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Extending Models for Two-Dimensional Constraints

Segren Forchhammer
Department of Photonics Engineering
Technical University of Denmark
2800 Lyngby, Denmark
Email: sofo@fotonik.dtu.dk

Abstract— Random fields in two dimensions may be specified
on 2 X 2 elements such that the probabilities of finite configura-
tions and the entropy may be calculated explicitly. The Pickard
randem field is one example where probability of a new (non-
boundary) element is conditioned on three previous elements.
To extend the concept we consider extending such a field such
that a vector or block of elements is conditioned on a larger
set of previous elements. Given a stationary model defined on
2 X 2 elements, iterative scaling is used to define the extended
model. The extended model may be used for models of two-
dimensional constraints and as examples we apply it to the hard-
square constraint and the no isolated bits (n.i.b) constraint. The
iterative scaling can ensure that the entropy of the extension
is optimized and that the entropy is increased compared to the
initial model defined on 2 X 2 elements. Application to a simple
stationary model with hidden states is also outlined. For the
n.i.b constraint, the initial model is based on elements defined
by blocks of (1 x 2) binary symbols.

1. INTRODUCTION

We consider two-dimensional random fields, especially
those fields, which must satisfy some shift invariant constraints
of finite extent (M, N) over some finite alphabet A. A
constraint is defined by a list, F, of forbidden configurations
of symbols in A. Each forbidden configuration is contained
within a rectangle of maximum size M x N. A configuration
on a finite segment of the plane containing no forbidden con-
figurations is called an admissible configuration. Let E(m, n)
be the set of admissible configurations on an m x n rectangle
for a given field F. The combinatorial entropy (or capacity)
of F is defined as

C(F) = limsup w. €))

m,n— o0 mn

As discussed in [1] this limit is well defined, even though it
may not be computable. The limit is identical if we consider
rotated rectangles, parallelograms, or other segments where
the length of the boundary is small compared to the area [2]
(3] [4].

In this work, we shall approach the entropy by assigning
probability measures to the configurations. Let F' be the
elements of an m x n rectangle. Let ur be a probability
measure on A™*™,

Let the elements of the m x n configuration be denoted
zij,1 <1 < m,1 < j < n. We shall also use pip, <y for
the measure on a m X n rectangle. The (measure theoretic)
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entropy of up is defined as

1

H(pp) = —— > pwr(x)logy pp(x). @

xEAmXn

For a two-dimensional constrained field, the measure is
defined on the configurations, which agree with the constraint.
That is, each of the |.A|™*™ possible configurations, x, that
contain forbidden words defined by F have probability zero
according to pp, 0 < pup < 1.

A measure is said to be (locally) stationary if two config-
urations within the rectangle that differ only by a translation,
i.e. a fixed offset (i, j') of indices of the elements, x;;, have
the same probability. Besides the entropy, a stationary measure
may also provide useful information as correlation properties.

A basic example of a 2-D constraint is the 2-D hard-square
constraint defined over binary elements by requiring that two
neighbors can not be 1, i.e. ;51,1 # 1 and x;_q jz;; # 1.
This constraint is also called the 2-D RLL(1,00) as no row
or column has a run of two or more 1s. Coding for the hard-
square constraint was presented in [4] based on the probability
distribution of four elements.

Initially we consider stationary probability measures of the
form (throughout the paper we use short hand notation for
probabilities P() given by their arguments),

Pmxn(X) =P(x11) - I} _o P(z15]1(5-1))
A2 P(@i1 |7 (i—1)1)

ALZ IS o P(2i5] (i-1) (1), T(i—1)jTi(j—1))-
€]

An important example of (3) is the class of 2-D models
presented in [5], which is often referred to as Pickard random
fields (PRF). The class of binary Markov random fields defined
as stationary extension of the distribution on 2 x 2 elements
was completely characterized in [6].

