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Abstract

Owing to the structure of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC),

associated optimization problems such as capacity region computation and beamforming optimization are

typically non-convex, and cannot be solved directly. One feasible approach to these problems is to transform

them into their dual multiple access channel (MAC) problems, which are easier to deal with due to their

convexity properties. The conventional BC-MAC duality is established via BC-MAC signal transformation, and

has been successfully applied to solve beamforming optimization, signal-to-interference-plus-noise ratio (SINR)

balancing, and capacity region computation. However, thisconventional duality approach is applicable only to

the case, in which the base station (BS) of the BC is subject toa single sum power constraint. An alternative

approach is minimax duality, established by Yu in the framework of Lagrange duality, which can be applied to

solve the per-antenna power constraint problem. This paperextends the conventional BC-MAC duality to the

general linear constraint case, and thereby establishes a general BC-MAC duality. This new duality is applied to

solve the capacity computation and beamforming optimization for the MIMO and multiple-input single-output

(MISO) BC, respectively, with multiple linear constraints. Moreover, the relationship between this new general

BC-MAC duality and minimax duality is also presented. It is shown that the general BC-MAC duality offers

more flexibility in solving BC optimization problems relative to minimax duality. Numerical results are provided

to illustrate the effectiveness of the proposed algorithms.

I. INTRODUCTION

In a Gaussian multiple input multiple output (MIMO) broadcast channel (BC), the base station (BS)

equipped with multiple transmit antennas sends independent information to each of multiple remote

users, which are equipped with multiple receive antennas. In the past decade, a great deal of research

has been focused on the characterization of optimal transmission schemes for the MIMO BC [1]–[6].

Due to the coupled structure of the transmitted signals, theoptimization problems associated with the

BC are usually non-convex. The key technique used to overcome this difficulty is to transform the

BC problem into a convex multiple access channel (MAC) problem via a so-called BC-MAC duality

relationship. Up to now, two types of BC-MAC duality have been proposed as follows:

1) Conventional BC-MAC Duality ( [1], [3], [7], [8]):

Under a single sum power constraint, the capacity region (orsignal-to-interference-plus-noise-
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ratio (SINR) region) of a BC is identical to that of a dual MAC under the same sum power

constraint. The channel matrix associated with the dual MACis the conjugate transposed channel

matrix of the BC, and the noise covariance matrices of both channels are identity matrices [1],

[9].

2) Minimax Duality ( [5], [10], [11]):

The sum rate maximization problem of a BC with multiple linear constraints has the same

solution as the dual MAC minimax optimization problem. The channel matrix of the dual MAC

is the conjugate transposed channel matrix of the BC, and thenoise covariance matrix of the dual

MAC is an unknown variable of the minimax optimization problem [10].

The conventional BC-MAC duality was first observed by Rashid-Rarrokhiet al. [1], and applied to

solve the sum power minimization problem for a BC with SINR constraints. Several different methods

have been developed independently to prove the conventional BC-MAC duality. The proof in [1] is

based on the equivalent transformation that maps the SINR ofthe MAC to that of the BC. Vishwanath

et al. [12] proved the conventional BC-MAC duality by presenting the explicit transformation between

the transmit covariance matrix of the BC and that of the MAC, and applied this duality to solve the

sum capacity problem. Both proofs here are based on thereciprocity relation [13] between the BC

and its dual MAC. Another proof based on the Karash-Kuhn-Tucker (KKT) conditions was given by

Visotsky and Madhow [14]. The conventional BC-MAC duality has been widely applied to many BC

problems. Schubert and Boche [15] solved an BC SINR balancing problem, which is to maximize the

minimal SINR among all the users under a sum power constraint, via transforming the problem into

its dual MAC problem. The conventional BC-MAC duality was also used to show that a dirty paper

coding (DPC) [16] is a sum-capacity achieving strategy by Viswanath and Tse [8]. Moreover, the entire

capacity region for the MIMO BC channel can be obtained via the conventional BC-MAC duality [3],

[4], [17]. However, the conventional BC-MAC duality is applicable only to the case in which the BS

of the BC is subject to a single sum power constraint.

On the other hand, the sum-capacity for the MIMO-BC was also studied by Yu and Cioffi [11] via

minimax optimization. The minimax duality was proposed by Yu [10], where the conventional BC-

MAC duality and the minimax duality are unified in the framework of Lagrange duality. However, only
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the sum capacity is considered in [10]. Furthermore, Yu and Lan [5] extended the minimax duality to

solve the capacity region computation problem and beamforming problem for the BC with per-antenna

power constraint. The proofs of the minimax duality in [5] and [10] are based on Lagrange duality.

Compared with the conventional BC-MAC duality, the minimaxduality can be applied to the case

with multiple linear constraints. However, since the dual MAC problem has a minimax form, and the

noise covariance matrix of the dual MAC is unknown, high-efficiency algorithms, such as the iterative

water-filling algorithm [18], cannot be applied.

A. Overview of the Main Results

The purpose of this paper is to establish the general BC-MAC duality via the BC-MAC SINR

transformation, and unify the BC-MAC duality and the minimax duality in the framework of the

reciprocity relationship between the BC and the MAC. By introducing several auxiliary variables and

applying the general BC-MAC duality, the primal BC problem with multiple transmit covariance

constraintsis transformed into its dual MAC problem with a single sum power constraint and can

be efficiently solved via the existing algorithm for its dualMAC as the MAC problem has a convex

structure that is easier to handle.

In this paper, we first consider a MIMO BC with a single generallinear constraint. Relying on the

BC-MAC transformation, we prove that the capacity region ofthe BC is the same as that of its dual

MAC with a single weighted sum power constraint, which we term the general BC-MAC duality. The

channel matrix of the dual MAC is the transposed channel matrix of the primal BC, and its noise

covariance matrix is the coefficient of the linear constraint instead of being an identity matrix as in the

conventional BC-MAC duality.

To exploit the general BC-MAC duality, the weighted sum ratemaximization problem for the BC

with multiple linear constraints is transformed into a single linear constraint problem by introducing

several auxiliary variables. Though the rate maximizationproblem for the BC is a non-convex problem,

we show that the KKT conditions are sufficient for optimality, and show that the subgradient-based

algorithm converges to the optimal solution. A method for obtaining the subgradient is also given.

The relationship between the general BC-MAC duality based solution and the minimax duality based

solution [5] is explored. We show that the new method to handle multiple-constraint is equivalent to
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that of the minimax duality. But since the general BC-MAC duality based method solves the multiple

constraint optimization problem in a decoupled manner, thenew result has more flexibility to apply

the existing algorithms for the MAC, while the minimax duality does not. Moreover, we discuss the

weighted sum rate maximization problem with a convex but nonlinear constraint, and develop a new

iterative algorithm to solve this optimization problem. Inaddition to the weighted sum rate maximization

problem, the proposed method is also applied to solve the beamforming problem in a multiple-input

single-output (MISO) BC with multiple linear constraints.

B. Organization and Notation

The remainder of this paper is organized as follows. The system model is described in Section II.

Section III presents the general BC-MAC duality, where the transmit covariance matrix of the BC

is subject to a linear constraint. The capacity region computation problem of the BC with multiple

constraints or a single nonlinear constraint is studied in Section IV. The method to cope with multiple

linear constraints is also applied to solve the beamformingproblems in Section V. Several numerical

results are provided in Section VI to illustrate the effectiveness of the proposed methods. Finally,

Section VII concludes the paper.

Throughout this paper, we use boldface upper and boldface lower case letters for matrices and vectors,

respectively.(·)H denotes the matrix conjugate transpose operation, and tr(·) denotes the matrix trace

operation.E(·) denotes the expectation operation for random variables.I denotes an identity matrix.

II. SYSTEM MODEL

We consider a MIMO BC system shown in Fig. 1 (a), where the BS intends to send independent

information streams to each ofK remote users. The BS hasNt transmit antennas and each user has

Nr receive antennas. The signal received by theith user is modeled as follows:

yi = H ix+ zi, i = 1, · · · , K (1)

where theNt×1 vectorx denotes the transmit signal at the BS,H i denotes theNr×Nt channel matrix

from the BS to theith user,yi denotes the receive signal at theith user, andzi is the noise vector.

