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Abstract

Owing to the structure of the Gaussian multiple-input nplétioutput (MIMO) broadcast channel (BC),
associated optimization problems such as capacity regompatation and beamforming optimization are
typically non-convex, and cannot be solved directly. Oresilele approach to these problems is to transform
them into their dual multiple access channel (MAC) problembkich are easier to deal with due to their
convexity properties. The conventional BC-MAC duality &ablished via BC-MAC signal transformation, and
has been successfully applied to solve beamforming opditioiz, signal-to-interference-plus-noise ratio (SINR)
balancing, and capacity region computation. However, ¢hisventional duality approach is applicable only to
the case, in which the base station (BS) of the BC is subjeat gmgle sum power constraint. An alternative
approach is minimax duality, established by Yu in the framwof Lagrange duality, which can be applied to
solve the per-antenna power constraint problem. This peyinds the conventional BC-MAC duality to the
general linear constraint case, and thereby establisheaera BC-MAC duality. This new duality is applied to
solve the capacity computation and beamforming optinorator the MIMO and multiple-input single-output
(MISO) BC, respectively, with multiple linear constraindMoreover, the relationship between this new general
BC-MAC duality and minimax duality is also presented. It lown that the general BC-MAC duality offers
more flexibility in solving BC optimization problems reledi to minimax duality. Numerical results are provided

to illustrate the effectiveness of the proposed algorithms

|. INTRODUCTION

In a Gaussian multiple input multiple output (MIMO) broadtahannel (BC), the base station (BS)
equipped with multiple transmit antennas sends indepdéndé&rmation to each of multiple remote
users, which are equipped with multiple receive antenmathé past decade, a great deal of research
has been focused on the characterization of optimal trasssom schemes for the MIMO BC [1]-[6].
Due to the coupled structure of the transmitted signalspfftenization problems associated with the
BC are usually non-convex. The key technique used to ovezcthms difficulty is to transform the
BC problem into a convex multiple access channel (MAC) problia a so-called BC-MAC duality
relationship. Up to now, two types of BC-MAC duality have hgaoposed as follows:

1) Conventional BC-MAC Duality ( [1], [3], [7], [8]):

Under a single sum power constraint, the capacity regiorsigmal-to-interference-plus-noise-
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ratio (SINR) region) of a BC is identical to that of a dual MAQder the same sum power
constraint. The channel matrix associated with the dual M&@e conjugate transposed channel
matrix of the BC, and the noise covariance matrices of bo#imoRkls are identity matrices [1],
[9].
2) Minimax Duality ( [5], [10], [11]):

The sum rate maximization problem of a BC with multiple lineanstraints has the same
solution as the dual MAC minimax optimization problem. ThHecnel matrix of the dual MAC
is the conjugate transposed channel matrix of the BC, anddis® covariance matrix of the dual

MAC is an unknown variable of the minimax optimization preioi [10].

The conventional BC-MAC duality was first observed by RadRairokhiet al.[1], and applied to
solve the sum power minimization problem for a BC with SINRisinaints. Several different methods
have been developed independently to prove the convehtB@aMAC duality. The proof in [1] is
based on the equivalent transformation that maps the SINReoMAC to that of the BC. Vishwanath
et al. [12] proved the conventional BC-MAC duality by presentihg explicit transformation between
the transmit covariance matrix of the BC and that of the MAGJ applied this duality to solve the
sum capacity problem. Both proofs here are based orrdbiprocity relation[13] between the BC
and its dual MAC. Another proof based on the Karash-Kuhnk&u¢KKT) conditions was given by
Visotsky and Madhow [14]. The conventional BC-MAC dualitgshbeen widely applied to many BC
problems. Schubert and Boche [15] solved an BC SINR balgnamioblem, which is to maximize the
minimal SINR among all the users under a sum power constrai@ttransforming the problem into
its dual MAC problem. The conventional BC-MAC duality was@lused to show that a dirty paper
coding (DPC) [16] is a sum-capacity achieving strategy bywanath and Tse [8]. Moreover, the entire
capacity region for the MIMO BC channel can be obtained veadbnventional BC-MAC duality [3],
[4], [17]. However, the conventional BC-MAC duality is apgalble only to the case in which the BS
of the BC is subject to a single sum power constraint.

On the other hand, the sum-capacity for the MIMO-BC was atadied by Yu and Cioffi [11] via
minimax optimization. The minimax duality was proposed hy [£0], where the conventional BC-

MAC duality and the minimax duality are unified in the frametwof Lagrange duality. However, only
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the sum capacity is considered in [10]. Furthermore, Yu aad [5] extended the minimax duality to
solve the capacity region computation problem and beamfgymroblem for the BC with per-antenna
power constraint. The proofs of the minimax duality in [5]daji0] are based on Lagrange duality.
Compared with the conventional BC-MAC duality, the minimduality can be applied to the case
with multiple linear constraints. However, since the duad®problem has a minimax form, and the
noise covariance matrix of the dual MAC is unknown, highegdincy algorithms, such as the iterative

water-filling algorithm [18], cannot be applied.

A. Overview of the Main Results

The purpose of this paper is to establish the general BC-MAGIlity via the BC-MAC SINR
transformation, and unify the BC-MAC duality and the minkmduality in the framework of the
reciprocity relationship between the BC and the MAC. Byadiricing several auxiliary variables and
applying the general BC-MAC duality, the primal BC problenithwmultiple transmit covariance
constraintsis transformed into its dual MAC problem with a single sum powonstraint and can
be efficiently solved via the existing algorithm for its dMAC as the MAC problem has a convex
structure that is easier to handle.

In this paper, we first consider a MIMO BC with a single gendiraar constraint. Relying on the
BC-MAC transformation, we prove that the capacity regiortte BC is the same as that of its dual
MAC with a single weighted sum power constraint, which wertéhe general BC-MAC dualityThe
channel matrix of the dual MAC is the transposed channel imafr the primal BC, and its noise
covariance matrix is the coefficient of the linear constraistead of being an identity matrix as in the
conventional BC-MAC duality.

To exploit the general BC-MAC duality, the weighted sum rataximization problem for the BC
with multiple linear constraints is transformed into a $eninear constraint problem by introducing
several auxiliary variables. Though the rate maximizapovblem for the BC is a non-convex problem,
we show that the KKT conditions are sufficient for optimaliand show that the subgradient-based
algorithm converges to the optimal solution. A method fotaiing the subgradient is also given.
The relationship between the general BC-MAC duality bas#dti®on and the minimax duality based

solution [5] is explored. We show that the new method to hamdultiple-constraint is equivalent to
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that of the minimax duality. But since the general BC-MAC lityebased method solves the multiple
constraint optimization problem in a decoupled manner,ribw result has more flexibility to apply
the existing algorithms for the MAC, while the minimax duyldoes not. Moreover, we discuss the
weighted sum rate maximization problem with a convex butlinear constraint, and develop a new
iterative algorithm to solve this optimization problem.dddition to the weighted sum rate maximization
problem, the proposed method is also applied to solve thenfeeming problem in a multiple-input

single-output (MISO) BC with multiple linear constraints.