We shall present an algorithm for extending a stationary
field defined on 2 x 2 elements to fields where the conditional
probabilities are defined on blocks or vectors and show that
iterative scaling may be used to ensure that the entropy
increases (or rather that it does not decrease) when extending
the field. In Section II, 2-D random fields defined on 2 x 2
elements are briefly presented. Iterative scaling, as we shall
use it, is introduced in Section III. The extension of a field
defined on 2 x 2 elements is introduced in Section IV along
with an algorithm using iterative scaling to extend the field.
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Examples of applying the algorithm to 2-D constraints and
calculating the entropy is presented for the hard square and the
n.i.b constraint in Section V. Application to a simple stationary
model with hidden states is outlined in Section VL.

II. FINITE TWO-DIMENSIONAL RANDOM FIELDS

Let A,B,C,D be random variables over A in a 2 x 2
rectangle with relative positions given by, ;;, Ti j+1, Tit1,5
and T;41,541:

A B
C D

Consider poxo defined by the joint distribution (ABC D)
of the variables. Likewise, let for a subset of variables, eg.
(ABC) denote the joint distribution of the variables.

We consider stationary measures where the probability
distribution on 2 X 2 elements is given by pgx2. Furthermore
we require that two rows of the field are described by a Markov
chain with transition probabilities along the two rows given by
the conditional probability P(BD|AC).

It may be seen that the measure in (3) has this property.
The Pickard random field is a prominent example of such a
distribution and (3) is described by the probability distribution
of four symbols [5] [6]:

The probabilities of (ABC D) are expressed by

P(ABCD) = P(D|ABC)P(ABC) @)
and the independence condition of (3)
P(ABC) = P(B|A)P(C|A)P(A). %)

For a stationary field this implies that each row has a
Markov chain description [4], [5].

To ensure stationarity there are further conditions on
P(D|ABC) which we assume satisfied, and refer to [4], [5],
[6] for details.

The entropy of the elements which are not part of the
boundary (i = 1 or j = 1) is given by the conditional entropy
H(D|ABC). H(ur) > H(D|ABC) and as the size of the
m X n rectangle increases, the per symbol entropy H(up)
converges to H(D|ABC) [4] [7].

II1. ITERATIVE SCALING

In [7], [8] iterative scaling was used for the construction
of a PRF for a 2-D constraint, by determining a solution for
the joint distribution of two variables. Later we shall apply
iterative scaling to extend a PRF, or another stationary model
with measure as (3), defined on 2 x 2 elements to a model
defined on more elements. Here iterative scaling is briefly
introduced.

The problem of determining a joint distribution, say (BC)
on two random variables B and C, such that each variable
attains a given marginal distribution and combined satisfies a
constraint expressed by a set of forbidden combinations of b
and ¢, may be addressed using an iterative process known as
iterative scaling [9].
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The iterative scaling is given by a matrix {m;;}, which is
modified to get row sums 7; and column sums c;. In each
step, the rows are updated

mi; = Mij * i/ Z(mi]’) (6)
J
and subsequently the columns are updated
mi; = mij % ¢;/ > _(mij) @)
i

If the linear equations have a non-negative solution, the
iteration will converge to it. Formally, let £ be the union
of linear families of distributions, e.g. as r; and c;. Iterative
scaling [9], e.g. by (6-7), may take an initial probability
distribution, Q(z) and for a non-empty class of distributions
as L, find a distribution, P* which minimizes the divergence,
D(P*||Q) for P* € L, where the divergence is given by
D(P||Q) = 3_ P(z)log(P(x)/Q(x)).

Given a joint constraint, the matrix is initialized with zeros
in positions that are not admissible by the constraint. Starting
with a uniform initial distribution over the admissible config-
urations as Q(z), implies that Q(x) is constant for P(z) > 0.
Thus minimizing the divergence, D(P||Q), by the iterative
scaling (6-7) will minimize ) P(x)log(P(z)) and thereby
maximize the entropy, H(P), over the distributions P € L.
We shall refer to this as maximum entropy iterative scaling and
apply it to find a joint distribution on two variables given the
marginal distribution on each variable. This was used in [7],
[8] to determine the joint conditional distribution P(AD|B =
b,C = c) for each pair {b,c} € A? as part of constructing
a PRF, given (ABC) and (BCD), i.e. P(A|B = b,C = ¢)
and P(D|B = b,C = c). Here the iterative scaling shall be
used to construct an extended model given a stationary model
defined for 2 x 2 elements by a distribution (ABCD).

