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Abstract

The best known inner bound on the two-receiver general lmasidchannel without a common
message is due to Martdnl [3]. This result was subsequentigrgbzed in [p. 391, Problem 10(c) 2] and
[4] to broadcast channels with a common message. Howevdattiee region is not computable (except
in certain special cases) as no bounds on the cardinalitts Gfuixiliary random variables exist. Nor is
it even clear that the inner bound is a closed set. The maitaclesin proving cardinality bounds is the
fact that the traditional use of the Carathéodory theoré®,main known tool for proving cardinality
bounds, does not yield a finite cardinality result. One of than contributions of this paper is the
introduction of a new tool based on an identity that relatessecond derivative of the Shannon entropy
of a discrete random variable (under a certain perturbptmthe corresponding Fisher information. In
order to go beyond the traditional Carathéodory type aenis) we identify certain properties that the
auxiliary random variables corresponding to the extreniatp®f the inner bound need to satisfy. These

properties are then used to establish cardinality boundherauxiliary random variables of the inner
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bound, thereby proving the computability of the region, &sdlosedness.
Lastly, we establish a conjecture 6f [12] that Marton’s inbeund and the recent outer bound of

Nair and ElI Gamal do not match in general.

. INTRODUCTION

In this paper, we consider two-receiver general broaddastrels. A two-receiver broadcast channel
is characterized by the conditional distributigfy, z|=) where X is the input to the channel arid and
Z are the outputs of the channel at the two receivers.Xgfy and Z denote the alphabet set &f,
Y and Z respectively. The transmitter wants to send a common mes8é&g to both the receivers and

two private messagek/; and M, to Y and Z respectively. Assume that/y, M, and M, are mutually
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independent, and/; (for : = 0, 1,2) is a uniform random variable over sgtf;. The transmitter maps
the messages into a codeword of lengtlising an encoding functiog: My x M1 x My — X", and
sends it over the broadcast chang@}, z|z) in n times steps. The receivers use the decoding functions
Uy + Y = Mo x My andd, : 2" — My x My to map their received signals t(d/\éfo(l),J\/Zl\l)

and (J\/fo(z),]\/fg) respectively. The average probability of error is then take be the probability that
(A%(l),ﬂ/éﬁ,z\%(z),]\@) is not equal to( My, My, My, Ms).

The capacity region of the broadcast channel is defined asdhef all triples(Ry, R1, R2) such
that for anye > 0, there is some integet, uniform random variabled/,, My, M- with alphabet sets
|M;| > 27E:=9) (for i = 0,1, 2), encoding functior(, and decoding function8, and?, such that the
average probability of error is less than or equat.to

The capacity region of the broadcast channel is not knowepmxin certain special cases. The best
achievable region of triple®, R;, R2) for the broadcast channel is due to Marton [Theoréern 2 3]. dfest
work was subsequently generalized in [p. 391, Problem 12]cand Gelfand and Pinsker![4] who
established the achievability of the region formed by tgkinion over random variablég V. W, XY, Z,

having the joint distributiorp(u, v, w, z,y, z) = p(u,v,w, x)q(y, z|z), of

R07 R17R2 > 0)

Ry < min(I(W;Y),I(W;2)); 1)

Ro+ Ry < I({UW;Y); )

Ro+ Ry < I(VW;Z); ?3)
Ro+Ri+ Ry < I(U:;Y|W)+I(V;ZIW)— I(U; VIW)

+min(I(W;Y),[(W; Z)). 4)