The entries ofzi are modeled as independent and identically distributed complex Gaussian random
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variables with mean zero and varianceσ2
i . The transmit signal covariance matrix of the BS is defined

asQ := E(xxH). In this paper, we assume that the channel knowledge is perfectly known at both the

BS and the users, i.e.,H i is perfectly known at the transmitter and the receivers.

Since the transmit signals for different users are independent, we have

x =

K
∑

i=1

xi (2)

wherexi denotes the transmit signal intended for theith user. Furthermore, to fully utilize the spatial

diversity of the multi-antenna system, a spatial multiplexing scheme is also applied, which means that

the data intended for each user is further divided intoN substreams, whereN = min(Nt, Nr) [13].

Thus, the transmit signal for theith user can be expressed as follows:

xi =
N
∑

j=1

ui,jbi,j (3)

where bi,j is a complex scalar variable withpi,j := E(|bi,j |2), representing the information signal of

the jth data substream of theith user, andui,j denotes the corresponding beamforming vector with

||ui,j|| = 1. Combining (2), (3) and the definition of the transmit covariance matrixQ, we have

Q =
K
∑

i=1

N
∑

j=1

pi,jui,ju
H
i,j. (4)

A. Nonlinear Encoding and Decoding Strategy

It has been shown that the DPC scheme is a capacity achieving scheme for the Gaussian MIMO

BC [17]. With the DPC scheme, the information for different users is encoded in a sequential manner.

Without loss of generality, we assume that the encoding order is identical to the index order, i.e., the

data substreamb1,1 is encoded first,b1,2 is next encoded, and so on. According to the DPC scheme,

the latter encoded data stream has non-causal information about its former encoded data streams, and

thus the interference caused by the former data streams’ transmission can be completely removed by

the DPC scheme. Thus, the rate achieved by theith user can be expressed as

ri = log
|σ2

i I + H i(
∑K

k=i Qi)H
H
i |

|σ2
i I + H i(

∑K
k=i+1 Qi)H

H
i |

(5)

whereQi := E(xix
H
i ).
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(a) BC, zi ∼ N (0, σ2
i I), QA ≤ P (b) Dual MAC, z ∼ N (0,A),

∑K
i=1 σ

2
i tr(Q(m)

i ) ≤ P

Fig. 1. The system models for the primal MIMO BC and the dual MAC.

At the receiver side, for each user, successive interference cancellation (SIC) and the linear minimum

mean square error (MMSE) filter are adopted to decode the corresponding information. With SIC, the

first data stream is decoded by treating all the other streamsas interference; then the signal from the

first data stream is subtracted from the received signal, andthe second data stream is decoded next,

and so on. Thus, the mutual information between the BS and theith user can be expressed as

I(xi;yi) = I(bi,1, · · · , bi,N ;yi) = I(bi,1;yi) + I(bi,2;yi|bi,1) + · · ·+ I(bi,N ;yi|bi,1, · · · , bi,N−1). (6)

Moreover, since the MMSE receiver is information-lossless[19], each term in (6) is achievable with

the MMSE receiver. Thus, the MMSE-SIC receiver can achieve the capacity of the MIMO system. The

receive beamforming vector for thejth data substream at theith user is denoted by theNr × 1 vector

vi,j. Thus, the SINR of thejth data substream at theith user receiver can be written as

SINRi,j =
pi,j |vH

i,jH iui,j|2
∑K

k=i+1

∑N
l=1 pk,l|v

H
i,jH iuk,l|2 +

∑N
l=j+1 pi,l|v

H
i,jH iui,l|2 + σ2

i

. (7)

Since the achievable rate of each data substream depends on its SINR, we have

ri =
N
∑

j=1

log(1 + SINRi,j). (8)
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B. Linear Encoding and Decoding Strategy

Although the nonlinear strategies DPC and SIC are capacity-achieving schemes, they are difficult to

implement in practice. A straightforward scheme for transmission is beamforming without DPC at the

transmitter side and SIC at the receiver side. In the linear strategy, the transmit and receive beamforming

vectors for thejth data substream of theith user are still denoted byui,j andvi,j , respectively. Thus,

the corresponding SINR can be expressed as

SINR(l)
i,j =

pi,j |vH
i,jH iui,j|2

∑K
k=1

∑N
l=1 (k,l)6=(i,j)pk,l|vH

i,jH iuk,l|2 + σ2
i

. (9)

Since the method developed in the present paper is applicable to both linear and nonlinear strategies,

we mainly focus on the nonlinear strategy, and adopt the SINRdefinition (7) throughout the paper.

C. General Linear Transmit Covariance Constraint

In the aforementioned literature, the transmit covariancematrix is subject only to a sum power

constraint or/and a per-antenna power constraint. In this paper, we consider a general linear transmit

covariance constraint as follows:

tr(QA) ≤ P (10)

whereA is an Nt × Nt matrix, andP is a constant. If the matrixA is chosen to be an identity

matrix, then the constraint (10) is reduced to the sum power constraint; if the matrixA is chosen to

be the diagonal matrix having all diagonal elements being zero except thejth element being 1, then

the constraint (10) is reduced to thejth antenna power constraint. In cognitive radio networks, we

chooseA = hhH , whereh is the channel response from the secondary transmitter to the primary

receiver, and the constraint is reduced to the interferencepower constraint for protecting the primary

users [20]–[23]. Therefore, the constraint (10) can be viewed as a generalized linear constraint.

D. Objective Functions

In this paper, we consider several scenarios with differentobjectives: MIMO BC capacity region

computation, SINR balancing, and power balancing.

1) MIMO BC Capacity Region Computation
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Any boundary rate tuple of the Gaussian MIMO BC capacity region can be obtained by solving the

weighted sum rate maximization problem with some given userrate weights. Therefore, the capacity

region computation problem is formulated as follows:

max
Q≥0

K
∑

i=1

wiri (11)

wherewi is the positive weight of theith user, andQ ≥ 0 denotes the semidefiniteness constraint. By

varying the values of the weightwis, the entire capacity region of the MIMO BC can be obtained.

2) SINR Balancing

The aim of the SINR balancing problem is to maximize the minimal ratio between the achieved

SINR and the target SINR among all the data substreams. Mathematically, the optimization problem

is formulated as

max
Q≥0

min
∀i,j

SINRi,j

γi,j
(12)

where γi,j is the target SINR for thejth data substream of theith user. Conventionally, the SINR

balancing problem considers the MISO case [15], i.e.,Nt = 1. It has been shown in [15] that the ratios

of all the data substreams are equal, when the optimal solution is achieved. Therefore, the problem is

termed the SINR “balancing” problem. Note that (12) is equivalent to the following form

max
Q≥0,α

α

subject to SINRi,j ≥ αγi,j, ∀ i, j.

(13)

In the sequel, we will use (13) as the optimization problem for the SINR balancing problem instead

of (12), since it is easier to write the Lagrange function of (13).

3) Power Balancing

In this case, the system has several different power requirements, and the objective is to minimize the

maximal ratio between the transmit power and the power requirement. Mathematically, the optimization

problem can be expressed as

min
Q≥0

max
∀i

tr(QAi)

Pi
(14)
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wherePi is the ith power requirement, andAi is anNt × Nt matrix for the ith power requirement.

Similarly to the SINR balancing function, the problem (14) can be transformed into

min
Q≥0,α

α

subject to tr(QAi) ≤ αPi, ∀i.

(15)

If there is a single power requirement, and the corresponding matrixA is an identity matrix, then (14)

reduces to the power minimization problem.

In this paper, we will consider these optimization problemswith several general transmit covariance

constraints or SINR constraints.

