounds are then used to provide
lower bounds on the total energy consumed by joint broadcast
schemes. In Section III-B we provide similar lower bounds to
a time-division multiplexing (TDM) scheme that transmits to
the two users in different time slots. At the cost of higher
transmit energy, the TDM scheme saves on the decoding
energy because the two users do not need to use the entire
block to decode. In Section III-C we compare our bounds
on the performance of the joint strategies and TDM, and
conclude that at short to moderate distances (∼ 1000 m or
smaller at3 GHz), TDM requires smaller total energy than
joint broadcast schemes. Interestingly, it turns out that theratio
of the distances of the two receivers from the transmitter is
an important factor in the design. In Section III-D, we show
that allowing flexibility in the desired rate would not alterour
results substantially. We conclude in Section IV.

Strictly speaking, we are comparing twolower bounds
which may not be meaningful. However, as is shown in [7,
Section V], such complexity lower bounds are achievable to
within a constant number of iterations using regular LDPC
codes. In fact, since these bounds underestimate the decoding
energy, and since it is TDM that makes more efficient use of
the decoding energy, we suspect that the performance of TDM
vis-a-vis joint schemes would exceed the estimates provided
here. This is further discussed in [11].

II. PROBLEM STATEMENT

A vector of lengthm is denoted in bold with superscriptm
(e.g.Xm). A single transmitter Tx transmits to two users, user
1 and 2, across a memoryless additive white Gaussian noise
channel with inputX and outputsY andZ respectively. The
information transmitted to useri is a ki length sequence of
Ber(0.5) iid bits denoted byB(i)ki , i = 1, 2. The transmission
is carried out in blocks of lengthm. The encoder mapping is
denoted byψ that maps(B(1)k1 ,B(1)k1) → X

n. Thus,

Y
m = h1X

m + W
m
1

Z
m = h2X

m + W
m
2 ,

wherehi is the distance-dependent fade coefficient, and the
elements ofWm

i are distributedN (0, σ2
0), are independent

overi and iid over time. We assume that the noises are thermal
and henceσ2

0 = κT (hereκ is Boltzmann’s constant, and the
temperatures at the two receivers are assumed to be equal).
We assume the decay in the signal power is according to the
power law, that is,h2

i = 1
4π(ri/λs)2

, whereλs is the wavelength
of the transmitted signal. Also,r2 ≥ r1, and hence user1
(user2) would also be referred to as the ‘strong’ (‘weak’) user
respectively. The desired rates of communication areRi =
ki
m . Since the block length is the same for the two users,Ri
satisfy k1

R1
= k2

R2
= m. The objective is to achieve an average

bit-error probability smaller than〈P (i)
e 〉0 (averaged over the

channel realizations and the messages) fori = 1, 2. We will
sometimes consider an AWGN test channel pair(G, J) where
the first user has noise varianceσ2

G, and the second user has

noise varianceσ2
J . The symbol0 is reserved for the underlying

channel of noise varianceσ2
0 . Under a test channel pair(G, J),

the average bit-error probability is denoted by〈P (1)
e 〉G for user

1, and by〈P (2)
e 〉J for user2. We denote the average transmit

power byP . For simplicity we assume thatm = k1
R1

= k2
R2

and hence the two messages are conveyed in the same block of
lengthm. Probability of noisesWm

1 taking values in a setA
under a test channelG would be denoted byPrG(A). Similar
notation is used forWm

2 under a test channelJ and for the
underlying channel. The parameterζ =

r22
r21

=
h2
1

h2
2

is of interest
as explained in Section I.

A. Decoding energy model

Our focus is on the parallelism of the decoders and the
energy consumed within them. The decoding energy model is
borrowed from [7] which is based on the iterative decoding
model [12]. We assume that each decoder is physically made
of computational nodes that pass messages to each other
in parallel along physical (and hence unchanging) wires.
A subset of nodes are designated ‘message nodes’ in that
each is responsible for decoding the value of a particular
message bit. Another subset of nodes, called the ‘observation
nodes’ has members that are each initialized with at most one
observation of the received channel output symbols. There may
be additional computational nodes to merely help in decoding.
In a departure from the model in [7] [13], we assume that
the observation nodes and the message nodes aredisjoint.
This allows simplicity in our exposition, while not altering
the flavor of our results.