B. Organization and Notation

The remainder of this paper is organized as follows. Theesysnodel is described in Section II.
Section 1l presents the general BC-MAC duality, where trengmit covariance matrix of the BC
is subject to a linear constraint. The capacity region caatpn problem of the BC with multiple
constraints or a single nonlinear constraint is studieddati®n 1V. The method to cope with multiple
linear constraints is also applied to solve the beamfornpirdplems in Section V. Several numerical
results are provided in Section VI to illustrate the effeetiess of the proposed methods. Finally,
Section VII concludes the paper.

Throughout this paper, we use boldface upper and boldfagerlcase letters for matrices and vectors,
respectively.(-)" denotes the matrix conjugate transpose operation, d@nddgnotes the matrix trace

operation.E(-) denotes the expectation operation for random varialllaenotes an identity matrix.

1. SYSTEM MODEL

We consider a MIMO BC system shown in Fig. 1 (a), where the BBnits to send independent
information streams to each @f remote users. The BS hadg transmit antennas and each user has

N, receive antennas. The signal received bytheuser is modeled as follows:
yi:Hiw+zi7i:17"'7K (l)

where theN, x 1 vectorx denotes the transmit signal at the B$; denotes theV, x N, channel matrix
from the BS to theith user,y, denotes the receive signal at tith user, andz; is the noise vector.

The entries ofz; are modeled as independent and identically distributedptexnGaussian random
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variables with mean zero and variangg The transmit signal covariance matrix of the BS is defined
asQ := E(zx). In this paper, we assume that the channel knowledge isqtgrfenown at both the
BS and the users, i.eH; is perfectly known at the transmitter and the receivers.

Since the transmit signals for different users are indepetjdve have

K
T = sz (2)

wherex; denotes the transmit signal intended for thie user. Furthermore, to fully utilize the spatial
diversity of the multi-antenna system, a spatial multiplgxscheme is also applied, which means that
the data intended for each user is further divided iftcsubstreams, wher& = min(N;, N,) [13].

Thus, the transmit signal for thi¢h user can be expressed as follows:
N
T; = Z ui,jbi,j (3
j=1
whereb; ; is a complex scalar variable with ; := E(|b; ;|?), representing the information signal of
the jth data substream of th#h user, andu, ; denotes the corresponding beamforming vector with
||u; ;|| = 1. Combining (2), (3) and the definition of the transmit cosade matrixQ, we have

K N
Q= Z Zpi,jui,jufj- (4)

i=1 j=1

A. Nonlinear Encoding and Decoding Strategy

It has been shown that the DPC scheme is a capacity achiegivgme for the Gaussian MIMO
BC [17]. With the DPC scheme, the information for differeisets is encoded in a sequential manner.
Without loss of generality, we assume that the encodingraed&lentical to the index order, i.e., the
data substrear, ; is encoded firstp, » is next encoded, and so on. According to the DPC scheme,
the latter encoded data stream has non-causal informatiount éts former encoded data streams, and
thus the interference caused by the former data streammsrriasion can be completely removed by
the DPC scheme. Thus, the rate achieved byitheiser can be expressed as

K
e AT H( S Qi) HT|
U K
o714+ Hi(d iy Q;)H!|

(5)

whereQ,; := E(z;xz).

7
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(a) BC, z; ~ N(0,02I), QA < P (b) Dual MAC, z ~ N(0, A), 3.5 o2tr(Q™) < P

Fig. 1. The system models for the primal MIMO BC and the dual G1A

At the receiver side, for each user, successive interfereancellation (SIC) and the linear minimum
mean square error (MMSE) filter are adopted to decode thegmonding information. With SIC, the
first data stream is decoded by treating all the other stremsriaterference; then the signal from the
first data stream is subtracted from the received signal,tb@dsecond data stream is decoded next,

and so on. Thus, the mutual information between the BS andthheser can be expressed as
Iz y;) = I(big, - bins ;) = 1(bins ;) + L(bio; yilbin) + -+ T(bin; ylbiy, - -+ bin—1).  (6)

Moreover, since the MMSE receiver is information-lossIgsd, each term in (6) is achievable with
the MMSE receiver. Thus, the MMSE-SIC receiver can achibeecapacity of the MIMO system. The
receive beamforming vector for thgh data substream at thith user is denoted by th&,. x 1 vector
v; ;. Thus, the SINR of thgth data substream at thith user receiver can be written as

Di.j |v£[jHiui,j |2

SINRs S i oty PV How |2+ 300 pal vl H w2 + 0 0
Since the achievable rate of each data substream depentis SINR, we have
N
ri = log(1+ SINR;). (8)

j=1
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B. Linear Encoding and Decoding Strategy

Although the nonlinear strategies DPC and SIC are capacityeving schemes, they are difficult to
implement in practice. A straightforward scheme for traissnon is beamforming without DPC at the
transmitter side and SIC at the receiver side. In the lingategy, the transmit and receive beamforming
vectors for thejth data substream of théh user are still denoted by, ; andv; ;, respectively. Thus,
the corresponding SINR can be expressed as

pi,j‘U%Hiui,j‘z
Yokt et (ki Pr| VI H w2 4 0
Since the method developed in the present paper is apmi¢alddoth linear and nonlinear strategies,

(9)

SINR) =

we mainly focus on the nonlinear strategy, and adopt the Sdifition (7) throughout the paper.

C. General Linear Transmit Covariance Constraint

In the aforementioned literature, the transmit covarianarix is subject only to a sum power
constraint or/and a per-antenna power constraint. In thgep we consider a general linear transmit

covariance constraint as follows:
tr(QA) < P (10)

where A is an N; x N, matrix, and P is a constant. If the matrixA is chosen to be an identity
matrix, then the constraint (10) is reduced to the sum powastraint; if the matrixA is chosen to
be the diagonal matrix having all diagonal elements beirrg eacept thejth element being 1, then
the constraint (10) is reduced to théh antenna power constraint. In cognitive radio networke, w
chooseA = hh'', whereh is the channel response from the secondary transmitteretgtimary
receiver, and the constraint is reduced to the interfer@oeeer constraint for protecting the primary

users [20]-[23]. Therefore, the constraint (10) can be gawas a generalized linear constraint.

D. Objective Functions

In this paper, we consider several scenarios with diffemdsjectives: MIMO BC capacity region
computation, SINR balancing, and power balancing.

1) MIMO BC Capacity Region Computation
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Any boundary rate tuple of the Gaussian MIMO BC capacity aegian be obtained by solving the
weighted sum rate maximization problem with some given uaer weights. Therefore, the capacity

region computation problem is formulated as follows:
K

rgg?( 2 w;T; (11)
wherew; is the positive weight of théth user, andl > 0 denotes the semidefiniteness constraint. By
varying the values of the weight;s, the entire capacity region of the MIMO BC can be obtained.

2) SINR Balancing
The aim of the SINR balancing problem is to maximize the malimatio between the achieved
SINR and the target SINR among all the data substreams. khatieally, the optimization problem

is formulated as

. SINR;;
max min Rij
Q>0 Vij Yi,j

(12)
where, ; is the target SINR for thgth data substream of thih user. Conventionally, the SINR
balancing problem considers the MISO case [15], \g.= 1. It has been shown in [15] that the ratios
of all the data substreams are equal, when the optimal ealigiachieved. Therefore, the problem is

termed the SINR “balancing” problem. Note that (12) is eqléwnt to the following form

max «
@20 (13)
subject to SINR; > av, ;, V 1, 7.