In Marton’s original work, the auxiliary random variablésV and W are finite random variables. We
however allow the auxiliary random variablesV andi¥V to be discrete or continuous random variables to
get an apparently larger region. The main result of this paperever implies that this relaxation will not
make the region grow. We refer to this region as Marton'’s lifraund for the general broadcast channel.
Recently Liang and Kramer reported an apparently largegribound to the broadcast channel [9], which
however turns out to be equivalent to Marton’s inner bour@.[Marton’s inner bound therefore remains
the currently best known inner bound on the general broadtesinel. Liang, Kramer and Poor showed
that in order to evaluate Marton’s inner bound, it sufficeseéarch ovep(u, v, w,z) for which either
IW,Y)=1(W;Z),or IW;Y) > I(W;Z)&V = constant, or I[(W;Y) < I(W;Z)&U = constant
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holds [10]. This restriction however does not lead to a caiaple characterization of the region.
Unfortunately Marton’s inner bound is not computable (gtda certain special cases) as no bounds
on the cardinality of its auxiliary random variables exiat.prior work by Hajek and Pursley derives
cardinality bounds for an earlier inner bound of Cover and gar Meulen for the special case &fis
binary, andR, = 0 [5]; Hajek and Pursley showed that can be taken as a deterministic function of the
auxiliary random variables involved, and conjecturedaiartardinality bounds on the auxiliary random
variables whenX’| is arbitrary butR, is equal to zero. For the case of non-zétg Hajek and Pursley
commented that finding cardinality bounds appears to beiderably more difficult. The inner bound
of Cover and van der Meulen was however later improved by dmar Carathéodory-type argument
results in a cardinality bound d¥||X'| + 1 on ||, and a cardinality bound ot/||X| + 1 on |V| for
Marton’s inner bound. This does not lead to fixed cardinddityinds on the auxiliary random variables
U andV. The main result of this paper is to prove that the subset aftdi& inner bound defined by

imposing extra constraintg/| < |X|, |[V| < |X|, [W| < |X| +4 and H(X|UVW) = 0 is identical to

Marton’s inner bound.

One of the main contributions of this paper is the pertudmatechnique. At the heart of this technique
lies the following observation: consider an arbitrary sefimite random variables(;, Xo, ..., X,, jointly
distributed according tpg(x1, x9, ..., ¢, ). One can represent a perturbation of this joint distributiy a
vector consisting of the first derivative of the individuabpabilitiespy(x1, x2, ..., x,) for all values of
x1, T2, ..., Tn. We however suggest the following perturbation that candpeasented by a real valued

random variable/, jointly distributed by X, Xs, ..., X,, and satisfyingE[L] = 0, |E[L|X; = 21, X2 =

T3, ..., Xn = ap]| < oo for all values ofzy, zy, ..., 2!
pe()/(\'l =1, ,)?n =z, =po(X1=21,.... Xy = 2p) - (1 +e-E[LIX) =x1,....X,, = xn]),

wheree is a real number in some interviate;, €;]. Random variabld. is a canonical way of representing
the direction of perturbation since given any subset ofdesli C {1,2,3,...,n}, one can verify that the

following equation for the marginal distribution of randorariablesX; for i € I:

~

pe(Xier = zier) = po(Xier = wicr) - (14 € E[L| Xier = zier]).

Furthermore for any set of indices C {1,2,3,...,n}, the second derivative of the joint entropy of
random variablesY; for i € I as a function ofe is related to the problem of MMSE estimation bf
from X;¢;:

9?2 =
@H(Xiel) le—o= —log e - E[E[L|X;es]?].
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Lemmal[2 describes a generic version of the above identity rlates the second derivative of the
Shannon entropy of a discrete random variable to the cavrebpg Fisher information. This identity is
to best of our knowledge new. It is repeatedly invoked in owofs to compute the second derivative
of various expressions.

It is known that Marton’s inner bound coincides with the auteund of Nair and El Gamal for the
degraded, less noisy, more capable, and semi-deterroibistadcast channels. Nair and Zizhou showed
that Marton’s inner bound and the recent outer bound of Niad Bl Gamal are different for a BSSC
channel with paramete} if a certain conjecture hoIHsln this paper, we provide examples of broadcast
channels for which the two bounds do not match. Since thenaligubmission of this paper, Nair, Wang
and Geng[[15] showed that the inequalliy/; Y)+1(V; Z)—1(U; V) < max (I(X;Y),1(X;Z)) holds
for all binary input broadcast channels. The authors emplayeneralized version of the perturbation
method introduced in this paper that also allows for adeiperturbations. The authors of [13] prove
various results that help to restrict the search space impating the sum-rate for Marton’s inner bound.

The outline of this paper is as follows. In sectioh Il, we @tuce the basic notation and definitions we
use. Sectiof Ill contains the main results of the paper @b by sectio V/ which gives formal proofs
for the results. Sectidn 1V describes the new ideas, andratipes complete the proof of theorems from
sectionV.