Each computational node is connected to at mostα + 1 >
2 other nodes (an implementation constraint) with wires that
allow for bidirectional communication. No other restriction is
assumed on the topology of the decoder. In each iteration,
each node sends messages to all its neighboring nodes. The
maximum of all the neighborhood sizes (over all the message
nodes) at the decoder of useri at the end ofli iterations is
denoted byNi . αli . Each computational node is assumed to
consume a fixedEnode joules of energy at each iteration. We
define the parameterγ =

Enodeh
2
1

σ2
0 log2(α)

that captures the energy
and the architecture terms relevant to our energy calculations.

B. Joint broadcast and time-division multiplexing strategies

We call a strategy ajoint broadcast strategyif it requires
each user to use the entire block to decode its own message.
For example, superposition coding and dirty-paper coding
are joint broadcast strategies. Also, we define atime-division
multiplexing (TDM) strategy as one in which the signal for
each user is sent at different time indices, and thus useri only
uses indices assigned to itself to perform the decoding. We
will analyze the performance of both of these strategies. The
term total energyrefers to the sum of the transmit energyET
and the decoding energyE(i)

dec. Our objective is to minimize
the total energy per-bit, that is given by

Eper−bit =
ET + E

(1)
dec + E

(2)
dec

k1 + k2
. (1)



III. L OWER BOUNDS ON TOTAL ENERGY

A. Lower bounds on total energy for joint broadcast schemes

The main result of this section is a lower bound on the total
energy for joint broadcast strategies defined in Section II-B.
It is presented in a sequence of three theorems. Theorem 1
derives lower bounds on the bit-error probabilities for thetwo
users under some test channels. Theorem 2 uses results of
Theorem 1 to derive lower bounds on neighborhood sizes (as
in [7]) for given target error probabilities. These lower bounds
are eventually used to derive to lower bounds on the total
energy in Theorem 3.

Theorem 1: For a test channel pair(G, J) for the two-user
broadcast channel of Section II, the following lower bounds
hold on the error probabilities for all coding schemes that
operate with average transmit powerP and for allσ2

G ≤ ζσ2
J ,

hb(〈P (1)
e 〉G) ≥ 1 −

log2

(
1 +

h2
1P

ψ
u

σ2
G

)

2R1
=: δ1(Pu, σ

2
G)

hb(〈P (2)
e 〉J) ≥ 1 −

log2

(
1 +

h2
2(P−Pψu )

h2
2P

ψ
u +σ2

J

)

2R2
=: δ2(Pu, σ

2
J ),

for some0 ≤ Pψu ≤ P . Further,Pψu is dependent only on the
encoding strategyψ, and not on the channelsG andJ .

Proof: See [11].
The derivation of Theorem 2 uses the following lemma

from [7, Lemma 10].
Lemma 1: Let the underlying AWGN channel be of noise

varianceσ2
0 . Consider a test channelG of noise varianceσ2

G >
σ2

0 . Let A be a set of noise realizationswn of lengthn such
that PrG(wn ∈ A) = δ. Then,

Pr0(wn ∈ A) ≥ fG(n, δ), (2)

where,

fG(n, x) : =
x

2
exp

(
− nD(σ2

G||σ2
0)

−√
n

(
3

2
+ 2 ln

(
2

x

)) (
σ2
G

σ2
0

− 1

))
.

Further,fG(n, ·) is a convex-∪ increasing function for any
fixed n and for all values ofσ2

G ≥ σ2
0 .

Proof: See [7, Lemma 10].
Theorem 2: For AWGN broadcast channel with total av-

erage input powerP , the following pair of equations provide
lower bounds on the neighborhood sizes at the two decoders
for the decoding model of Section II-A for given bit-error
probabilities〈P (i)

e 〉0 at the two users.