In the sequel, we will use (13) as the optimization problemth® SINR balancing problem instead
of (12), since it is easier to write the Lagrange function 13)(

3) Power Balancing

In this case, the system has several different power regeinés, and the objective is to minimize the
maximal ratio between the transmit power and the power rement. Mathematically, the optimization

problem can be expressed as

tr ;
min max (QA)
Q>0 Vi P

(14)
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where P; is the ith power requirement, and; is an N; x N, matrix for theith power requirement.

Similarly to the SINR balancing function, the problem (1&nde transformed into

min «
@200 (15)
subject to tfQA;) < aP;, Vi.

If there is a single power requirement, and the correspanuiatrix A is an identity matrix, then (14)
reduces to the power minimization problem.
In this paper, we will consider these optimization problesith several general transmit covariance

constraints or SINR constraints.

1. GENERAL BC-MAC DUALITY

In this section, we establish the general BC-MAC duality emd single linear transmit covariance

constraint. We start with the SINR balancing problem exgedsas follows:

maXx «
Q>0,a

subject to SINR; > a; ;, ¥ i,j (16)
tr(QA) < P.

The MIMO BC SINR balancing problem (16) is a non-convex ojtetion problem due to the non-
convex SINR constraints. Although it has been shown in [B4] [that the SINR constraint under the
MISO scenario can be transformed into the second order @€Y form, the transformation is not
applicable to the MIMO case due to the essentially non-copveperty of the MIMO SINR constraints.
Hence, the problem (16) is still an open problem, and caneadived via existing methods. However,
we can establish a new MAC called the dual MAC, and formulatieia MAC problem of the primal
problem (16) such that it shares the same solution as itsappnoblem (16).

Definition 1: The dual MAC of the primal BC in (1) has the conjugate transploshannel matrix
of the BC, i.e., the channel matrix of the dual MAC from thie user to the BS i/, and the noise
covariance matrix at the BS is the matuk instead of the identity matrix, which is shown in the Fig.

1 (b).
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The corresponding dual MAC optimization problem is expeesas follows:

max «
Q!"™>0, a

subject to SINI%}” > avij, Vi, ] (17)
K
>_oitr(@™) < P
i=1

WhereQZ(.m) denotes the transmit signal covariance matrix of dieuser, SINI%{;?) denotes the SINR

of the jth data substream of th#h user, and the superscrigini)’ indicates that the corresponding
variables are for the dual MAC. In this dual MAC, the MMSE-S$Cheme is applied, which means
that the data streams of the dual MAC are decoded in a sequemdnner. In the dual MAC problem

(17), the decoding order at the BS is converse to the encaatidgr of the DPC at the primal BC.

Accordingly, the SINI?? can be expressed as

Gij|wi H{ vi |
ull < Sy, qk,lHkHvk,lka,lHk +30) qi,sz{vi,zvfﬁHz‘ + A) w; ;

whereg; ; is the power allocated to this data substream, andand v, ; denote the corresponding

SINR™) =

(18)

receive and transmit beamforming vectors, respectivelyil®\t may be somewhat confusing at first
that the beamforming vectors of the dual MAC share the sanegion with the beamforming vectors
of the primal BC in (7), it will become clear in the followingat the optimal beamforming vectors of
the primal BC are identical to those of the dual MAC.

The relationship between the primal problem (16) and thd MAC problem (17) is summarized
in the following proposition.

Proposition 1: The optimal solutions of the primal problem (16) and the dU&C problem (17)
are the same.

Proof: First, we will prove by contradiction that the SINR consttsi for problem (16) hold
with equality when the optimal solutions are achieved. NBJ},; > a*~, ; with o* being the optimal
solution of problem (16), then we can reduce part of the pgwernd distribute it to all the other data
substreams, thereby increasing the objective valugthout violating the constraints. This contradicts

o* being the optimal solution. A similar argument holds for fireblem (17).
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11

We next prove that ify is achievable for the problem (16), then it is also achiexdbt the problem
(17). Assume that when is achievedu,;; andv;; are the corresponding beamforming vectors for
transmitter and receiver, respectively, ang is the power allocated to thgh data substream of the
ith user. For the dual MAC problem (17), we can choosg to be the transmit beamforming vector
for the user side, and, ; to be the receive beamforming vector at the BS. The powecatikal to the
jth data substream of thigh user of the dual MAC is assumed to Bg, which can be obtained by
setting SINFZ@?) =SINR;; = av,;, i.e.,

Pijlof Hia 4|
S it oty Pra| O H | + 370 Pl o Hg | + o

C.7i,j|ﬁi,ij{’l7i,j|2

;=

- i—1 N H i—1 H ) (19)
azHg( jet 2y Qe H Y 007 H + 37070 @ H 03,07 H A+ A) W; ;
By rearranging (19), we can list all the equations relatetheoSINR as follows:
K N N
Pia (a{{lAal,l) = Q11 ( Z Zﬁk,z\@ﬂHlﬁk,zF + ZpUW{ﬂHlaUF + o—f)
k=2 =1 =2
K N N
P12 (an (@1 Hy 01000 Hy + A)"_‘m) = (12 ( Z ZPRJW{{QHlak,lF +Z ﬁl,l|®{{2ﬂlal,l|2+o'%>
k=2 =1 =3

K—-1 N N-1
§ :— H- —H § : ~ H —H — ~ 2
qk,lHk ’Uk,l'vk,lHk + QK,lHK'vK,l'vK,lHK + A) uK,N) = (4K NO[-

_ _H
Pr.N ("h{N( E
=1 =1

k=1
By adding the above equations together, we have
K N K N
i=1 j=1 i=1 j=1
From the power constraint®A) < P of the problem (16), we havg " | Z;.Vzlpi,jafjAam < P.
Combining this with (20), we havEfil Z;.V:l 02q;; < P, which means that the weighted sum power
constrainthi1 aftr(QEm)) < P of the problem (17) is satisfied. Hencejs achievable for the problem
7).
Contrarily, we can prove that i is achievable for the problem (17), thénis also achievable for
the problem (16).