[I. DEFINITIONS AND NOTATION

Let R denote the set of real numbers. All the logarithms throughbis paper are in base two,
unless stated otherwise. L&{q(y, z|z)) denote the capacity region of the broadcast chanfglz|x).
We useXi.; to denote(X, Xo, ..., Xi); similarly we useYi., and Z;.; to denote(Y7,Ys,...,Y:) and
(Z1, Zs, ..., Zy,) respectively.

Definition 1: For two vectors; and v in R?, we sayv{ > o3 if and only if each coordinate off
is greater than or equal to the corresponding coordinafe oFor a setd c R, the down-setA(A) is
defined asA(A) = {7 e R?: ¥ < W for somew € A}.

Definition 2: LetCas(q(y, z|x)) denote Marton’s inner bound on the chang@l, z|z). Car(q(y, z|z)) is

defined as the union over non-negative tripl&s, k1, R») satisfying equatioris ] P] 3, ahd 4 over random

The conjecture is as follows: [Conjectur& 12]: Given ang fandom variable¥, V, X, Y, Z satisfyingl (UV;Y Z| X) = 0,
the inequality/(U;Y) + I(V; Z) — I(U; V) < max (I(X;Y),I(X;Z)) holds wheneverX, Y and Z are binary random
variables and the channgly, z|x) is BSSC with parametet.
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variablesU, V, W, X, Y, Z, having the joint distributiop(u, v, w, z,y, z) = p(u,v,w, )q(y, z|x). Please

note that the auxiliary random variableés1” and W may be discrete or continuous random variables.
Definition 3: The regiorCy: %" (¢(y, z|z)) is defined as the union of non-negative tripl&%, Ry, Ry)

satisfying equatiorls L] P] 3 ahH 4, over discrete randorablasU, V, W, XY, Z satisfying the cardinality
bounds|U/| < S,,

V| < S, and W| < Sy, and having the joint distributiop(u, v, w,z,y,z) =
p(u,v,w,x)q(y, z|z). Note thatC]SV}“S“’Sw(q(y, z|r)) C CJ%“S“I”S:” (q(y, z|z)) wheneverS, < S/, S, < S),

andS,, < SJ,.
Definition 4: Let Z(q(y, z|z)) be equal tocht " ¥H¥+ 4y 212)).

Definition 5: The regioré (¢(y, z|x)) is defined as the union over discrete random variailés W, XY, Z
satisfying the cardinality boundg/| < |X|, |[V| < |X| and |W| < |X| + 4, and having the joint
distribution p(u, v, w,x,y,z) = p(u,v,w,x)q(y, z|z) for which H(X|UVW) = 0, of non-negative
triples (R, R1, R2) satisfying equations] 1] Z] 3 afd 4. Please note that the tiefirof ¢ (¢(y, z|x))
differs from that of #(¢q(y, z|z)) since we have imposed the extra constrdif{tX|UV W) = 0 on the

auxiliaries.% (q(y, z|z)) is acomputablesubset of the regiot;(q(y, z|x)).

Definition 6: Given broadcast channgly, z|x), letCnr(q(y, z|x)) denote the union over random vari-
ablesU, V, W, X, Y, Z, having the joint distributiop(u, v, w, z,y, z) = p(u)p(v)p(w|u, v)p(z|u, v, w)q(y, z|x),

of

Ry, Ry, R

v

0;

Ry

IN

min(I(W;Y), I(W; Z));

Ry + Ry

IN

IUW;Y);

Ry + Ro

IN

I(VW; Z);

Ry+ R+ Rs

IN

HUW:Y) + I(V; Z|UW);

Ry+ R+ Rs

IN

I(VW;Z)+ I(U;Y|VW).

Cne(q(y, z|z)) is shown in [11] to be an outer bound to the capacity regiorhefliroadcast channel.
This outer bound matches the best known outer bound disdusgd4] when Ry = 0. An alternative

characterization of the set of triple®, R;, R2) in CnEe(q(y, z|z)) is as follows [12]: the union over
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random variabled/, V, XY, Z having the joint distributiorp(u, v, z,y, z) = p(u, v, x)q(y, z|z), of
Ry, Ry > 0
Ry < I(U;Y);
Ry < I(V;2);

Ri+Ry < I(U;Y)+I(V;Z|U);

Ri+Ry < I(ViZ)+I(U;Y|V).