〈P (1)
e 〉0 ≥ fG

(
N1,

h−1
b (δ1(Pu, σ

2
G))

2

)

〈P (2)
e 〉0 ≥ fJ

(
N2,

h−1
b (δ2(Pu, σ

2
J ))

2

)

for all σ2
G, σ

2
J satisfyingσ2

G < ζσ2
J and for some constant

Pu ∈ [0, P ] that depends only on the coding scheme. Here
δi(σ

2) are as defined in Theorem 1.

Proof: See [11].
Turned around, these bounds provide lower bounds on the

required neighborhood sizeNi for given error probabilities.
Using li ≥ log2(Ni)

log2(α) , the theorem provides lower bounds on the
number of iterations. Using this lower bound on the number of
iterations, Theorem 3 derives lower bounds on the total energy
per-bit for joint broadcast strategies.

Theorem 3 (Energy per-bit for joint strategies): The
total per-bit energy required by any joint broadcast strategy
for communicating at ratesR1, R2 to the two users is lower
bounded as follows.

Eper−bith
2
1

σ2
0

≥ min
P

{
Ph2

1

(R1 +R2)σ2
0

+ γmin
Pu

(
max
σ2
G

{

R1 + 1

R1 +R2
log2

(
N1(P, σ

2
G, Pu)

)
+

R2 + 1

R1 +R2
×

max
σ2
J
>
σ2
G
ζ

{
log2

(
N2(P, σ

2
J , Pu)

) }})}
,

where the functionsN1 and N2 are lower bounded as in
Theorem 2, and the optimization is over

P ≥ 1

h2
1

(22R1(1−hb(〈P
(1)
e 〉

0
)) − 1)22R2(1−hb(〈P

(2)
e 〉

0
))σ2

0

+
1

h2
2

(22R2(1−hb(〈P
(2)
e 〉0)) − 1)σ2

0 ,

andPu satisfyinghb(〈P (i)
e 〉0) ≥ δi(σ

2
0) for i = 1, 2.

Proof: See [11].

B. Lower bounds on total energy for TDM

Theorem 4 (Energy per-bit for TDM): The total energy
per-bit for the time-division multiplexing scheme (under the
model described in Section II-A) that communicateski bits to
useri at rateRi (so that k1R1

= k2
R2

) is lower bounded by

(R1 +R2)Eper−bith
2
1

σ2
0

≥ min
eR1,P1,P2

{
P1h

2
1R1

σ2
0R̃1

+
P2h

2
1R2

σ2
0R̃2

+ γ
(R̃1 + 1)R1

R̃1

log2 (N1) + γ
(R̃2 + 1)R2

R̃2

log2 (N2)

}
,

where R̃1 ≥ R1, and R̃2 satisfies R1

eR1
+ R2

eR2
= 1. Also,

h2
iPi ≥ (22 eRi(1−hb(〈P

(i)
e 〉0)) − 1)σ2

0 , andNi is lower bounded
as follows

〈P (i)
e 〉0 ≥ fi

(
Ni,

h−1
b (δ(i)(σ2

i ))

2

)
,

where

δ(i)(σ2
i ) = 1 − 1

2R̃i
log2

(
1 +

h2
iPi
σ2
i

)
,

for all σ2
i satisfyingδ(i)(σ2

i ) > 0. These lower bounds can be
optimized overσ2

i .
Proof: See [11].



C. Performance comparison

In this and the following section we assumeRi = Rdes =
1/3 (the desired rate),k1 = k2, Enode = 1 pJ, temperature
T = 300 K, and an operating frequency is3 GHz. Fig. 1
shows a comparison of the normalized total energy per-bit
(given by Eper−bith

2
1

σ2
0

) for various values ofr1and ζ =
r22
r21

.
For small ζ, the performance gain of TDM is substantially
better than any joint scheme for distances as large as3000
m for the given system parameters. To understand why this
must be the case, considerζ = 1, the case of equal fade
coefficients. It turns out that in this case, TDM also achieves
the capacity of the Gaussian broadcast channel, and is hence
transmit-power optimal. Intuitively, since TDM makes more
efficient use of decoding energy, it should require smaller total
energy forζ = 1.