The proof of Proposition 1 follows. [ ]
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If we assume that the optimal solution for both problems @J (17) isa*, then it means that the
point {SINR; ; = a*~, ;,V i, j} is achievable for the primal BC and the dual MAC with corrasgiag
constraints, respectively. Therefore, under the genigradit constraint iQ A) < P, the primal BC can
achieve the same SINR region as the dual MAC, which is sulbjeatweighted sum power constraint.
From an information theoretic perspective, according th {Be rate point{r = [ry,--- ,rg]} is
achievable if the SINR poinfSINR,; ;, Vi, j} is achievable under corresponding constraints. Thus, we

have the following corollary. A rigorous proof is providea Appendix A.
Corollary 1: The capacity region of the primal BC under the constrai@t4) < P, is equal to the
K o2r(Q™y < P.

i=1"1

capacity region of its dual MAC with a single weighted sum powonstraint)

Remark 1:By settingA in (16) to be an identity matrix, and assuming that= 1 for all users, the
general linear power constraint becomes a sum power cans@ad the noise covariance at the BS of
the dual MAC is reduced to an identity matrix. This is prelyigae same as the conventional BC-MAC
duality. Thus, the new BC-MAC duality can be viewed as a galimation of the conventional BC-MAC
duality. The proof of the duality is based on the special B&&Mreciprocity relationship, instead of
the Lagrange duality used in [5], [10]. Note that since th&lFSIconstraints in (16) is not convex,
the Lagrange duality gap between (16) and (17) may not be. Zdrerefore, Proposition 1 cannot
be proved through the use of Lagrange duality. But for theaceyp region problem, the objective
function is concave in the signal covariance matrices aneo in the noise covariance matrices.
Hence, the Lagrange duality gap is zero and the Lagrangétydoeah be applied for the proof of the
BC-MAC capacity duality. From this perspective, the recipty relationship is more fundamental than
the Lagrange duality for the BC-MAC duality.

Remark 2:For a given set of transmit covariance matrices of the dualOVive can obtain the
corresponding transmit covariance matrix of the primal BCathieve the same value afby using
the method giving in the proof of Proposition 1. The detaNdAC-BC covariance matrix transformation
algorithm is provided in Table I. Similarly, the BC-MAC cavance matrix transformation algorithm
is readily obtained. Furthermore, the proof of Corollary regents a MAC-BC covariance matrix

transformation such that the primal BC and its dual MAC aehithe same rate tuple. The detailed
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TABLE |

THE MAC-BC COVARIANCE TRANSFORMATION FORSINR EQUIVALENCE.

MAC-BC covariance matrix transformation |

1. Apply eigenvalue decomposition @,57”) = V,;A;V,; with v, ; being thejth column of V;
andg;,; being thejth diagonal element o\,

2. For each data substream, apply the MMSE algorithm to cteniwe receive beamforming vectar, ;, i.e.,
wi ;= ( LS G HE v o Hy + Y7 g H v 0 H + A) “Hp,,.

3. According to (19), computp, ;, V 4, j,

N H
4.Q;,= Zj:l Di,j Ui j Ui 5.

TABLE Il

THE MAC-BC COVARIANCE TRANSFORMATION ALGORITHM FOR CAPACITY EQUIVALENCE.

MAC-BC covariance matrix transformation I

1. DefineH ), = H A™Y?, M), = (I+ S fIfQ§m)ij) and
Bi=(I+H:(SE.,, Q) HY)

2.fork=1,--- | K

3. calculate the SVD decomposition 8l , /> H B, '/*> = Ry, Dy Lx

4. Q=AM PRLEB/?Q B, LyRE M, P (A2

5. end for

algorithm is presented in Table II.

Moreover, although Proposition 1 is for the nonlinear schemis also applicable to the linear
transmission scheme.

Corollary 2: Under the linear transmit strategy, the achievable SINRoregf the primal BC under
the constraint {QA) < P, is equal to the achievable SINR region of its dual MAC withiagke
weighted sum power constraidit ~ , o2tr(Q\™) < P.

In the following, we will show how to use this general BC-MAQality to solve various BC

optimization problems with multiple transmit covarianaastraints.
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IV. CAPACITY COMPUTATION

In the preceding section, the duality between the MIMO BC t@reddual MAC with a general linear
constraint was presented. In this section, by exploiting dlnality, we will compute the capacity region
of the MIMO BC. According to the discussion in Section II-Detcapacity of the BC can be obtained
by solving the weighted sum rate maximization problem. Faopéicity, we assume in the sequel that

o? =1 for all the users.

A. Single Linear Transmit Covariance Constraint

We first consider the weighted sum rate maximization probfemthe BC with a single linear

constraint, which is formulated as follows:
K
max wW;T;
Q=0 (21)

subject to tfQA) < P
where A is a constant matrix, ané is a constant. The problem (21) is a non-convex problem, and
thus cannot be solved directly. According to Corollary le ttroblem (21) is equivalent to its dual
MAC problem as follows:
max » wr
Q=0 =
- (22)
subject to Y _tr(Q{™) < P

i=1
A+, H QU™ H|
A+ HEQUVH,|
problem (22) via the interior point algorithm [25], the optl solution for the problem (21) can be

(m

where ™ = log denotes the achievable rate of tite user. By solving the
obtained via a MAC-BC transmit covariance matrix transfation algorithm.

In the following, we present an important property of thelpeon (21), which will be used in the
case with multiple transmit covariance constraints. We fisd the KKT conditions of the problem
(21) as follows:

K
021 ) p 4w, v
0Q; (23)
A(tr(QA) . P) ~0
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where )\ is the Lagrange multiplier, an@; is the Lagrange multiplier associated with the constraint
Q. > 0. In general, the KKT conditions are only necessary for atsmiuto be optimal for a non-
convex problem. However, for the problem (21), it is showha following proposition that the KKT
conditions are also sufficient for optimality.

Proposition 2: The KKT conditions (23) are sufficient for a solution to beiogl for the problem
(21).

Proof: According to the Corollary 1, the problem (21) is equivalémtits dual MAC problem
(23). We now assume th& satisfies the KKT conditions in (23) and achieves the weitjisiem rate
R. Then, by the BC-MAC transmit covariance matrix transfotiora we can obtain a set (@gm)s for
the problem (22) to achieve the sarleWe next assume th&} is an optimal solution of the problem
(21) with the optimal weighted sum raf@, where R > R. Thus, we can obtain the optimal solution
of the problem (22@57”) by MAC-BC transmit covariance matrix transformation.

It is well known that the objective function of (22) is a corvieinction. Hence, we hav€; :=
Q" +t(Q§m) —ng)), where0 < ¢ < 1, is a better solution tha@'" for the problem (22). Through
the MAC-BC transmit covariance matrix transformation, wansform the dual MAC solutiof); into
its corresponding BC solutio*. Since the MAC-BC transmit covariance matrix transforimatis
continuous, we can always findtauch that|Q — Q*|| < « for a givene > 0. Therefore,Q is not the
local optimal solution, which is contradicted with the KKBraition d(3"% | w;r;)/0Q; = \A + W,

The proof thus follows. [ |

B. Multiple Linear Transmit Covariance Constraints

We now consider the weighted sum rate maximization problath multiple linear constraints as

follows:
K

max wW;T;
Q=0 i=1
24
subject to t(QA,) < P, (24)

tr(QAg) < P2
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where A;, i = 1,2, is an N, x N, constant matrix, and’, i = 1,2, is a constant. For convenience
of description, we discuss only the case of two linear cansts, though our method can be easily
extended to the case of an arbitrary number of linear cansira

Since the objective function is non-concave@h the problem (24) is not convex, and thus cannot
be solved directly. In [3], [4], the sum capacity of the MIMCCBwith a single sum-power constraint
was studied. Based on the conventional BC-MAC duality [12¢ BC problem was transformed into
its dual convex MAC problem with a single sum-power constraHowever, the problem (24) is with
multiple constraints, and thus the conventional BC-MAC ldyiacannot be applied. To exploit the
general BC-MAC duality, we can transform the problem (24d itne following problem with a single
constraint:

K
g(A1, ) =max ;wm 5)
subject to\tr(QA;) + Motr(QAs) < A\ Py + Mo P

where\; and A\, can be viewed as auxiliary variables. The relationship betwthe problem (24) and
the problem (25) can be summarized as follows.