[1l. STATEMENT OF RESULTS

Theorem 1:For any arbitrary broadcast channgly, z|x), the closure ofCys(q(y, z|z)) is equal to
% (q(y, z|)).

Corollary 1: Cps(q(y, z|z)) is closed sinc&s (¢q(y, z|x)) is also a subset afy;(q(y, z|x)).

Theorem 2:There are broadcast channels for which Marton’s inner banutthe recent outer bound

of Nair and El Gamal do not match.

V. DESCRIPTION OF THE MAIN TECHNIQUE

In this section, we demonstrate the main idea of the paperdaer to show the essence of the proof
while avoiding the unnecessary details, we consider a singbblem that is different from the problem
at hand, although it will be used in the later proofs.

Given a broadcast channely, z|z) and an input distributiorp(x), let us consider the problem of

finding the supremum of
U, YY)+ I(V;2) = I(U; V) + M(U;Y) +~vI1(V; Z)

over all joint distributionsp(uv|z)p(x)q(y, z|z) where A and v are arbitrary non-negative reals, and
auxiliary random variable#’, V' have alphabet sets satisfyifig| < S, and |V| < S, for some natural
numbersS, andS,. For this problem, we would like to show that it suffices togake maximum over
random variabled/ and V' with the cardinality bounds ofhin(|X'|, S,,) andmin(|X|, S,). It suffices to
prove the following lemma:

Lemma 1:Given an arbitrary broadcast channgl, z|x), an arbitrary input distributiom(z), non-

negative reals\ and-~, and natural numberS, andS, whereS,, > |X| the following holds:
SUPyV s Xy Ziju|<Suvi<s, LU Y) + IV Z) = I({U; V) + X(U;Y) +41(V; Z) =
HU;Y)+I(V;2) = I(U; V) + MX(U;Y) +~I(V; Z),
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where random variable§, V', XY, Z satisfy the following properties: the Markov chaifl/ — X =
Y Z holds; the joint distribution o, Y, Z is the same as the joint distribution &f Y, Z, and furthermore

U| < Sy, |V| < S,

A. Proof based on the perturbation method

Since the cardinalities of/ and V' are bounded, one can show that the supremund(of;Y") +

IV, 2)—-1(U;V)+ M(U;)Y) +~I(V;Z) is a maximmE, and is obtained at some joint distribution

NN NN A

AN N N N A

(U,V,X,Y,Z). One can also easily show the existence of approp(iEtd”, X,Y, Z) if p(u) = 0 for
someu € U. Therefore assume th&i| = S, andp(u) # 0 for all u € Y. Take an arbitrary non-zero
function L : U x V x X — R whereE[L(U,V, X)|X]=0. Let us then perturb the joint distribution of
U,V,X,Y, Z by defining random variable§, V, X,Y and Z distributed according to

p(U=uV=v,X=0Y=yZ=z)=
po(U:u,V:v,X:x,Y:y,Z:z)-(1+6-E[L(U,V,X)\U:u,V:v,X:x,Y:y,Z:z]),

or equivalently according to

Yy
X =2Y=yZ=2)(1+e L(u,v,z)) =

=
=N
-
Il
IS
<
Il
[

poU=uV=0,X=ua)q(Y =y, Z=2X=2x)(1+€-L(u,v,2)).

The parametet is a real number that can take values|ire;, €3] wheree, ande, are some positive
reals representing the maximum and minimum values 0&. min,, ,, , 1 —€; - L(u, v, ) = min, 4, 1 +
€ - L(u,v,z) = 0. SinceL is a function ofU, V and X only, for any value ofe, the Markov chain
UV - X = YZ holds, andp(Y =y, Z = 2|X = z) is equal tog(Y =y, Z = z|X = z) for all z,y, z
wherep(X = z) > 0. FurthermoreE[L(U, V, X)|X] = 0 implies that the marginal distribution of is

preserved by this perturbation. This is because

pe(X =2) =po(X =) - (1 + ¢ E[L(U,V, X)|X = a]).