IV. EXTENDED BLOCK FIELDS

Compared to a model defined on 2 x 2 elements a model
defined on larger blocks (or vectors) may be of interest as a
model for block based coding, to increase the entropy or to
approximate a distribution over areas larger than 2 x 2. In this
work we consider starting from a stationary 2x2 model (3) and
extending this to a (quasi-)stationary model defined on 2x (n+
2) elements. The quasi-stationarity refers to the fact that the
variables of column j mod (n+1) have identical distributions,
not necessarily so for different values of 7 mod (n + 1) and
the same characteristic applies when we consider the column
of the say upper-left element of rectangles of a given size. The
approach implies relaxing the assumption that two consecutive
rows form a Markov chain, but maintaining the property that
each row forms a Markov chain and it involves a modification
of the conditional distribution of one row given the previous
TOW.

First we return to a Pickard random field over a finite
alphabet, A. (For simplicity we shall refer to PRF, but the
results are applicable to stationary models with a measure of
the form (3).) Consider two rows and K columns of this
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Pickard random field. The measure usxx is described by
a Markov chain (MC) on the two rows [5] defined by the
distribution on the four basic variables, (ABCD), defining
the transition probabilities P(BD|AC). Let A and C be the
first elements of the two rows (Section II) and let B; and D;
denote the following elements where ¢ denotes the column
index. Further let B} = By,...,B, and D} = Dy,...,D,
denote the first n of these elements. We shall first consider
the 2 x (n 4 2) elements

A B
C D

Bn Bn+1
Dn Dn+1

Given a Pickard random field, a new block based construction
shall be introduced such that the stationary Markov chain
distribution of single rows is maintained, but the conditional
probability of one row conditioned on the previous row is
changed in order to increase the entropy if possible. The
construction is based on changing the conditional probability
P(D}ABPC). The corresponding conditional entropy
for n + 1 symbols, H(D7™|ABTT!C), may be rewritten as

H(DABIHIO) =
H(BP' DI AC) — H(BYMAC) =
H(BM'D?|ACBy41Dpy1) + H(Bpi1Dpi1]|AC) —

H(ByHAC) ®)

Given a PRF, the conditional probabilities above may all be
obtained as marginals from the PRF distribution, poyx (n42),
on (ABT*'CD?!). From this point on, let Pp() denote
marginals obtained from the (initial) PRF, summing out the
other variables.

The new distribution on (AB7?T'CD?™!) shall be com-
posed by

P(ABYT'CD) =
Pp(AC)Pp(Byi1Dpi1|AC)P*(BY DY AB, 11CDpy1), (9)

i.e. P(BTD}|ABy+1CD, 1) shall be modified.

Given a PRF, a quasi-stationary extended field is defined
by 1) the boundary distribution is given by the PRF boundary
distribution ( = 1 or j = 1 in (3)) and 2) the conditional
distribution of the elements in columns, k(n+1) <j < (k+
1)(n+1) of any row, i, is independent of ¢ and & and has the
causal form

P(DYHABYICO) =
Pp(Dypi1|ABTHC)P* (DY ABY ™ C D, 1),

where  P*(D}|AB}T'CD,,1) is consistent with
Pp(D?|ABn+1CDn+1) and Pp(BﬂABn_HCDn_;_l) in
the sense that these probability distributions are identical
to the corresponding marginals of the new distribution
(ABYTC D (9).

Iterative scaling [9] may be applied to find a joint

(10)
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Pp(B}|ABp+1CDpy1) and  Pp(D}|ABp4+1CDpy1)
leading to (quasi-)stationarity as follows. Let b7 (7) and d7(4)
denote configurations of BT and D7 indexed by ¢ and j,
respectively. For each configuration ab,, 1cd,+1, @ matrix is
defined with elements m;; = P*(b}(i)d}(J)|abp+1cdnt1).
(mij = 0 for forbidden configurations of ab] " cd?™.) The
row and column sums for the iterative scaling (11-12) are
given by

Ty = ZP*(b?(i)dﬂaancdnH) _
dp

Pp (b7 (3)|abpt1cdnt1), an
;=Y P*(brd7(5)|abniicdnir) =
by
Pp(d7 (j)|abnticdni1). (12)

Given a PRF, the distribution Pp(B}D}|ABp+1CDypy1)
obviously already provides a solution to the iterative scal-
ing (11-12). The maximum entropy iterative scaling (6-
7) with row and column sums given by (11-12) will in-
crease H(B} D} |AC By, 11Dy 1) in (8) compared to the PRF
distribution if this is possible. This in turn will increase
H(DYTABTTC) as the last two terms of (8) are not
changed by the construction.