Proposition 3: The optimal solution of the problem (25) is an upper boundlat bf the problem
(24).

Proof: If Q is feasible for the problem (24), then it is also feasibletha problem (25). Therefore,
the feasible region of the problem (24) is a subset of thathef groblem (25). The proof follows
immediately. [ ]

Furthermore, we can prove that the upper bound is tight, the. optimal solution of the problem

(24) achieves the upper bound\;, \,) for some\; and ;. Thus, we have

Proposition 4: The optimal solution of the problem (24) is equal to that @& pinoblem miR, ,g(A1, \2).
Proof: The KKT condition of the problem (24) can be listed as follows

3 Efil w;T;

= A Ay +Q;, Vi
00, H1 AL+ e Ag + 1

%} <tr(QA1) - P1> =0 (26)

2 (tr(QAg) - P2> —0
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wherey; andpu, are the Lagrange multipliers with respect to the two congsarespectively, anfl;
is the Lagrange multiplier associated with the constrgnt> 0. When the optimal solution of the
problem (24) is achieved, we assume that the correspongitigna variables ar&€™, u;, 5, and€2;.
We now list the KKT conditions of the problem (25) as follows:
OYiy wirs _ AMAL + N\Ay) + Y, Vi
0Q; (27)
)\()\ﬂr(QAﬂ + Aatr(QAz) — Py — M2P2> =0
where )\ is the Lagrange multiplier, an@’; is the Lagrange multiplier associated with the constraint
Q, > 0. If we chooseQ = Q*, A = 1, A\ = uj, Ay = pb, andY; = QF, the KKT conditions (27)
are satisfied. Since the problem (25) is the weighted summaemization problem with a single
linear constraint, according to Proposition 2, the solui®the optimal solution of the problem (25).
Combining this with Proposition 3, the proof follows. [ |
According to the general BC-MAC duality discussed in Setctilb, the problem (25) is equivalent
to the following dual MAC problem:
- (28)
subject toZtr(ng)) < MPL+ APy

=1
where the noise covariance at the BS of the dual MAG, 14, + )\, A, andrgm) denotes the achievable
rate of theith user. The problem (28) is a convex optimization probleat tan be solved via a standard
interior point algorithm. With the optimal solution of thegblem (28), the optimal solution for the
problem (25) can be obtained by the MAC-BC transmit covaxamatrix transformation. We next

consider the minimization problem

min g()\l,)\g). (29)

A1>0,A2>0
Since the functiony(\;, A2) is not necessarily differentiable, we can solve the prob{2@) via the
subgradient algorithm or ellipsoid algorithm. The subdggatl of the functiong(A;, A\2) can be found

in the following proposition. Refer to Appendix B for the jfo
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Proposition 5: The subgradient of the functiom(\;, \2) at point[A;, Ao] is [P, — tr(QA,), P, —
tr(QA,)], whereQ is the optimal solution of the inner layer optimization pleh (28) with\; = ),
and Ay = 5\2.

Remark 3:The Lagrangian function of the problem (24) can be written as

K
Z Wiy — [ (tr(QA1) - Pl) — M2 (tr(QAz) - Pz) (30)
i=1
while the Lagrangian function of the problem (25) can be teritas:
K
Z w;r; — )\(Altr(QAl) + )\gtr(QAQ) — )\1P1 — )\QPQ). (31)
i=1
By observing (30) and (31), we can say that the two Lagrangetions are identical to each other
if we chooseu; = A\, and us = A,. Thus, the auxiliary variables; and A\, can be viewed as the
Lagrange dual variables.

Since the functiony(Aq, \2) is a convex function, the subgradient-based algorithm eranteed to
converge to its optimal solution [26]. According to Progimsi 4, when the minimum of(A;, \y) is
achieved, the optimal solution of the problem (25) is eqoahtat of the problem (24).

In summary, the problem (24) is solved through a two-loopatgm. By exploiting the general
BC-MAC duality, the inner loop searches the optimal solutid g(\;, \2), while the outer loop solves
the g(A1, A2) minimization problem via a subgradient-based iteratigodathm. The convexity of the

function g(\;, A\y) guarantees that the global optimal solution is achieved.

C. Relationship to Minimax Duality

The capacity region computation problem with a per-antgower constraint considered in [5] is a
special case of the problem (24). By choosidgo be a diagonal matrix with all its diagonal elements
being zero except thgth diagonal element being 1, the constraiitt®d) < P can be viewed as the

power constraint for thgth antenna of the BS. Different from the method discussedeitti&n 1V-B,
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the dual MAC problem developed in [5] has a minimax form aofes:

K
min max > wr™

A (mao
Q Q™>0 5

S (32)
subject to > tr(Q\™) < tr(®)
i=1
tr(Q®) < tr(®)
where® is a diagonal matrix,

| HIQ™H, + 4

S HE Q™ H, + 0|

r,i’“a"’ = log

and the diagonal matri is the noise covariance matrix of the dual MAC. Thk diagonal element of
® is the power constraint for thgh antenna of the BS. Since the noise covariance is also amowmk
variable, the existing high-efficiency algorithm for the KZAroblem cannot be applied. Instead, a new
interior point method based algorithm is developed in [5kbdve (32).

The two constraints in (32) have some redundancy, and canrbeef simplified via the following
two observations.

1) The noise covariance constraint@®) < tr(®) holds with equality when the optimal solution is

achieved.

2) Given any positiven, if we replace the constraint in (32) with | tr(QEmaC)) < atr(®) and

tr(Q®) < atr(®), the optimal value of the problem (32) does not change.

The observation 1) can be shown by observing that if the cainstt(Q®) < tr(®) is satisfied
with inequality, then the minimization part of the probleB2) does not achieve the optimal solution.
The observation 2) can be proved through the KKT condititinge assume tha@’ and Q* are the
optimal transmit covariance matrix and the noise covagamatrix of the problem (32), respectively,
then it is easy to verify thatQ; and aQ* satisfy the KKT conditions of the problem (32) after the
constraints replacement, and the optimal value of the prok{32) does not change.

Based on these two observations, we can combine the tworaoristin (32) into one constraint
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Zfil tr(QEmaC)) < tr(Q®), and thus the problem (32) is equivalent to the followinghpem:

K
min max wyri™

Q Q™>0 T
- (33)

K
subject to > tr(Q{™) < tr(Q®).

i=1

In our derivation in Section IV-B, we can formulate a similamimax optimization problem of the
dual MAC. Combining (25), (28) and (29), we have

K
min max Z wer™

Mo @iy =
>

P (34)
subject toZtr(Qf.m)) < MPL A+ APy

i=1
where the noise covariance matrix of the dual MAG {1, + )\, A,. In the per-antenna power constraint
scenario, the problem (34) becomes
K
i (m)
min max w;T;
S Q>0 ;
- (35)
subject to Y tr(Q\"™) < tr(S®)

i=1

whereS = diag A\, - - - , Ay,). The problem (35) is identical to the problem (33) by notihgttS = Q
and Q'™ = Q™. Therefore, the problem (32) and the problem (35) are etprivdo each other.