For larger ζ, the required transmit power using joint
schemes vis-a-vis that required by TDM is much smaller,
and joint schemes start dominating TDM (see Fig. 2). This is
particularly true at large distances, or high error probabilities,
where decoding energy ceases to matter. Again, if error prob-
ability is lowered for fixedζ (see Fig. 3), TDM outperforms
joint broadcast schemes because TDM’s savings in decoding
energy exceed its spending on transmit energy.

Even though Fig. 1 suggests that joint schemes dominate
TDM at small distances (∼ 300 m or smaller at3 GHz,
depending onζ), we believe that this is a consequence of
the looseness in our bounds. An increase in transmit power
can force the lower bounds on the neighborhood sizes to1,
thereby making the lower bound on the decoding energy zero,
even though the actual decoding energy itself is non-zero.

D. Allowing flexibility in the communication rate

For point-to-point communication, [13] suggests that for a
given target error probability, the optimal rateR∗ that mini-
mizes the total energy per-bit can be non-zero. Consequently,
it is desirable to have the operating rateR = R∗ if R∗ > Rdes.

To see if this improves the performance of the joint
broadcast schemes, we allow for flexibility inR subject to
R > Rdes. Fig. 4 shows that at very short distances, the total
power is an increasing function of the rate, and henceR∗ = 0
(again, this happens due to the looseness of our bounds). At
extremely large distances, the decoding energy is irrelevant,
andR∗ approaches0. At moderate distances, for the system
parameters in Fig. 1, 2 and 3,R∗ for joint broadcast schemes
turns out to be smaller thanRdes = 1/3 (see Fig. 4), and
hence the same plots are observed even allowing for the rate
flexibility. Though there would be an impact of flexible rate at
extremely low error probabilities, it would benefit both TDM
and joint broadcast schemes, and thus needs further study.

IV. D ISCUSSIONS AND CONCLUSIONS

We note that the lower bounds on the joint broadcast
schemes here are optimistic because they assume that user
1 can decode its own message without decoding any part
of the message for user2. In practice, for the two well
known joint broadcast schemes of superposition and DPC,
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Fig. 1. The first plot shows the lower bounds on the (normalized) energy
per-bit vs distance of the first user for joint broadcast schemes and TDM for
different values ofζ = r2

2/r2
1 for 〈P (i)

e 〉0 = 10
−9. The total energy per-bit

can be smaller for TDM for short distances and reasonably small values of
ζ. The second plot shows the difference in energy per-bit (in dB) for TDM
vs joint broadcast schemes. At moderate distances, the gap can be large forζ
close to1, while the advantage of TDM is small at largeζ. The plots are for
a transmit frequency of3 GHz, anEnode value of1 pJ,σ2

0 = κT with κ as
Boltzmann’s constant andT = 300 K, and the y-axis shows the normalized

energy
Eper−bith

2
1

σ2
0

. The figure assumesk1 = k2, andR1 = R2 = 1/3.

user1 decodes more bits than merely its own message bits. In
superposition, user1 decodes the entire message for user2. In
DPC, user2 decodes an auxiliary codeword. The number of
such auxiliary codewords far exceeds the number of possible
messages for user1. Thus for either superposition or DPC, the
decoding energy at the first user is higher than that assumed
in Theorem 3 because the nodes dedicated to decoding these
extra bits consume energy as well.

The minimum energy communication scheme for broadcast
channels at short distances must have some aspect of TDM,
that is, each receiver should not require the entire block
for decoding. We believe that the optimal scheme would
time-share between a joint scheme and TDM, thus balancing
between loss in the rate in TDM and increase in the decoding
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Fig. 2. The plot shows the lower bounds on the (normalized) energy per-bit
vs 〈P

(i)
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1, TDM requires smaller energy than the joint broadcast schemes. Forζ much
larger than1, the joint broadcast schemes outperform TDM due to improved
savings in transmit energy. The other parameters are the same as in Fig. 1.
The classical lower bound disregards the decoding energy.

power in the joint schemes.
The connection with work of Weng et al [14] on the error

exponents for broadcast channels is still under exploration.
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