The iterative scaling solution P*(B}D}|ABp+1CDpy1)
gives a modified distribution (9) on the 2 x (n + 2) elements
and P*(D}|ABY"'CD, ), which leads to the modified
conditional probabilities (10). Based on this, the conditional
entropy (8) may be rewritten as

H(DYHHABIHO) =

H*(D}|ABY'CDpi1) + Hp(Dnp1 |[ABFFIC),  (13)

where H*() and Hp() denotes the entropies based on dis-
tributions defined by iterative scaling and the initial PRF,
respectively.

The construction above may first be extended to k(n+1)+1
columns for any £ > 0 in the two rows: Let By 1 and Dy 41
take the place of A and C and define a new distribution on
the elements of the next n + 1 columns, B2%4? and D252,
Thereafter repeat the construction with By 11y and D1y
taking the place of A and C. In each step, 2x (n+1) elements
are appended in the two rows. As each of the (individual)
rows have maintained the distribution of the original stationary
model, the construction may be repeated row by row condi-
tioning the new row on the previous one.

Theorem 4.1: Given a Pickard random field over a finite
alphabet, 4, an extended quasi-stationary field with probability
distribution (10) exists. The entropy of n + 1 elements of the
interior, ;... % j4n,1 < 4,1 < j, is H(DYTABPCO),
and it is given by (13). Defining P*(D}?|ABY*C Dy 1) (10)
by maximum entropy iterative scaling, the entropy of the
extended field is not less than the entropy of the PRF as,

H(DABI'C) =
H*(DY ACBY* ' Dy i1) + Hp(Dpy1|ABTHO)

distribution ~ P*(B}D7}|ABp+1CDypy1) and  thereby
P*(DP|ABY*CD,.1) with marginals equal to > (n+1)Hp(D|ABC) (14)
1057
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and the increase in entropy is given by

H*(D}|ACBY™ D,y 1) — Hy(DYACBY ™ D,y yy). (15)
Proof:  Consider the distribution of the elements in
columns 0 < j < K = k(n + 1) of the first two rows,
ABXCDX. Given a PRF, the distribution of the first row
is by definition given by the Markov chain of the PRF.

The independence condition of the PRF (5) gives
Pp(DTTABITRC) = Pp(DPTABITIC)E > 1
The two-row MC property of the PRF gives
Pp(Dpy1|ABYYRC) = Pp(D,1|ABYTIC),k > 1 and
Pp(DP|ABY™*CD, 1) = Pp(DP|ABY ™ CDpy1),k > 1
and that the distribution (ABPCD?|Bpt1Dpy1) s
independent of values of By in columns, k > n + 1.

The distribution on AB,,+1CD,4; is given by the 2-row
MC derived from the PRF probabilities, Pp{AB,+1CD,41).
In the iterative scaling, Pp(D}|ABp+1CDy41) defines the
marginals in terms of the column sums (12), therefore the
distribution of the extended field on (AB, ;CD}'') is
maintained and the marginal distribution on C D} is still
given by Pp(CD7?™!). We note that the elements AC' and
By+1D,4+1 maintain their (stationary) distributions given by
the two row MC, but this is not necessarily the case for the
elements in between, B;D;,1 < j < n.

For the PRF 2-row MC, each state By (,i1)Dk(nt1) S€p-
arates the distributions of the elements before and after the
state. By construction and the arguments above, this also
applies to the extended field and Pp(Bj(n+1)Di(n+1)) gives
the distribution. Thus, repeating the construction (10) the so
defined distribution on B,(clz:i)l()nH)D,(c’z:i)l()nH) will, for any
k > 0, be identical to the distribution (ABT™'CD} ). The
distribution of the new row (CD%KIH)(”H)) is identical to
the distributioq given by the PRF MC distribution on rows,
ie. Pp(C’DgK +1)(nﬂ)). Thus the second row has the same
MC distribution as the first row.