Although the general BC-MAC duality in Section Il and themmhax duality in [10] have substan-
tially different formulation, the ways by which they handlee multiple linear constraints are equivalent
essentially. The general BC-MAC duality based method @isithe process into two steps: dual MAC
problem solving, and multiple constraints handling; while minimax duality combines the two steps
together. Essentially, only the dual MAC problem solvingpséxploits the special BC-MAC reciprocity
relationship, and the multiple constraints handling stepat specific for the BC problem, i.e., it can
be applied to solve any optimization problem with multipteastraints. The new method decouples the
two steps, and thus has more flexibility in exploiting thesérig algorithm for a MAC. Moreover, the

minimax problem (32) is specifically formulated to solve ter-antenna power constraint problem.
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D. Nonlinear Constraint

According to the proof of Proposition 1, the general BC-MAGatity requires that the transmit
covariance matrix of the BC be subject to a linear constramthis subsection, we consider the case
with a convex but nonlinear constraint. The capacity coratoim under a nonlinear constraint can be

formulated as follows:
K
max W;T;
Q>0 = (36)

subject tof(Q) <0
where the functionf(Q) is a general nonlinear convex function. Since the generaMBC duality
does not hold generally under the nonlinear constraint,ptfedlem (36) cannot be solved directly.
However, as shown in the following proposition, the nondineonstraint problem (36) is equivalent to

a single linear constraint problem (refer to Appendix C fog proof).

Proposition 6: There always exists a linear constraint problem as follows

K
max W;T;
Q=0 I (37)

subject to tfAQ,) <0

with A denoting a constant matrix such that it has the same solasaihe original problem (36).

Remark 4:Proposition 6 illustrates that the nonlinear non-convettnoigation problem (36) can be
transformed into an equivalent linear constraint probl&m),(which can be solved by making use of
the general BC-MAC duality in Section 1ll. However, accarglito the proof of Proposition 6, the
parameterA in problem (37) cannot be obtained without the optimal sofuQ* of the problem (36).
Note that it is impossible to obtai@* before solving this problem, and thus the problem (36) canno
be solved by using its equivalence with the problem (37) hi following, we present an example to
illustrate an iterative algorithm that can find a set of lineanstraints, and these linear constraints can
be used to approximate the original nonlinear constraint.

Example 1:For simplicity, we consider the MIMO BC with’ = 2, N, = 2, and N, = 2. The

transmit covariance matrix is subject to a nonlinear camstr (tr(QAl))2 + (tr(QAQ))2 < P, where
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0 00
A = ,and A, = . Thus, the capacity computation under the nonlinear caimstr

0 0 0 1
can be formulated as follows:
2
max W;T;
Q=0 (38)

subject to(tr(QAl))2 + (tr(QA2))2 < P.
As shown in Fig. 2, by defining, := tr(QA,) andp, := tr(QA,), the feasible regiolR : {p;, pa|p?+
pa < P, pi > 0,p, > 0} is a quarter circle in the nonnegative orthant. AccordingPtoposition 6, the

problem (38) is equivalent to the following problem

2
max W;T;
Q=20 I (39)

subject toc;tr(QA;) + cotr(QAs) < c3
wherec; = tr(Q*A;), i = 1,2, Q" is the optimal solution of the problem (38), angd= P.

To present the iterative process, we use a graphical #tistr as shown in Fig. 2. Firstly, we
arbitrarily select a point ‘a’ on the boundary of the nontineegionR, and draw a tangent line to
the p? + p2 = P curve through the selected point. The tangent line corredgpdo a linear constraint
cW . Mr(QA,) + S tr(QA,) = ¢, where the superscript ‘1’ denotes the index of the linear
constraints. The weighted sum rate maximization probleth thie constrain€" can be solved through
the general duality. Assume thé@'") andr™) are the corresponding optimal transmit covariance matrix
and the obtained optimal weighted sum rate, respectivatgeShe feasible region of the problem (38)
is a subset of the feasible region®@f", r() is an upper bound on that of the original problem (38). The
optimal transmit covariance matri@'", corresponding to the poirtin Fig. 2, is not feasible for the
original problem. Secondly, we find the point ‘c’ on the boandof the regiornR to be closest to the
point ‘b’, and draw a new tangent line through the point ‘die€lnew tangent line corresponds to a linear
constraintC® : ¢Ptr(QA,) + (Ptr(QA,) = . By solving the weighted sum rate maximization
problem with two constraint€ " and C®, a new optimal weighted sum raté” is obtained, where

r >+ The iterative process will continue untitr(Q™ A,))” + (tr(Q™ A,))* < P + ¢ holds,
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whereQ™ denotes the optimal solution of thgh iterative step, and denotes the prescribed accuracy
requirement. The obtained™ forms a non-increasing sequence with the lower bound on phienal

solution of the problem (38). Thus, the algorithm will corge to the optimal solution.

M Py a

(1) P (IV) Pq
Fig. 2. The iterative process for the nonlinear constraiobfem. (I) Select an initial point ‘a’, plot a tangent lin&B’, and solve the
optimization problem with a single linear constraint wi#tspect to ‘AB’, where point ‘b’ corresponds to the optimalusion. (Il) Find
a point ‘c’, which is closest to ‘b’, on the boundary of the $dde region. (Ill) Plot a tangent line ‘CD’, and solve thetiopization
problem with the constraints ‘AB’ and ‘CD’, where ‘d’ is asged to be the optimal solution. (IV) So on and so forth, urté bptimal

solution is achieved.
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V. BEAMFORMING PROBLEM

In the preceding section, the capacity computation for th®I® BC is considered. In this section,
we consider the MISO BC from a beamforming perspeétiBepending on the objective function and
the constraints, the beamforming optimization problems loa divided into two classes. One is the
SINR balancing problem [15], [27], i.e., maximizing the mmmum SINR among all the users. The
other one is the power minimization problem with SINR coaistts [5], [24], [28], i.e., minimizing
some power function with SINR constraints. In the caseVof= 1, the SINR of theith user under
the nonlinear encoding and decoding scheme can be exprasdetows:

SINR, = — |hf{:"|
Dimiin R gl +1

where h; denotes theV, x 1 channel vector from the BS to théh user, andu,; denotes the transmit

(40)

beamforming vector. Under the linear encoding and decosaigme, the corresponding SINR can be
expressed as follows:

b |
Ej{:l,j;ﬁi ‘hf{uk‘Q +1
It has been shown that the SINR constraint can be transfoimedsemidefinite programming (SDP)

SINR" = (41)

or SOC form [24], and the corresponding beamforming prolktam be solved via the standard interior
point algorithm. However, the standard algorithm does mptat the special structure of the problem,
and may be computationally expensive. A number of efficitarative algorithms have been proposed
to solve the beamforming problem. In this section, we willntne these iterative algorithms and
the general BC-MAC duality to solve the beamforming probleith multiple linear constraints. The

methods discussed in this section are applicable to botiRi&finitions (40) and (41).