III. GENERAL BC-MAC DUALITY

In this section, we establish the general BC-MAC duality under a single linear transmit covariance

constraint. We start with the SINR balancing problem expressed as follows:

max
Q≥0,α

α

subject to SINRi,j ≥ αγi,j, ∀ i, j

tr(QA) ≤ P.

(16)

The MIMO BC SINR balancing problem (16) is a non-convex optimization problem due to the non-

convex SINR constraints. Although it has been shown in [5], [24] that the SINR constraint under the

MISO scenario can be transformed into the second order cone (SOC) form, the transformation is not

applicable to the MIMO case due to the essentially non-convex property of the MIMO SINR constraints.

Hence, the problem (16) is still an open problem, and cannot be solved via existing methods. However,

we can establish a new MAC called the dual MAC, and formulate adual MAC problem of the primal

problem (16) such that it shares the same solution as its primal problem (16).

Definition 1: The dual MAC of the primal BC in (1) has the conjugate transposed channel matrix

of the BC, i.e., the channel matrix of the dual MAC from theith user to the BS isHH
i , and the noise

covariance matrix at the BS is the matrixA instead of the identity matrix, which is shown in the Fig.

1 (b).
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The corresponding dual MAC optimization problem is expressed as follows:

max
Q

(m)
i ≥0, α

α

subject to SINR(m)
i,j ≥ αγi,j, ∀ i, j

K
∑

i=1

σ2
i tr(Q(m)

i ) ≤ P

(17)

whereQ(m)
i denotes the transmit signal covariance matrix of theith user, SINR(m)

i,j denotes the SINR

of the jth data substream of theith user, and the superscript ‘(m)’ indicates that the corresponding

variables are for the dual MAC. In this dual MAC, the MMSE-SICscheme is applied, which means

that the data streams of the dual MAC are decoded in a sequential manner. In the dual MAC problem

(17), the decoding order at the BS is converse to the encodingorder of the DPC at the primal BC.

Accordingly, the SINR(m)
i,j can be expressed as

SINR(m)
i,j =

qi,j|ui,jH
H
i vi,j |2

uH
i,j

(

∑i−1
k=1

∑N
l=1 qk,lH

H
k vk,lv

H
k,lHk +

∑j−1
l=1 qi,lH

H
i vi,lv

H
i,lH i +A

)

ui,j

(18)

where qi,j is the power allocated to this data substream, andui,j and vi,j denote the corresponding

receive and transmit beamforming vectors, respectively. While it may be somewhat confusing at first

that the beamforming vectors of the dual MAC share the same notation with the beamforming vectors

of the primal BC in (7), it will become clear in the following that the optimal beamforming vectors of

the primal BC are identical to those of the dual MAC.

The relationship between the primal problem (16) and the dual MAC problem (17) is summarized

in the following proposition.

Proposition 1: The optimal solutions of the primal problem (16) and the dualMAC problem (17)

are the same.

Proof: First, we will prove by contradiction that the SINR constraints for problem (16) hold

with equality when the optimal solutions are achieved. If SINRi,j > α∗γi,j with α∗ being the optimal

solution of problem (16), then we can reduce part of the powerpi,j and distribute it to all the other data

substreams, thereby increasing the objective valueα without violating the constraints. This contradicts

α∗ being the optimal solution. A similar argument holds for theproblem (17).
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We next prove that if̄α is achievable for the problem (16), then it is also achievable for the problem

(17). Assume that when̄α is achieved,ūi,j and v̄i,j are the corresponding beamforming vectors for

transmitter and receiver, respectively, andp̄i,j is the power allocated to thejth data substream of the

ith user. For the dual MAC problem (17), we can choosev̄i,j to be the transmit beamforming vector

for the user side, and̄ui,j to be the receive beamforming vector at the BS. The power allocated to the

jth data substream of theith user of the dual MAC is assumed to beq̄i,j , which can be obtained by

setting SINR(m)
i,j = SINRi,j = ᾱγi,j, i.e.,

ᾱγi,j =
p̄i,j|v̄H

i,jH iūi,j|2
∑K

k=i+1

∑N
l=1 p̄k,l|v̄

H
i,jH iūk,l|2 +

∑N
l=j+1 p̄i,l|v̄

H
i,jH iūi,l|2 + σ2

i

=
q̄i,j|ūi,jH

H
i v̄i,j|2

ūH
i,j

(

∑i−1
k=1

∑N
l=1 q̄k,lH

H
k v̄k,lv̄

H
k,lHk +

∑j−1
l=1 q̄i,lH

H
i v̄i,lv̄

H
i,lH i +A

)

ūi,j

. (19)

By rearranging (19), we can list all the equations related tothe SINR as follows:

p̄1,1

(

ūH
1,1Aū1,1

)

= q̄1,1

(

K
∑

k=2

N
∑

l=1

p̄k,l|v̄
H
1,1H1ūk,l|

2 +
N
∑

l=2

p̄1,l|v̄
H
1,1H1ū1,l|

2 + σ2
1

)

p̄1,2

(

ūH
1,2

(

q̄1,lH
H
1 v̄1,lv̄

H
1,lH1 +A

)

ū1,2

)

= q̄1,2

(

K
∑

k=2

N
∑

l=1

p̄k,l|v̄
H
1,2H1ūk,l|

2 +

N
∑

l=3

p̄1,l|v̄
H
1,2H1ū1,l|

2+σ2
1

)

...
...

p̄K,N

(

ūH
K,N

(

K−1
∑

k=1

N
∑

l=1

q̄k,lH
H
k v̄k,lv̄

H
k,lHk +

N−1
∑

l=1

q̄K,lH
H
K v̄K,lv̄

H
K,lHK +A

)

ūK,N

)

= q̄K,Nσ
2
K .

By adding the above equations together, we have
K
∑

i=1

N
∑

j=1

p̄i,jū
H
i,jAūi,j =

K
∑

i=1

N
∑

j=1

σ2
i q̄i,j . (20)

From the power constraint tr(QA) ≤ P of the problem (16), we have
∑K

i=1

∑N
j=1 p̄i,jū

H
i,jAūi,j ≤ P .

Combining this with (20), we have
∑K

i=1

∑N
j=1 σ

2
i q̄i,j ≤ P , which means that the weighted sum power

constraint
∑K

i=1 σ
2
i tr(Q(m)

i ) ≤ P of the problem (17) is satisfied. Hence,ᾱ is achievable for the problem

(17).

Contrarily, we can prove that if̃α is achievable for the problem (17), theñα is also achievable for

the problem (16).

The proof of Proposition 1 follows.
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If we assume that the optimal solution for both problems (16)and (17) isα∗, then it means that the

point {SINRi,j = α∗γi,j, ∀ i, j} is achievable for the primal BC and the dual MAC with corresponding

constraints, respectively. Therefore, under the general linear constraint tr(QA) ≤ P , the primal BC can

achieve the same SINR region as the dual MAC, which is subjectto a weighted sum power constraint.

From an information theoretic perspective, according to (8), the rate point{r = [r1, · · · , rK ]} is

achievable if the SINR point{SINRi,j, ∀i, j} is achievable under corresponding constraints. Thus, we

have the following corollary. A rigorous proof is provided in Appendix A.

Corollary 1: The capacity region of the primal BC under the constraint tr(QA) ≤ P , is equal to the

capacity region of its dual MAC with a single weighted sum power constraint
∑K

i=1 σ
2
i tr(Q(m)

i ) ≤ P .

Remark 1:By settingA in (16) to be an identity matrix, and assuming thatσ2
i = 1 for all users, the

general linear power constraint becomes a sum power constraint, and the noise covariance at the BS of

the dual MAC is reduced to an identity matrix. This is precisely the same as the conventional BC-MAC

duality. Thus, the new BC-MAC duality can be viewed as a generalization of the conventional BC-MAC

duality. The proof of the duality is based on the special BC-MAC reciprocity relationship, instead of

the Lagrange duality used in [5], [10]. Note that since the SINR constraints in (16) is not convex,

the Lagrange duality gap between (16) and (17) may not be zero. Therefore, Proposition 1 cannot

be proved through the use of Lagrange duality. But for the capacity region problem, the objective

function is concave in the signal covariance matrices and convex in the noise covariance matrices.