By induction, the subsequent rows will have the same
MC distribution and the distribution on the elements
in columns k(n + 1) to (k + 1)(n + 1) in any two
consecutive rows will be identical to (ABTT'CDPT!)
as given by (9) and the iterative scaling. The con-
ditional probability is given by P(D}Y'|ABFC) =
Pp(Dyi1|ABYHC)P*(D}|AB} T CD,,11) and the entropy
is given by (13). When the maximum entropy iterative scaling
is applied, the entropy per symbol will not be reduced as the
PREF distribution obviously provides a valid solution to the row
and column sum constraints (11-12) defined by the PRF itself.

u
It may also be noted, that the columns with index k(n+1) for
integer k£ > 0 have the same distribution as given by (AC).

The construction as a whole may also be generated by
first defining the distribution on columns k(n + 1),k > 0,
based on the PRF given by the distribution (AB;,+1CDy41).
The distribution of the first column is given by Pp(AC)
as is the case for all the columns k(n + 1),k > 0. The
distribution of the elements of the first row with column
index k(n + 1) are given by the Markov chain Pp(Bp1+1]A).
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After these elements of the first row and the first column the
remaining elements of columns k(n+1), k > 0 are determined
by Pp(Dp41|ABp+1C). The distribution of the intermediate
columns is sequentially given by Pp(B?|AB?+1CDn+1) for
the first row and thereafter by P*(D}|ABT ' CD,,1).

V. NUMERICAL RESULTS

Models for the hard-square constraint [4] and the n.i.b
constraint [7] were extended using the presented technique
based on iterative scaling. Given a PRF, calculating the
marginals, Pp(Bp+1Dn41|AC), Pp(BY|ACBy,+1Dp41) and
Pp(D7|ACBy,+1Dpt1), may efficiently be implemented us-
ing a trellis structure for the ’hidden’ variables, i.e. the
variables of (ABTT'CD7), which are to be summed out.
To summarize the important steps:

1) The given initial PRF distribution (ABCD) gives the
distribution of (AC) and P(BD|AC) defining the two-
row MC and the distribution (AB}*C D7),

2) Calculate Pp(BT|ACBp+1Dpt1) and
Pp(D}|ACBy+1Dp41) to define the iterative scaling
6-7).

3) Calculate P*(B7D7|ABp+1CDypy1) by iterative scal-
ing and

4) P*(D}ABYCD, 1) =
P*(B?DV|ABp+1CDy 1)/ Pp(B}|ACBpt+1Dry1)

5) Pp(Bp41Dnt1]AC) is  also  obtained  from
(AB;H-ICD?-H)

6) Calculate H(D7 | ABT1C) by (13).

A. The hard-square constraint

A stationary model defined on 2 x 2 elements with proba-
bility measure of the form (3) was defined for the hard-square
constraint in [4]. The basic elements of the second line (C' D)
are shifted one position to the left relative to A and B,

- A B
C D -

Thus the directions of the Markov chains are horizontal
(P(B|A)) and diagonal (top-right to bottom-left) (given by
P(C|A)). The model has two parameters [4], with optimal
values w.r.t the entropy (H(D|ABC) = 0.58727), P(D =
0JA = 0,B = 0,C = 0) = 0.671833 and P(D =
0JA = 0,B = 1,C = 0) = 0.566932. Starting with this
model an extended model was determined, increasing entropy
for increasing n. For n = 12 the extended model gave
H(D?™|AB?t!C) = 0.5876 per binary symbol. In [10] a
lower bound of 0.58786 was presented based on combining
PRF with tiling. Using the Calkin and Wilf bounds the capacity
is C ~ 0.58789.

B. The n.i.b. constraint

The extended block construction was applied to the n.i.b.
constraint with super symbols defined on 1 x 2 blocks along
diagonals as in Fig. 1. The PRF solution presented in [7] was
used as the starting point.