There are two reasons that we do not consider the MIMO BC sicerid For the MIMO BC case, due to the multiple data streams,
to impose the SINR constraint for each data stream is onlyogpiate when the independent encoding for each data stizapplied.
In the previous work, the beamforming problems are consiti@nly under the MISO scenario [15], [24]. 2) According te dhefinition
(7), the SINR of the BC is neither convex nor concave with eesgo v and v when N; > 1. Therefore, the MIMO optimization

problem with SINR constraints is not a convex problem, antho&ibe solved efficiently.
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A. SINR Balancing Problem

In this subsection, we apply the general BC-MAC duality irct®m 11l to solve the SINR balancing

problem with multiple linear constraints:

max o
Q>0,0>0

subject to SINR> a~;, Vi
(42)

tr(QAl) < Pl
tr(QAg) < P.

Note thatQ = Efilpiuiuﬁ in this case, and thus the problem can be viewed as a jointfoeaimng
and power allocation problem. The SINR balancing problenttie BC has been studied in [15], [27].
However, due to the limitations of the conventional BC-MAGatity, previous results can be applied
only to the case in which there is a single sum power constedithe BS. Furthermore, the SINR
balancing problem for the MAC with multiple constraints heeen studied in [20], where it is shown
that the multiple constraints can be completely decougtevever, the decoupling property does not
hold for the BC scenario.

To solve the problem (42), we first consider the following kgeon:

gbal()\la)\Q) = Mmax «

isPis ¥

subject to SINR> a;, V i (43)

MUN(QAT) + Matr(QAsz) < M P+ Ao Py

where); and )\, are auxiliary variables. Similar to Proposition 3, we caoverthat the optimal solution
of the problem (43) is an upper bound on that of the problen (B2e problem (43) can be transformed
into its dual MAC problem via the general BC-MAC duality anffi@ently solved by the iterative
algorithm in [15]. Moreover, the minimization problem mjn, gna(A1, A2) can be solved through the
subgradient algorithm or ellipsoid algorithm. The conwexif the functiongpa (A1, A2) guarantees the
convergence of the subgradient-based algorithm. Sinulahé capacity region computation problem
in Section IV-B, it can be proved that the algorithm converge an optimal solution of the problem
(42).
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Remark 5:The method to process multiple linear constraints in theRSibdalancing problem is
identical to that in the capacity computation problem. Wst fintroduce an upper bound function, the
solution of which can be obtained via the general BC-MAC dyalVe next compute the minimum
value of the upper bound function via a subgradient-basgarithm. Note that the iterative algorithm
in [15] cannot be applied to the minimax duality case as theaiive algorithm requires the explicit
expression of the noise covariance matrix. From this pets@e the general BC-MAC duality has

broader application than the minimax duality.

B. Power Balancing Problem

In this subsection, we consider the power balancing probgin SINR constraints. Mathematically,
the problem is formulated as follows:

min  «
Q>0,a>0

subject to SINR> ~; (44)

tr(QAl) < OéPl

tr(QAg) < ab;.
Since the problem (44) has multiple power constraints, #reegal BC-MAC duality cannot be applied
directly. By introducing two auxiliary variables; and )\,, we transform the problem (44) into the

following single power constraint problem:

gpow()\h )\2) ::QQS,IQEO o
subject to SINR> ~; (45)

Altr(QAl) + )\Qtr(QAQ) < Oé()\lpl + )\QPQ).
Similar to Proposition 3, the optimal solution of the prahl€45) is a lower bound on that of the
problem (44). Thanks to the general BC-MAC duality, the MIMNBZ problem (45) is equivalent to

its dual MAC problem as follows:
K

min tr(Q\™)
@03 (46)

subject to SINI?”) > Vi
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where the noise covariance of this dual MACAgA; + A\, A,. By solving the problem (46) with the
algorithm in [28], and utilizing the MAC-BC transmit covarice matrix transformation, the optimal

solution of the problem (45) can be obtained. Next, we carsadmaximization problem as follows:

max  gpow(A1, A2). 47

A1>0,A2>0

Similar to Proposition 5, we have the following result camieg the subgradient of the function
Gpow( A1, A2).

Proposition 7: The subgradient of the functiafow(A1, A2) at [\, Ao] is [tr(QA;) — Py, tr(QA,) —
Py], whereQ is the optimal solution of the inner layer problem (45) with=\; and A, = \,.

The proof of Proposition 7 is similar to that of Proposition &d thus is omitted here. With
Proposition 7, the maximization problem (47) can be solewugh the subgradient algorithm or
the ellipsoid algorithm. Similar to Proposition 4, when tm@ximum of gpow(A1, A2) is achieved, the

optimal solution of the problem (45) is equal to that of thelpgem (44)

Remark 6:The maximum per-antenna power constraint minimizatiorblemm was considered in
[5], which is a special case of the problem (44). In [5], thelpem is transformed into its minimax
dual MAC problem, in which the noise covariance matrix ofdisal MAC is an unknown variable.
A subgradient-based iterative algorithm is developedetineto obtain its optimal noise covariance.
However, since the noise covariance matrix appears in ha&ltonstraints and the objective function,
it is difficult to have a routine method to obtain its subgeadiin [5]. While, in contrast, due to the
clear physical meaning of the variablés(Lagrange dual variables with respect to some constraints)

the subgradient of the lower bound functignw(Ai, A2) can be readily obtained.

VI. NUMERICAL RESULTS

In this section, we present several numerical results tstilite the effectiveness of the proposed
algorithms. For simplicity, we consider a MIMO BC withh = 2, N; = 2, N, = 2 for the capacity
computation problem and witlkk’ = 2, N, = 2, N, = 1 for the beamforming problem. The noise

covariance matrix at each user is assumed to be an identityxma
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A. Capacity Region of the MIMO BC

In this example, we compute the capacity regions of the MIMOWBith a sum power constraint, a
per-antenna power constraint and sum power plus per-aateonver constraints, separately. The sum
power constraint is taken to be 10, and the per-antenna pevi@ken to be 5. For the sum power plus

per-antenna power constraint case, the sum power corisganand the per-antenna power constraint

1 0 0.5
is 5. The channel matrices are chosen toHbe = and H, = . For the case

0.2 0.6 0.2 1
with a sum power constraint, the algorithm is similar to thre{6]. For the case with a per-antenna

power constraint the subgradient-based iterative algorideveloped in Section IV is applied. For the
sum power plus per-antenna power constraints case, twerdliff algorithms are adopted. The first
one is the subgradient-based iterative algorithm. Therskadgorithm is a heuristic algorithm, and is

based on the result obtained in the case with a sum powerraorisiVith the sum power constraint

solution, the transmit covariance matrix is normalizedhstitat each antenna’s power satisfies the
per-antenna power constraint. The regions obtained b thlgmrithms are shown in Fig. 3. Since the
heuristic algorithm obtains the suboptimal solution, tberth line is just an achievable rate region of
the MIMO BC with sum power plus per-antenna power constsaiMoreover, since the per-antenna
power constraint is stricter than the sum power constrénet,capacity region of the case with a sum

power constraint is larger than that of the case with a pterara power constraint.