2Since the ranges of all the random variables are finite anddhditional mutual information function is continuouse thet
of admissible joint probability distributions(u, v, z,y, z) where(UV;Y Z|X) = 0 andp(y, z, ) = q(y, z|z)p(z) will be a
compact set (when viewed as a subset of the Euclidean sfdeefact that mutual information function is continuous lrep that
the union over random variablég V, X, Y, Z satisfying the cardinality bounds, having the joint distition p(u, v, z,y, z) =
p(u,v|z)p(z)q(y, z|x), of I(U;Y)+I(V;Z) — I(U; V) + X[(U;Y) +~vI(V; Z) is a compact set, and thus closed.
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This further implies that the marginal distributions ¥ifand Z are also fixecH
The expressiod (U;Y) + I(V; Z) — I(U; V) + M(U;Y) +vI(V; Z) as a function of achieves its
maximum ate = 0 (by our assumption). Therefore its first derivativecat 0 should be zero, and its
second derivative should be less than or equal to zero. Wighes®llowing lemma to compute the first
derivative and the second derivative of the above expmssio
Lemma 2:Given any finite random variabl&, and real valued random variablewhere |E[L|X =
x]\ < oo for all z € X, andE[L] = 0, let random variableX be defined on the same alphabet
set asX according top. (X = z) = po(X = z) - (1 + € E[LIX = z]), wheree is a real number
in the interval[—€;,%)]. € and & are positive reals for whichnin, 1 — & - E[L|X = 2| > 0 and
min, 1 + € - E[L|X = 2] > 0 hold. Then
1) H(X) |emo= H(X),and 2 H(X) |c—o= H(X) whereH(X) is defined adi(X) = 3, ., p(X =
z)E[L|X = z]log p(X—lzx) for any finite random variabl& and real valued random variablewhere
|E[L|X = ]| < oo forall z € X.

2) Ve € (—€1,€2), C?—E{Z;H()?) = —loge- E[%] = —log(e) - I(e) where the Fisher Information

I(e) is defined asl(¢) = 3", (%loge (pe(X = x)))zpe(f( = ). In particular & H(X) |c—o=
—log e - E[E[L|X]?].
3) H(X) = H(X) + eH(X) — E[r(e- E[L|X])] wherer(z) = (1 + z)log(1 + z).
Using the above lemma, one can compute the first derivatigdesan it to zero, and thereby get the

following equation:
IU;Y)+ I (V3 Z2) — I (U V) + M (U Y) +~1(V; Z) =0, (5)

wherel(X;Y) = Hi(X)-H(X|Y) = H (Y)-HL(Y[X), HL(X|Y) =3 oy p(Y = y) HL(X]Y =
y), and H(X|Y =y) = > cop(X = z|Y = y)E[L|X = 2,Y =y logm for any finite
random variablest andY and real valued random variablewhere [E[L|X = z,Y = y]| < oo for all
z € X andy € ).

In order to compute the second derivative, one can expandtpeession through entropy terms
and use Lemma]2 to compute the second derivative for each ¥lencan use the assumption that
E[L(U,V, X)|X] = 0 (which impliesE[L(U,V, X)|Y] = 0 andE[L(U, V, X)|Z] = 0) to simplify the
expression. In particular the second derivative}b(f/) and H(Z) at e = 0 would be equal to zero

(as the marginal distributions af and Z are preserved under the perturbation), the second desvati