For n = 4 starting with the optimal PRF of [7], gave
H(DT™ABTC) = 0.9204 bits per binary symbol. For
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C1C2
a1azd1do
b1bo

Fig. 1. The four 1 x 2 blocks of the PRF model for the n.i.b constraint.

fixed extended block size given by n, the four parameters of
the PRF may be modified to increase H(DT+'|ABT'C). For
n = 4 and using a gradient search over the PRF parameters,
a maximum of H = 0.9205 bits per binary symbol was
achieved. The PRF parameters were P(01) = P(10) =
0.2260, P(00]00) = 0.2268, P(01]|00) = 0.2485, P(00/11) =
0.3299. For smaller values of n, the following entropies were
obtained, n = 1: H = 09173, n = 2 : H = 0.9190 and
n =3 : H = 0.9199 bits per binary symbol. In this example
the iterative scaling was used twice, first to derive the intial
PRF [7] and thereafter for the extension. In [11], a lower bound
of 0.9226 was presented for the constraint.

In the two examples above, the absolute increase of entropy
by the extended field based on maximum entropy iterative
scaling is modest, but in fact the initial models are very good
and a major part of the gap between the entropy for the initial
models and the (bounded or estimated) capacity value is closed
by the extension.

In the examples above the maximum entropy iterative
scaling was used for the considered constraint, increasing
the entropy. Some interesting alternative applications are also
possible. The constraint in the iterative scaling could be
different, so the initial model could be an approximation to
the desired constraint, which is not enforced until the iterative
scaling, which in this case will provide a solution if there
is one. Another application would be to start with a desired
distribution poy (n42) and initialize the distribution @ of the
iterative scaling with this, which would then return the best
approximation in terms of the minimum divergence. In both
of these alternative applications the method could address or
incorporate structures defined over more elements than the
2 x 2 elements of the PRF.

VI. MODELS WITH HIDDEN STATES

In the stationary models considered so far, independence of
B and C given A (5) has been assumed. Here we consider a
broader class of stationary models where 2 rows are described
by a MC and one row is described conditioned on the previous
row [12]. An example is given by a two-row Markov chain,
P(BD|AC), which is symmetric: P(B = b,D = d|A =
a,C =¢) = P(B =a,D =c|A =b,C = d). Thus the
two rows will have identical (stationary) distributions. Only
considering one row, the process is a function of a Markov
chain and this process may be described using a forward and
a backward pass similar to a hidden Markov process [12] if
the independence (5) is not satisfied.

The iterative scaling (12) may be applied based on proba-
bilities derived from the 2-row MC, which defines 1oy (2r,42)
from which the relevant terms may be derived as before
and outlined in Steps 1-5 in Section V. The reason is that
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considering the two-rows, (Bj11, Dp41) will again separate
the values of (ABTT'C' D} ™) from the rest of the 2-row MC,
i.e. Bg, D,k >n—+1.

The difference comes when calculating P(D,,,1|ABXC)
where the lack of independence (5) means that the conditional
probability of D, ; may depend on the rest of the row above,
{Bgk|k > n+ 1}. This dependency may efficiently be handled
by a backward pass using the two-row MC in the reverse
direction and treating the variables Dy as hidden variables.

The entropy is

H(DYABYTIC) =

H*(DY|ABY™'CDypy1) + Ha(Dny1|AB{C),  (16)

where H*() and Hy() denotes the entropies based on dis-
tributions defined by iterative scaling and the initial hidden
Markov model derived from the 2-row MC, respectively. It
will in general not be possible to calculate the exact value of
Hy, (), but the entropy of a function of a Markov chain may be
bounded from above and below [12]. The increase of entropy
by the iterative scaling is given by H*(D}|AB} ™ CD, 1) —
Hy(D}|ABY*CD, 1), which may be calculated though.

VII. DISCUSSION

It may be noted that the procedure does not necessarily pro-
vide the maximum possible value of H (DT ABT™1C) for
a given 2-D constraint, but searching over the full parameter
space is not tractable. The advantage of using iterative scaling
is that a good choice of values is automatically obtained for
the large set of parameters.
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