Hence, the Lagrange duality gap is zero and the Lagrange duality can be applied for the proof of the

BC-MAC capacity duality. From this perspective, the reciprocity relationship is more fundamental than

the Lagrange duality for the BC-MAC duality.

Remark 2:For a given set of transmit covariance matrices of the dual MAC, we can obtain the

corresponding transmit covariance matrix of the primal BC to achieve the same value ofα by using

the method giving in the proof of Proposition 1. The detailedMAC-BC covariance matrix transformation

algorithm is provided in Table I. Similarly, the BC-MAC covariance matrix transformation algorithm

is readily obtained. Furthermore, the proof of Corollary 1 presents a MAC-BC covariance matrix

transformation such that the primal BC and its dual MAC achieve the same rate tuple. The detailed
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TABLE I

THE MAC-BC COVARIANCE TRANSFORMATION FORSINR EQUIVALENCE.

MAC-BC covariance matrix transformation I

1. Apply eigenvalue decomposition toQ(m)
i = V iΛiV i with vi,j being thejth column ofV i

andqi,j being thejth diagonal element ofΛi,

2. For each data substream, apply the MMSE algorithm to compute the receive beamforming vectorui,j , i.e.,

ui,j =
“

Pi−1
k=1

PN
l=1 q̄k,lH

H
k v̄k,lv̄

H
k,lHk +

Pj−1
l=1 q̄i,lH

H
i v̄i,lv̄

H
i,lH i +A

”−1

HH
i v̄i,j .

3. According to (19), computepi,j , ∀ i, j,

4. Qi =
PN

j=1 pi,jui,ju
H
i,j .

TABLE II

THE MAC-BC COVARIANCE TRANSFORMATION ALGORITHM FOR CAPACITY EQUIVALENCE.

MAC-BC covariance matrix transformation II

1. DefineĤk = HkA
−1/2, M k =

“

I +
PK

j=i+1 Ĥ
H

j Q
(m)
j Ĥ j

”

and

Bk =
“

I + Ĥk

`

PK
j=i+1 Qj

´

Ĥ
H

k

”

2. for k = 1, · · · ,K

3. calculate the SVD decomposition ofM−1/2
k ĤkB

−1/2
k = RkDkLk

4. Qk = A−1/2M
−1/2
k RkL

H
k B

1/2
k Q

(m)
k B

1/2
k LkR

H
k M

−1/2
k (A−1/2)H

5. end for

algorithm is presented in Table II.

Moreover, although Proposition 1 is for the nonlinear scheme, it is also applicable to the linear

transmission scheme.

Corollary 2: Under the linear transmit strategy, the achievable SINR region of the primal BC under

the constraint tr(QA) ≤ P , is equal to the achievable SINR region of its dual MAC with a single

weighted sum power constraint
∑K

i=1 σ
2
i tr(Q(m)

i ) ≤ P .

In the following, we will show how to use this general BC-MAC duality to solve various BC

optimization problems with multiple transmit covariance constraints.

November 5, 2018 DRAFT



14

IV. CAPACITY COMPUTATION

In the preceding section, the duality between the MIMO BC andthe dual MAC with a general linear

constraint was presented. In this section, by exploiting this duality, we will compute the capacity region

of the MIMO BC. According to the discussion in Section II-D, the capacity of the BC can be obtained

by solving the weighted sum rate maximization problem. For simplicity, we assume in the sequel that

σ2
i = 1 for all the users.

A. Single Linear Transmit Covariance Constraint

We first consider the weighted sum rate maximization problemfor the BC with a single linear

constraint, which is formulated as follows:

max
Q≥0

K
∑

i=1

wiri

subject to tr(QA) ≤ P

(21)

whereA is a constant matrix, andP is a constant. The problem (21) is a non-convex problem, and

thus cannot be solved directly. According to Corollary 1, the problem (21) is equivalent to its dual

MAC problem as follows:

max
Q

(m)
i ≥0

K
∑

i=1

wir
(m)
i

subject to
K
∑

i=1

tr(Q(m)
i ) ≤ P

(22)

where r
(m)
i := log

|A+
Pi

k=1H
H
k Q

(m)
k Hk|

|A+
Pi−1

k=1H
H
k Q

(m)
k Hk|

denotes the achievable rate of theith user. By solving the

problem (22) via the interior point algorithm [25], the optimal solution for the problem (21) can be

obtained via a MAC-BC transmit covariance matrix transformation algorithm.

In the following, we present an important property of the problem (21), which will be used in the

case with multiple transmit covariance constraints. We first list the KKT conditions of the problem

(21) as follows:

∂
∑K

i=1wiri
∂Qi

= λA+Ψi, ∀i

λ
(

tr(QA)− P
)

= 0

(23)
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whereλ is the Lagrange multiplier, andΨi is the Lagrange multiplier associated with the constraint

Qi ≥ 0. In general, the KKT conditions are only necessary for a solution to be optimal for a non-

convex problem. However, for the problem (21), it is shown inthe following proposition that the KKT

conditions are also sufficient for optimality.

Proposition 2: The KKT conditions (23) are sufficient for a solution to be optimal for the problem

(21).

Proof: According to the Corollary 1, the problem (21) is equivalentto its dual MAC problem

(23). We now assume that̃Q satisfies the KKT conditions in (23) and achieves the weighted sum rate

R̃. Then, by the BC-MAC transmit covariance matrix transformation, we can obtain a set of̃Q
(m)

i s for

the problem (22) to achieve the sameR̃. We next assume that̄Q is an optimal solution of the problem

(21) with the optimal weighted sum ratēR, whereR̄ > R̃. Thus, we can obtain the optimal solution

of the problem (22)Q̄(m)
i by MAC-BC transmit covariance matrix transformation.

It is well known that the objective function of (22) is a convex function. Hence, we haveQ∗
i :=

Q̃
(m)

i +t
(

Q̄
(m)
i −Q̃

(m)

i

)

, where0 < t < 1, is a better solution thañQ
(m)

i for the problem (22). Through

the MAC-BC transmit covariance matrix transformation, we transform the dual MAC solutionQ∗
i into

its corresponding BC solutionQ∗. Since the MAC-BC transmit covariance matrix transformation is

continuous, we can always find at such that‖Q̃−Q∗‖ ≤ ǫ for a givenǫ > 0. Therefore,Q̃ is not the

local optimal solution, which is contradicted with the KKT condition ∂(
∑K

i=1wiri)/∂Qi = λA +Ψi.

The proof thus follows.

B. Multiple Linear Transmit Covariance Constraints

We now consider the weighted sum rate maximization problem with multiple linear constraints as

follows:

max
Q≥0

K
∑

i=1

wiri

subject to tr(QA1) ≤ P1

tr(QA2) ≤ P2

(24)
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whereAi, i = 1, 2, is anNt × Nt constant matrix, andPi, i = 1, 2, is a constant. For convenience

of description, we discuss only the case of two linear constraints, though our method can be easily

extended to the case of an arbitrary number of linear constraints.

Since the objective function is non-concave inQ, the problem (24) is not convex, and thus cannot

be solved directly. In [3], [4], the sum capacity of the MIMO BC with a single sum-power constraint

was studied. Based on the conventional BC-MAC duality [12],the BC problem was transformed into

its dual convex MAC problem with a single sum-power constraint. However, the problem (24) is with

multiple constraints, and thus the conventional BC-MAC duality cannot be applied. To exploit the

general BC-MAC duality, we can transform the problem (24) into the following problem with a single

constraint:

g(λ1, λ2) :=max
Q≥0

K
∑

i=1

wiri

subject toλ1tr(QA1) + λ2tr(QA2) ≤ λ1P1 + λ2P2

(25)

whereλ1 andλ2 can be viewed as auxiliary variables. The relationship between the problem (24) and

the problem (25) can be summarized as follows.

Proposition 3: The optimal solution of the problem (25) is an upper bound on that of the problem

(24).