3The termsE[L(U, V, X)|Y] = 0 andE[L(U, V, X)|Z] = 0 must be zero il2[L(U, V, X)|X] =0
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of I(U;Y) ate = 0 will be equal to—loge - E[E[L(U,V, X)|UJ?] + loge - E[E[L(U,V, X)|UY]?,
the second derivative of (V;Z) at ¢ = 0 will be equal to —loge - E[E[L(U,V, X)|V]?] + loge -
E[E[L(U,V, X)|VZ)2], and the second derivative ofI(U;V) at e = 0 will be equal to+loge -
E[E[L(U,V, X)|U)?| +loge - E[E[L(U,V, X)|V]?] —loge-E[E[L(U, V, X)|UV]?]. Note that the second
derivatives ofl (U;Y) andI(V; Z) are always non-negative. Since the second derivative ahtheession
HU:Y)+I(V; Z)—1(U; V)+M(U; Y )+~4I(V; Z) ate = 0 must be non-positive, the second derivative of
I(ﬁ; }7)+I(‘7; 2)—[(5*; 17) must be non-positive at= 0. The second derivative of the latter expression
is equal to+loge-E[E[L(U,V, X)|UY]?] +loge-E[E[L(U,V, X)|V Z]?| - log e-E[E[L(U, V, X)|UV]?].
Hence we conclude that for any non-zero function/ x V x X — R whereE[L(U,V, X)|X] = 0 we

must have:
E[E[L(U,V, X)|UY)?| + E[E[L(U,V, X)|V Z)?] — E[E[L(U,V, X)|UV]?] < 0. (6)

Next, take an arbitrary non-zero functidi : i/ — R whereE[L'(U)|X] = 0. Sincel| = S, > |X]|,
such a non-zero function’ exists. Note that the direction of perturbatibhbeing only a function ot/

implies that

In other words, the perturbation only changes the margiistildution of U, but preserves the conditional
distribution ofpo(V = v, X =2, Y =y, Z = 2|U = u).
Note that

E[E[L/(U)[UV]?] = E[E[L(U)|UY]?] = E[L/(U)?]

This implies thae[E[L'(U)|V Z]?] should be non-positive. But this can happen only WR&lH (U)|V Z] =
0. Therefore any arbitrary functioh’ : &/ — R whereE[L'(U)|X] = 0 must also satisfE[L'(U)|V Z] =
0. In other words, any arbitrary direction of perturbatibhthat is a function ofU and preserves the

marginal distribution ofX, must also preserve the marginal distributionla¥

We next show that the expressioti/;Y )+ 1(V:Z)—I(U;V)+ M (U;Y) +~I(V; Z) as a function

*Note thatpe(V =v,Z = 2) = po(V =v,Z = 2) - (1 + ¢ - E[L(U,V, X)|V = v,Z = 2]) = po(V = v, Z = 2).
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10
of e is constar@ Using the last part of Lemmnid 2, one can write:
I(U;Y)=1(U;Y) + e I(U;Y) = E[r(e- E[LIU))] — E[r(e- E[L]Y])] + E[r(c- E[LIUY])] =
I(UY) +e I(U;Y), ()

wherer(z) = (1 + z)log(1 + z). Equation [(¥) holds becaus&lL|Y] = 0 and E[L|U] = E[L|UY].

Similarly using the last part of Lemma 2, one can write:

1({U;V) = I(U;V) + ¢ I(U; V) = E[r(e- E[L|U])] —E[r(c-E[LIV])] + E[r(c- E[LIUV])] =

IU V) +e-I,(U;V) (8)

wherer(z) = (1 + z)log(1 + z). Equation[(8) holds becaudL|V] = 0 andE[L|U] = E[L|UV]. One
can similarly show that the term(?’; 2) can be written ad(V;Z2) + € - IL(V; 2) = 0. Therefore the
expression (U;Y) + I(V; Z) — I(U; V) + M (U:Y) +~vI(V; Z) as a function of is equal to

HU;Y) 4+ 1(V; Z) = I(U; V) + A(U; Y) + 71 (V3 Z) +

e (IL(U;Y) +IL(V; Z) = IL(U; V) + ML(U;Y) +4IL(V; Z)). 9)

Equation [(b) implies that this expression is equal (0’; Y)+1(V; Z) —I(U;V)+XI[(U;Y)+~I(V; Z).
Therefore the expressiol(U;Y) + I(V; Z) — I(U; V) + M(U;Y) + vI(V; Z) as a function of is
constant. Since the functiall is non-zero, setting = —¢; or ¢ = €, will result in a marginal distribution

on U with a smaller support thafi since the marginal distribution df is being perturbed as follows:
pe(U =u) = po(U = u) - (1 + €L/ (u)).