B. Weighted Sum Rate Maximization With Nonlinear Constrain

This subsection is to present the simulation result of thanij@e 1 in Section IV-D. Suppose that

2 0 0.3 0.2
P in (36) is 100. The channel matrices are chosen tdhe= and H, =

0.5 0.6 0 1.5
In Fig. 4 (a), the non-linear constraint function values pl@ted versus the iteration steps. It can be

observed that the non-linear transmit covariance comstiaisatisfied when the optimal solution is
achieved. In Fig. 2 (b), the achieved sum rates are plottezsligethe iteration steps. The curve in Fig.
4 (b) is non-increasing, since the results in the formersstsp obtained by solving the weighted sum

rate problem with relaxed constraints.
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sum power constraint (optimal) A Y
o2k per—antenna power constraint (optimal) ‘,\ |
= = = per—antenna + sum constraint (optimal) \
''''' per—antenna + sum constraint (hueristic) |}
O | | \
0 0.5 1 15

Fig. 3. The capacity regions for the MIMO BC with various peoveenstraints.

C. SINR Balancing With Multiple Linear Transmit CovarianCenstraints

In this example, we consider the SINR balancing problem \aifber-antenna power constraint. We

assume that each antenna’s transmit power is subject totigtraint 5, and each user’s target SINR is

1 0 04 0
~; = 1, for i = 1,2. The channel matrix is chosen to B¢, = and H, =

0.5 0.6 0.5 1.5
The convergence behavior of the algorithm in Section V-Ahsven in Fig. 5. The achieved SINR for

each iteration is plotted in Fig. 5 (a). It can be observed i curve in Fig. 5 (@) is non-increasing,
and the achieved SINR for each iteration is greater than oale the final result. This is because
that the optimal solution of the problem (43) is an upper libon that of the original problem (42).
The auxiliary variable values are plotted in Fig. 5 (b). Ihdae seen from this figure that only one

constraint is active when the optimal solution is achieved.
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VIlI. CONCLUSIONS

In this paper, we have established a general Gaussian BC-t&a@ty, where the BC is subject to a
general linear constraint and the MAC is subject to a wemdlstem power constraint. This general BC-
MAC duality can be applied to solve the capacity computasiod beamforming optimization problems
with multiple convex linear/nonlinear constraints. Théat@enship between the new method and the
previous minimax-duality based method has also been diedusvioreover, it has been shown that,
compared to the minimax duality the general BC-MAC dualitfeiogreater flexibility for solving BC

optimization problems. This new duality also generalizes ¢conventional Gaussian BC-MAC duality.

APPENDIX

A. Proof of Corollary 1: The corollary can be derived from Proposition 1 and the itahip between
the SINR and the achievable rate (8). We will verify the claigl directly via covariance matrix
transformation, as follows.

The achievable rate of th#h user of the dual MAC can be written as

(m)
A H H
™ = g| + Y : ka | (48)
|A+Zk 1H/<; ka Hk‘
|I+Z 1HHQ(m)H |
kE Yk k
I HyA—Y/2)H (m)H A-1/2

(IS RSP CEreE
where the eigenvalue decomposition Af! is UY AU, and A~Y/? = U” A2, According to (50),
the MAC can be viewed as wrtual MAC with (H,A~/?)" being its channel matrix and its noise
covariance matrix being an identity matrix. By exploitifgetBC-MAC covariance algorithm in [12],
the achievable region of the virtual MAC is equal to trigual BC with H, A~*/? being its channel
matrix. Thus, the achievable rate of theiser of the virtual BC can be written as

K 1/2 1/2

I+ HRA Hi A H
Ty = log | ZKk_Z ‘ Qk( k ) | ( )
|1 Zk_—i.H HpA 1/2Qk(HkA 1/2)11 | 51

where>"X  tr(Q,) = P. By definingQ\” = A-2Q,(A~/*)%, we have}"X  tr(AQ")) = P. Thus,

the achievable rate of the dual MAC with sum power constrains also achievable for the primal
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BC with the constraint {tAQ) < P. Similarly, we can prove that the achievable rate of the plBC
with the constraint ftAQ) < P is also achievable for the dual MAC with the sum power comstra

P. The proof follows. |

B. Proof of Proposition 5: According to the definition of the subgradient|if, s5| is the subgradient
of g()\l, )\2) at pOint [5\1, 5\2], then we haV@(S\l, 5\2) > g(j\l, 5\2) -+ [Sl, 82] . ([5\1, 5\2] — [5\1, ;\2])H for
any [\;, Ay).

The Lagrange function of the problem (25) can be written as

K
L(Q, )\) = Z w;r; — A()\ltr(QAl) + )\Qtr(QAQ) — )\1P1 — )\2P2> . (52)
i=1

Thus, the corresponding dual problem is

min mng(Q, A AL, Ag). (53)

We have
g(A1, A2) — g(Ar, Ao) (54)
=L(Q. N5 5 0ms — QN5 s (55)
>L(Q Mg g0 — L@ N0 8 0 (56)
S X(S\l(tr(QAl) ~ P+ R (tr(QA,) — P2)) n X(Xl(tr(QAl) ~ P+ e (tr(QA,) — Pg)) (57)
=(tr(QAy) — P) (=M 4+ M) + (t(QA3) — Py) (=g + M) (58)

=(tr(QA;) — P)) (=M 4+ M — Ay 4+ A\ + ((QA,) — P)) (= Mg+ Mo — A+ AX)  (59)

=(tr(QA;) — P)) (=M + M) + (t(QA,) — P)(A\ — M)

+ (t((QAs) — Py)(=M\g + M) + (t((QAs) — Py) (Mg — Ao) (60)
:S\[Pl — tr(QAl), P2 — tr(QAQ)] . [5\1 — ;\1, 5\2 — S\Q]H (61)
where (61) is due tétr(QA,) — P\ + (tr(QA3) — Py) A, = 0. The proof follows. [ |
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C. Proof of Proposition 6: Suppose tha®* is the optimal solution of the problem (36). The KKT

conditions of the problem (36) can be written as

8 Zlil w;T; .
il U0 =\'(Q, + U, Y 62
AF(Q) =0 (63)
Note thatQ = 3", @, and thus we havg’(Q,) = Q)55 = f'(Q). Now, let us consider the
linear constraint problem
K
max wW;T;
Q ; (64)

subject to tfAQ) <0

where A = f'(Q) 00 The KKT conditions for the problem (64) are

OV wri| .
90, Q-Q' A(Q;) Qi-Q: + W, Vi (65)
A(Q) =0, )

It is easy to observe th&" satisfies the KKT conditions of the problem (64). Combinihgs twith

Proposition 2, we can conclude th@t is the optimal solution of problem (64). The proof folloWs.
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Fig. 4. The convergence behavior of the subgradient-bdgeditam for the weighted sum rate maximization problemhndtnon-linear

constraint.
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(b) Achieved balanced SINR versus the iteration steps.

Fig. 5. The convergence behavior of the subgradient-bdgedthm for the SINR balancing problem with per-antennagoconstraint.
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