Proof: If Q is feasible for the problem (24), then it is also feasible forthe problem (25). Therefore,

the feasible region of the problem (24) is a subset of that of the problem (25). The proof follows

immediately.

Furthermore, we can prove that the upper bound is tight, i.e., the optimal solution of the problem

(24) achieves the upper boundg(λ1, λ2) for someλ1 andλ2. Thus, we have

Proposition 4: The optimal solution of the problem (24) is equal to that of the problem minλ1,λ2g(λ1, λ2).

Proof: The KKT condition of the problem (24) can be listed as follows:

∂
∑K

i=1wiri
∂Qi

= µ1A1 + µ2A2 +Ωi, ∀i

µ1

(

tr(QA1)− P1

)

= 0

µ2

(

tr(QA2)− P2

)

= 0

(26)
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whereµ1 andµ2 are the Lagrange multipliers with respect to the two constraints, respectively, andΩi

is the Lagrange multiplier associated with the constraintQi ≥ 0. When the optimal solution of the

problem (24) is achieved, we assume that the corresponding optimal variables areQ∗, µ∗
1, µ

∗
2, andΩ∗

i .

We now list the KKT conditions of the problem (25) as follows:

∂
∑K

i=1wiri
∂Qi

= λ(λ1A1 + λ2A2) +Υi, ∀i

λ
(

λ1tr(QA1) + λ2tr(QA2)− µ1P1 − µ2P2

)

= 0

(27)

whereλ is the Lagrange multiplier, andΥi is the Lagrange multiplier associated with the constraint

Qi ≥ 0. If we chooseQ = Q∗, λ = 1, λ1 = µ∗
1, λ2 = µ∗

2, andΥi = Ω
∗
i , the KKT conditions (27)

are satisfied. Since the problem (25) is the weighted sum ratemaximization problem with a single

linear constraint, according to Proposition 2, the solution is the optimal solution of the problem (25).

Combining this with Proposition 3, the proof follows.

According to the general BC-MAC duality discussed in Section III, the problem (25) is equivalent

to the following dual MAC problem:

max
Q

(m)
i ≥0

K
∑

i=1

wir
(m)
i

subject to
K
∑

i=1

tr(Q(m)
i ) ≤ λ1P1 + λ2P2

(28)

where the noise covariance at the BS of the dual MAC isλ1A1+λ2A2, andr(m)
i denotes the achievable

rate of theith user. The problem (28) is a convex optimization problem that can be solved via a standard

interior point algorithm. With the optimal solution of the problem (28), the optimal solution for the

problem (25) can be obtained by the MAC-BC transmit covariance matrix transformation. We next

consider the minimization problem

min
λ1≥0,λ2≥0

g(λ1, λ2). (29)

Since the functiong(λ1, λ2) is not necessarily differentiable, we can solve the problem(29) via the

subgradient algorithm or ellipsoid algorithm. The subgradient of the functiong(λ1, λ2) can be found

in the following proposition. Refer to Appendix B for the proof.
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Proposition 5: The subgradient of the functiong(λ1, λ2) at point [λ̄1, λ̄2] is [P1 − tr(Q̄A1), P2 −

tr(Q̄A2)], whereQ̄ is the optimal solution of the inner layer optimization problem (28) withλ1 = λ̄1

andλ2 = λ̄2.

Remark 3:The Lagrangian function of the problem (24) can be written as

K
∑

i=1

wiri − µ1

(

tr(QA1)− P1

)

− µ2

(

tr(QA2)− P2

)

(30)

while the Lagrangian function of the problem (25) can be written as:

K
∑

i=1

wiri − λ
(

λ1tr(QA1) + λ2tr(QA2)− λ1P1 − λ2P2

)

. (31)

By observing (30) and (31), we can say that the two Lagrange functions are identical to each other

if we chooseµ1 = λλ1 andµ2 = λλ2. Thus, the auxiliary variablesλ1 andλ2 can be viewed as the

Lagrange dual variables.

Since the functiong(λ1, λ2) is a convex function, the subgradient-based algorithm is guaranteed to

converge to its optimal solution [26]. According to Proposition 4, when the minimum ofg(λ1, λ2) is

achieved, the optimal solution of the problem (25) is equal to that of the problem (24).

In summary, the problem (24) is solved through a two-loop algorithm. By exploiting the general

BC-MAC duality, the inner loop searches the optimal solution of g(λ1, λ2), while the outer loop solves

the g(λ1, λ2) minimization problem via a subgradient-based iterative algorithm. The convexity of the

function g(λ1, λ2) guarantees that the global optimal solution is achieved.

C. Relationship to Minimax Duality

The capacity region computation problem with a per-antennapower constraint considered in [5] is a

special case of the problem (24). By choosingA to be a diagonal matrix with all its diagonal elements

being zero except thejth diagonal element being 1, the constraint tr(QA) ≤ P can be viewed as the

power constraint for thejth antenna of the BS. Different from the method discussed in Section IV-B,
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the dual MAC problem developed in [5] has a minimax form as follows:

min
Q̂

max
Q

(mac)
i ≥0

K
∑

k=1

wkr
(mac)
k

subject to
K
∑

i=1

tr(Q(mac)
i ) ≤ tr(Φ)

tr(Q̂Φ) ≤ tr(Φ)

(32)

whereΦ is a diagonal matrix,

r
(mac)
k := log

|
∑k

i=1 H
H
i Q

(mac)
i H i + Q̂|

|
∑k−1

i=1 H
H
i Q

(mac)
i H i + Q̂|

and the diagonal matrix̂Q is the noise covariance matrix of the dual MAC. Thejth diagonal element of

Φ is the power constraint for thejth antenna of the BS. Since the noise covariance is also an unknown

variable, the existing high-efficiency algorithm for the MAC problem cannot be applied. Instead, a new

interior point method based algorithm is developed in [5] tosolve (32).

The two constraints in (32) have some redundancy, and can be further simplified via the following

two observations.

1) The noise covariance constraint tr(Q̂Φ) ≤ tr(Φ) holds with equality when the optimal solution is

achieved.

2) Given any positiveα, if we replace the constraint in (32) with
∑K

i=1 tr(Q(mac)
i ) ≤ αtr(Φ) and

tr(Q̂Φ) ≤ αtr(Φ), the optimal value of the problem (32) does not change.

The observation 1) can be shown by observing that if the constraint tr(Q̂Φ) ≤ tr(Φ) is satisfied

with inequality, then the minimization part of the problem (32) does not achieve the optimal solution.

The observation 2) can be proved through the KKT conditions.If we assume thatQ∗
i andQ̂

∗
are the

optimal transmit covariance matrix and the noise covariance matrix of the problem (32), respectively,

then it is easy to verify thatαQ∗
i andαQ̂

∗
satisfy the KKT conditions of the problem (32) after the

constraints replacement, and the optimal value of the problem (32) does not change.

Based on these two observations, we can combine the two constraints in (32) into one constraint
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∑K
i=1 tr(Q(mac)

i ) ≤ tr(Q̂Φ), and thus the problem (32) is equivalent to the following problem:

min
Q̂

max
Q

(mac)
i ≥0

K
∑

k=1

wkr
(mac)
k

subject to
K
∑

i=1

tr(Q(mac)
i ) ≤ tr(Q̂Φ).

(33)

In our derivation in Section IV-B, we can formulate a similarminimax optimization problem of the

dual MAC. Combining (25), (28) and (29), we have

min
λ1,λ2

max
Q

(m)
i ≥0

K
∑

i=1

wir
(m)
i

subject to
K
∑

i=1

tr(Q(m)
i ) ≤ λ1P1 + λ2P2

(34)

where the noise covariance matrix of the dual MAC isλ1A1+λ2A2. In the per-antenna power constraint

scenario, the problem (34) becomes

min
S

max
Q

(m)
i ≥0

K
∑

i=1

wir
(m)
i

subject to
K
∑

i=1

tr(Q(m)
i ) ≤ tr(SΦ)

(35)

whereS = diag(λ1, · · · , λNt). The problem (35) is identical to the problem (33) by noting thatS = Q̂

andQ(m)
i = Q

(mac)
i . Therefore, the problem (32) and the problem (35) are equivalent to each other.

Although the general BC-MAC duality in Section III and the minimax duality in [10] have substan-

tially different formulation, the ways by which they handlethe multiple linear constraints are equivalent

essentially. The general BC-MAC duality based method divides the process into two steps: dual MAC

problem solving, and multiple constraints handling; whilethe minimax duality combines the two steps

together. Essentially, only the dual MAC problem solving step exploits the special BC-MAC reciprocity

relationship, and the multiple constraints handling step is not specific for the BC problem, i.e., it can

be applied to solve any optimization problem with multiple constraints. The new method decouples the

two steps, and thus has more flexibility in exploiting the existing algorithm for a MAC. Moreover, the

minimax problem (32) is specifically formulated to solve theper-antenna power constraint problem.
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D. Nonlinear Constraint

According to the proof of Proposition 1, the general BC-MAC duality requires that the transmit

covariance matrix of the BC be subject to a linear constraint. In this subsection, we consider the case

with a convex but nonlinear constraint. The capacity computation under a nonlinear constraint can be

formulated as follows:

max
Q≥0

K
∑

i=1

wiri

subject tof(Q) ≤ 0

(36)

where the functionf(Q) is a general nonlinear convex function. Since the general BC-MAC duality

does not hold generally under the nonlinear constraint, theproblem (36) cannot be solved directly.

However, as shown in the following proposition, the nonlinear constraint problem (36) is equivalent to

a single linear constraint problem (refer to Appendix C for the proof).

Proposition 6: There always exists a linear constraint problem as follows

max
Q≥0

K
∑

i=1

wiri

subject to tr(AQi) ≤ 0

(37)

with A denoting a constant matrix such that it has the same solutionas the original problem (36).

Remark 4:Proposition 6 illustrates that the nonlinear non-convex optimization problem (36) can be

transformed into an equivalent linear constraint problem (37), which can be solved by making use of

the general BC-MAC duality in Section III. However, according to the proof of Proposition 6, the

parameterA in problem (37) cannot be obtained without the optimal solution Q∗ of the problem (36).

Note that it is impossible to obtainQ∗ before solving this problem, and thus the problem (36) cannot

be solved by using its equivalence with the problem (37). In the following, we present an example to

illustrate an iterative algorithm that can find a set of linear constraints, and these linear constraints can

be used to approximate the original nonlinear constraint.

Example 1:For simplicity, we consider the MIMO BC withK = 2, Nt = 2, andNr = 2. The

transmit covariance matrix is subject to a nonlinear constraint:
(

tr(QA1)
)2

+
(

tr(QA2)
)2

≤ P , where

November 5, 2018 DRAFT



22

A1 =





1 0

0 0



, andA2 =





0 0

0 1



. Thus, the capacity computation under the nonlinear constraint

can be formulated as follows:

max
Q≥0

2
∑

i=1

wiri

subject to
(

tr(QA1)
)2

+
(

tr(QA2)
)2

≤ P.

(38)

As shown in Fig. 2, by definingp1 := tr(QA1) andp2 := tr(QA2), the feasible regionR : {p1, p2|p21+

p22 ≤ P, p1 ≥ 0, p2 ≥ 0} is a quarter circle in the nonnegative orthant. According toProposition 6, the

problem (38) is equivalent to the following problem

max
Q≥0

2
∑

i=1

wiri

subject toc1tr(QA1) + c2tr(QA2) ≤ c3

(39)

whereci = tr(Q∗Ai), i = 1, 2, Q∗ is the optimal solution of the problem (38), andc3 = P .

To present the iterative process, we use a graphical illustration as shown in Fig. 2. Firstly, we

arbitrarily select a point ‘a’ on the boundary of the nonlinear regionR, and draw a tangent line to

the p21 + p22 = P curve through the selected point. The tangent line corresponds to a linear constraint

C
(1) : c

(1)
1 tr(QA1) + c

(1)
2 tr(QA2) = c

(1)
3 , where the superscript ‘1’ denotes the index of the linear

constraints. The weighted sum rate maximization problem with the constraintC(1) can be solved through

the general duality. Assume thatQ(1) andr(1) are the corresponding optimal transmit covariance matrix

and the obtained optimal weighted sum rate, respectively. Since the feasible region of the problem (38)

is a subset of the feasible region ofC
(1), r(1) is an upper bound on that of the original problem (38). The

optimal transmit covariance matrixQ(1), corresponding to the pointb in Fig. 2, is not feasible for the

original problem. Secondly, we find the point ‘c’ on the boundary of the regionR to be closest to the

point ‘b’, and draw a new tangent line through the point ‘c’. The new tangent line corresponds to a linear

constraintC(2) : c
(2)
1 tr(QA1) + c

(2)
2 tr(QA2) = c

(2)
3 . By solving the weighted sum rate maximization

problem with two constraintsC(1) andC(2), a new optimal weighted sum rater(2) is obtained, where

r(1) > r(2). The iterative process will continue until
(

tr(Q(n)A1)
)2

+
(

tr(Q(n)A2)
)2

≤ P + ǫ holds,
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whereQ(n) denotes the optimal solution of thenth iterative step, andǫ denotes the prescribed accuracy

requirement. The obtainedr(n) forms a non-increasing sequence with the lower bound on the optimal

solution of the problem (38). Thus, the algorithm will converge to the optimal solution.

Fig. 2. The iterative process for the nonlinear constraint problem. (I) Select an initial point ‘a’, plot a tangent line ‘AB’, and solve the

optimization problem with a single linear constraint with respect to ‘AB’, where point ‘b’ corresponds to the optimal solution. (II) Find

a point ‘c’, which is closest to ‘b’, on the boundary of the feasible region. (III) Plot a tangent line ‘CD’, and solve the optimization

problem with the constraints ‘AB’ and ‘CD’, where ‘d’ is assumed to be the optimal solution. (IV) So on and so forth, until the optimal

solution is achieved.
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V. BEAMFORMING PROBLEM

In the preceding section, the capacity computation for the MIMO BC is considered. In this section,

we consider the MISO BC from a beamforming perspective1. Depending on the objective function and

the constraints, the beamforming optimization problems can be divided into two classes. One is the

SINR balancing problem [15], [27], i.e., maximizing the minimum SINR among all the users. The

other one is the power minimization problem with SINR constraints [5], [24], [28], i.e., minimizing

some power function with SINR constraints. In the case ofNr = 1, the SINR of theith user under

the nonlinear encoding and decoding scheme can be expressedas follows:

SINRi =
|hH

i ui|
∑K

j=i+1 |h
H
i uk|2 + 1

(40)

wherehi denotes theNt × 1 channel vector from the BS to theith user, andui denotes the transmit

beamforming vector. Under the linear encoding and decodingscheme, the corresponding SINR can be

expressed as follows:

SINR(l)
i =

|hH
i ui|

∑K
j=1,j 6=i |h

H
i uk|2 + 1

. (41)

It has been shown that the SINR constraint can be transformedinto semidefinite programming (SDP)

or SOC form [24], and the corresponding beamforming problemcan be solved via the standard interior

point algorithm. However, the standard algorithm does not exploit the special structure of the problem,

and may be computationally expensive. A number of efficient iterative algorithms have been proposed

to solve the beamforming problem. In this section, we will combine these iterative algorithms and

the general BC-MAC duality to solve the beamforming problemwith multiple linear constraints. The

methods discussed in this section are applicable to both SINR definitions (40) and (41).

1There are two reasons that we do not consider the MIMO BC scenario. 1) For the MIMO BC case, due to the multiple data streams,

to impose the SINR constraint for each data stream is only appropriate when the independent encoding for each data streamis applied.

In the previous work, the beamforming problems are considered only under the MISO scenario [15], [24]. 2) According to the definition

(7), the SINR of the BC is neither convex nor concave with respect to v and u when Nt > 1. Therefore, the MIMO optimization

problem with SINR constraints is not a convex problem, and cannot be solved efficiently.
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A. SINR Balancing Problem

In this subsection, we apply the general BC-MAC duality in Section III to solve the SINR balancing

problem with multiple linear constraints:

max
Q≥0,α≥0

α

subject to SINRi ≥ αγi, ∀ i

tr(QA1) ≤ P1

tr(QA2) ≤ P2.

(42)

Note thatQ =
∑K

i=1 piuiu
H
i in this case, and thus the problem can be viewed as a joint beamforming

and power allocation problem. The SINR balancing problem for the BC has been studied in [15], [27].

However, due to the limitations of the conventional BC-MAC duality, previous results can be applied

only to the case in which there is a single sum power constraint at the BS. Furthermore, the SINR

balancing problem for the MAC with multiple constraints hasbeen studied in [20], where it is shown

that the multiple constraints can be completely decoupled.However, the decoupling property does not

hold for the BC scenario.

To solve the problem (42), we first consider the following problem:

gbal(λ1, λ2) := max
ui,pi,α

α

subject to SINRi ≥ αγi, ∀ i

λ1tr(QA1) + λ2tr(QA2) ≤ λ1P1 + λ2P2

(43)

whereλ1 andλ2 are auxiliary variables. Similar to Proposition 3, we can prove that the optimal solution

of the problem (43) is an upper bound on that of the problem (42). The problem (43) can be transformed

into its dual MAC problem via the general BC-MAC duality and efficiently solved by the iterative

algorithm in [15]. Moreover, the minimization problem minλ1,λ2gbal(λ1, λ2) can be solved through the

subgradient algorithm or ellipsoid algorithm. The convexity of the functiongbal(λ1, λ2) guarantees the

convergence of the subgradient-based algorithm. Similar to the capacity region computation problem

in Section IV-B, it can be proved that the algorithm converges to an optimal solution of the problem

(42).

November 5, 2018 DRAFT



26

Remark 5:The method to process multiple linear constraints in the SINR balancing problem is

identical to that in the capacity computation problem. We first introduce an upper bound function, the

solution of which can be obtained via the general BC-MAC duality. We next compute the minimum

value of the upper bound function via a subgradient-based algorithm. Note that the iterative algorithm

in [15] cannot be applied to the minimax duality case as the iterative algorithm requires the explicit

expression of the noise covariance matrix. From this perspective, the general BC-MAC duality has

broader application than the minimax duality.

B. Power Balancing Problem

In this subsection, we consider the power balancing problemwith SINR constraints. Mathematically,

the problem is formulated as follows:

min
Q≥0,α≥0

α

subject to SINRi ≥ γi

tr(QA1) ≤ αP1

tr(QA2) ≤ αP2.

(44)

Since the problem (44) has multiple power constraints, the general BC-MAC duality cannot be applied

directly. By introducing two auxiliary variablesλ1 and λ2, we transform the problem (44) into the

following single power constraint problem:

gpow(λ1, λ2) := min
Q≥0,α≥0

α

subject to SINRi ≥ γi

λ1tr(QA1) + λ2tr(QA2) ≤ α(λ1P1 + λ2P2).

(45)

Similar to Proposition 3, the optimal solution of the problem (45) is a lower bound on that of the

problem (44). Thanks to the general BC-MAC duality, the MIMOBC problem (45) is equivalent to

its dual MAC problem as follows:

min
Q≥0

K
∑

i=1

tr(Q(m)
i )

subject to SINR(m)
i ≥ γi

(46)
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where the noise covariance of this dual MAC isλ1A1 + λ2A2. By solving the problem (46) with the

algorithm in [28], and utilizing the MAC-BC transmit covariance matrix transformation, the optimal

solution of the problem (45) can be obtained. Next, we consider a maximization problem as follows:

max
λ1≥0,λ2≥0

gpow(λ1, λ2). (47)

Similar to Proposition 5, we have the following result concerning the subgradient of the function

gpow(λ1, λ2).

Proposition 7: The subgradient of the functiongpow(λ1, λ2) at [λ̃1, λ̃2] is [tr(Q̃A1)−P1, tr(Q̃A2)−

P2], whereQ̃ is the optimal solution of the inner layer problem (45) withλ1 = λ̃1 andλ2 = λ̃2.

The proof of Proposition 7 is similar to that of Proposition 5, and thus is omitted here. With

Proposition 7, the maximization problem (47) can be solved through the subgradient algorithm or

the ellipsoid algorithm. Similar to Proposition 4, when themaximum ofgpow(λ1, λ2) is achieved, the

optimal solution of the problem (45) is equal to that of the problem (44)

Remark 6:The maximum per-antenna power constraint minimization problem was considered in

[5], which is a special case of the problem (44). In [5], the problem is transformed into its minimax

dual MAC problem, in which the noise covariance matrix of itsdual MAC is an unknown variable.

A subgradient-based iterative algorithm is developed therein to obtain its optimal noise covariance.

However, since the noise covariance matrix appears in both the constraints and the objective function,

it is difficult to have a routine method to obtain its subgradient in [5]. While, in contrast, due to the

clear physical meaning of the variablesλi (Lagrange dual variables with respect to some constraints),

the subgradient of the lower bound functiongpow(λ1, λ2) can be readily obtained.

VI. NUMERICAL RESULTS

In this section, we present several numerical results to illustrate the effectiveness of the proposed

algorithms. For simplicity, we consider a MIMO BC withK = 2, Nt = 2, Nr = 2 for the capacity

computation problem and withK = 2, Nt = 2, Nr = 1 for the beamforming problem. The noise

covariance matrix at each user is assumed to be an identity matrix.
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A. Capacity Region of the MIMO BC

In this example, we compute the capacity regions of the MIMO BC with a sum power constraint, a

per-antenna power constraint and sum power plus per-antenna power constraints, separately. The sum

power constraint is taken to be 10, and the per-antenna poweris taken to be 5. For the sum power plus

per-antenna power constraint case, the sum power constraint is 8, and the per-antenna power constraint

is 5. The channel matrices are chosen to beH1 =





1 0

0.2 0.6



 andH2 =





0.5 0

0.2 1



. For the case

with a sum power constraint, the algorithm is similar to thatin [6]. For the case with a per-antenna

power constraint the subgradient-based iterative algorithm developed in Section IV is applied. For the

sum power plus per-antenna power constraints case, two different algorithms are adopted. The first

one is the subgradient-based iterative algorithm. The second algorithm is a heuristic algorithm, and is

based on the result obtained in the case with a sum power constraint. With the sum power constraint

solution, the transmit covariance matrix is normalized such that each antenna’s power satisfies the

per-antenna power constraint. The regions obtained by these algorithms are shown in Fig. 3. Since the

heuristic algorithm obtains the suboptimal solution, the fourth line is just an achievable rate region of

the MIMO BC with sum power plus per-antenna power constraints. Moreover, since the per-antenna

power constraint is stricter than the sum power constraint,the capacity region of the case with a sum

power constraint is larger than that of the case with a per-antenna power constraint.

B. Weighted Sum Rate Maximization With Nonlinear Constraint

This subsection is to present the simulation result of the Example 1 in Section IV-D. Suppose that

P in (36) is 100. The channel matrices are chosen to beH1 =





2 0

0.5 0.6



 andH2 =





0.3 0.2

0 1.5



.

In Fig. 4 (a), the non-linear constraint function values areplotted versus the iteration steps. It can be

observed that the non-linear transmit covariance constraint is satisfied when the optimal solution is

achieved. In Fig. 2 (b), the achieved sum rates are plotted versus the iteration steps. The curve in Fig.

4 (b) is non-increasing, since the results in the former steps are obtained by solving the weighted sum

rate problem with relaxed constraints.
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0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

sum power constraint (optimal)
per−antenna power constraint (optimal)
per−antenna + sum constraint (optimal)
per−antenna + sum constraint (hueristic)

Fig. 3. The capacity regions for the MIMO BC with various power constraints.

C. SINR Balancing With Multiple Linear Transmit CovarianceConstraints

In this example, we consider the SINR balancing problem witha per-antenna power constraint. We

assume that each antenna’s transmit power is subject to the constraint 5, and each user’s target SINR is

γi = 1, for i = 1, 2. The channel matrix is chosen to beH1 =





1 0

0.5 0.6



 andH2 =





0.4 0

0.5 1.5



.

The convergence behavior of the algorithm in Section V-A is shown in Fig. 5. The achieved SINR for

each iteration is plotted in Fig. 5 (a). It can be observed that the curve in Fig. 5 (a) is non-increasing,

and the achieved SINR for each iteration is greater than or equal to the final result. This is because

that the optimal solution of the problem (43) is an upper bound on that of the original problem (42).

The auxiliary variable values are plotted in Fig. 5 (b). It can be seen from this figure that only one

constraint is active when the optimal solution is achieved.
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VII. CONCLUSIONS

In this paper, we have established a general Gaussian BC-MACduality, where the BC is subject to a

general linear constraint and the MAC is subject to a weighted sum power constraint. This general BC-

MAC duality can be applied to solve the capacity computationand beamforming optimization problems

with multiple convex linear/nonlinear constraints. The relationship between the new method and the

previous minimax-duality based method has also been discussed. Moreover, it has been shown that,

compared to the minimax duality the general BC-MAC duality offer greater flexibility for solving BC

optimization problems. This new duality also generalizes the conventional Gaussian BC-MAC duality.

APPENDIX

A. Proof of Corollary 1: The corollary can be derived from Proposition 1 and the relationship between

the SINR and the achievable rate (8). We will verify the corollary directly via covariance matrix

transformation, as follows.

The achievable rate of theith user of the dual MAC can be written as

r
(m)
i = log

|A +
∑i

k=1 H
H
k Q

(m)
k Hk|

|A +
∑i−1

k=1 H
H
k Q

(m)
k Hk|

(48)

= log
|I +

∑i
k=1 A

−1
H

H
k Q

(m)
k Hk|

|I +
∑i−1

k=1 A
−1HH

k Q
(m)
k Hk|

(49)

= log
|I +

∑i
k=1(HkA

−1/2)HQ
(m)
k HkA

−1/2|

|I +
∑i−1

k=1(HkA
−1/2)HQ

(m)
k HkA

−1/2|
(50)

where the eigenvalue decomposition ofA−1 is UH
ΛU , andA−1/2 = UH

Λ
1/2. According to (50),

the MAC can be viewed as avirtual MAC with (HkA
−1/2)H being its channel matrix and its noise

covariance matrix being an identity matrix. By exploiting the BC-MAC covariance algorithm in [12],

the achievable region of the virtual MAC is equal to thevirtual BC with HkA
−1/2 being its channel

matrix. Thus, the achievable rate of thei user of the virtual BC can be written as

ri = log
|I +

∑K
k=i HkA

−1/2
Qk(HkA

−1/2)H |

|I +
∑K

k=i+1 HkA
−1/2Qk(HkA

−1/2)H |
(51)

where
∑K

k=1 tr(Qk) = P . By definingQ(b)
k = A−1/2Qk(A

−1/2)H , we have
∑K

k=1 tr(AQ
(b)
k ) = P . Thus,

the achievable rate of the dual MAC with sum power constraintP is also achievable for the primal
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BC with the constraint tr(AQ) ≤ P . Similarly, we can prove that the achievable rate of the primal BC

with the constraint tr(AQ) ≤ P is also achievable for the dual MAC with the sum power constraint

P . The proof follows. �

B. Proof of Proposition 5: According to the definition of the subgradient, if[s1, s2] is the subgradient

of g(λ1, λ2) at point [λ̄1, λ̄2], then we haveg(λ̃1, λ̃2) ≥ g(λ̄1, λ̄2) + [s1, s2] ·
(

[λ̃1, λ̃2] − [λ̄1, λ̄2]
)H

for

any [λ̃1, λ̃2].

The Lagrange function of the problem (25) can be written as

L(Q, λ) =
K
∑

i=1

wiri − λ
(

λ1tr(QA1) + λ2tr(QA2)− λ1P1 − λ2P2

)

. (52)

Thus, the corresponding dual problem is

min
λ≥0

max
Q

L(Q, λ, λ1, λ2). (53)

We have

g(λ̃1, λ̃2)− g(λ̄1, λ̄2) (54)

=L(Q, λ)
∣

∣

λ̃1,λ̃2

Q=Q̃,λ=λ̃
− L(Q, λ)

∣

∣

λ̄1,λ̄2

Q=Q̃,λ=λ̄
(55)

≥L(Q, λ)
∣

∣

λ̃1,λ̃2

Q=Q̄,λ=λ̃
− L(Q, λ)

∣

∣

λ̄1,λ̄2

Q=Q̃,λ=λ̄
(56)

=− λ̃
(

λ̃1(tr(Q̄A1)− P1) + λ̃2(tr(Q̄A2)− P2)
)

+ λ̄
(

λ̄1(tr(Q̄A1)− P1) + λ̄2(tr(Q̄A2)− P2)
)

(57)

=(tr(Q̄A1)− P1)(−λ̃λ̃1 + λ̄λ̄1) + (tr(Q̄A2)− P2)(−λ̃λ̃2 + λ̄λ̄2) (58)

=(tr(Q̄A1)− P1)(−λ̃λ̄1 + λ̃λ̄1 − λ̃λ̃1 + λ̄λ̄1) + (tr(Q̄A2)− P2)(−λ̃λ̄2 + λ̃λ̄2 − λ̃λ̃2 + λ̄λ̄2) (59)

=(tr(Q̄A1)− P1)(−λ̃λ̃1 + λ̃λ̄1) + (tr(Q̄A1)− P1)(λ̄λ̄1 − λ̃λ̄1)

+ (tr(Q̄A2)− P2)(−λ̃λ̃2 + λ̃λ̄2) + (tr(Q̄A2)− P2)(λ̄λ̄2 − λ̃λ̄2) (60)

=λ̃[P1 − tr(Q̄A1), P2 − tr(Q̄A2)] · [λ̃1 − λ̄1, λ̃2 − λ̄2]
H (61)

where (61) is due to(tr(Q̄A1)−P1)λ̄1+(tr(Q̄A2)−P2)λ̄2 = 0. The proof follows. �
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C. Proof of Proposition 6: Suppose thatQ∗ is the optimal solution of the problem (36). The KKT

conditions of the problem (36) can be written as

∂
∑K

i=1wiri
∂Qi

∣

∣

∣

Qi=Q
∗
i

= λf ′(Qi)
∣

∣

∣

Qi=Q
∗
i

+Ψi, ∀i (62)

λf(Q∗) = 0. (63)

Note thatQ =
∑K

i=1Qi, and thus we havef ′(Qi) = f ′(Q) ∂Q
∂Qi

= f ′(Q). Now, let us consider the

linear constraint problem

max
Q

K
∑

i=1

wiri

subject to tr(AQ) ≤ 0

(64)

whereA = f ′(Q)
∣

∣

∣

Q=Q∗
. The KKT conditions for the problem (64) are

∂
∑K

i=1wiri
∂Qi

∣

∣

∣

Qi=Q
∗
i

= λf ′(Qi)
∣

∣

∣

Qi=Q
∗
i

+Ψi, ∀i (65)

λf(Q∗) = 0. (66)

It is easy to observe thatQ∗ satisfies the KKT conditions of the problem (64). Combining this with

Proposition 2, we can conclude thatQ∗ is the optimal solution of problem (64). The proof follows.�
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Fig. 4. The convergence behavior of the subgradient-based algorithm for the weighted sum rate maximization problem with a non-linear

constraint.
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Fig. 5. The convergence behavior of the subgradient-based algorithm for the SINR balancing problem with per-antenna power constraint.

November 5, 2018 DRAFT