This perturbation does not increase the support and wouldedse it by at least one whenis at its
maximum or minimum, i.e. whea = —¢, or e = €. Therefore one is able to define a random variable
with a smaller cardinality as that df while leaving the value off (U;Y) + I(V;Z) — I(U;V) +
M(U;Y)+~I(V; Z) unaffected.

Discussion:Aside from establishing cardinality bounds, the above sugpt implies that if the max-
imum of I(U;Y) + I(V;Z) — I(U;V) + MXI(U;Y) +~I(V;Z) is obtained at some joint distribu-
tion po(u,v,x,y,2) = po(u,v,x)q(y, z|x), equationd 5 andl6 must hold for any non-zero function

L:UxVxX— RwhereE[L(U,V, X)|X] = 0. The proof used these properties to a limited extent.

>The authors would like to thank Chandra Nair for suggesthig shortcut to simplify the original proof.
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B. Alternative proof

In this subsection we provide an alternative proof for LerfimAssume that the maximum &{U; Y)+
IV, Z) - I(U;V) + M(U;Y) +~I(V; Z) is obtained at some joint distributiopy(u, v, z,y,2) =
po(u,v,x)q(y, z|x). Without loss of generality we can assume that) > 0 for all u € U. Let us fix
po(v, z|u)q(y, z|x) and vary the marginal distribution &f in such a way that the marginal distribution of
X is preserved. In other words, we consider the set of p.m(fi$ satisfying} _,, , ¢(u)po (v, z|u) = po(z)
for all z € X. We can then view the expressiol/; Y )+ 1(V; Z)—1(U;V)+X[(U;Y)+~I(V; Z) as a
function of a p.m.f(u) defined ori{. HereU, V., X, Y, Z are jointly distributed ag(u)po (v, z|u)q(y, z|x).
We claim that/(U;Y) + I(V; Z) — I(U; V) + AI[(U;Y) + vI(V; Z) is convex function over(u). To
see this note thai(U;Y) + I[(V;Z2) — I(U;V) =H(Y) - HY|U) - HV|Z) + H(V|U). Since the
marginal distribution ofX is preservedH (Y) is fixed. The term—H(Y'|U)+ H(V|U) is linear inq(u),
and—H (V|Z) is convex ing(u). Thereforel (U;Y)+1(V;Z)—I(U;V) is a convex function ovey(u).
Next, note that\I(U;Y) = AH(Y) — AH(Y|U) is linear ing(u), andvI(V;Z) = vH(Z) —~vH(Z|V)
is convex ing(u). The latter is because the marginal distribution¥fis preserved and hendé(Z2) is
fixed. All in all, we can conclude that(U; Y )+ I(V;Z) —I(U; V) + A (U;Y)+~I(V; Z) is convex in
q(u). This implies that it will have a maximum at the extreme peiaf the domain. We claim that any
extreme point of the domain corresponds to a p4if) with support at mostX|. This completes the
proof. The domain of the function is the polytope formed by #et of vectorgq(u) : v € U) satisfying

the following constraints
q(u) >0, Yuel

> q(u)=1

ueU

> q(wpo(v, zlu) = po(x), VreX

U,V

Note that the equatioh_ ., ¢(u) = 1 is redundant and implied by the others becaluse) | po(z) =
>r 2w AWpo(v,xlu) = 32,57, q(w)po(v,zu) = >, q(u). Thus, we can describe the domain of
the function by

q(u) >0, Yuel

> q(u)po(v, zlu) = po(z), VreX

Any extreme point of this polytope must lie on at leti#t hyperplanes because the polytope lieRiH!.

Because there arer’| equations of the typ®_, , ¢(u)po(v, z[u) = po(z), any extreme point has to pick
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up at leasti/| — |X| equation of the typeg(u) > 0. This implies thatg(u) = 0 for at least|i/| — |X|
different values ofu € U. Therefore the support of any extreme point must be less tinagqual to
U = (Ul = X)) = |x].

V. PROOFS

Proof of Theoreni]l: We begin by showing that for any natural numbets S,, S,,, one has
Cai* % (aly, 1)) < T g
1) Cip ¥ (aly, =le)) € O q(y, 2la)).

2) Cor S gy, 2|2)) I gy, 212)).

q(y, z|z)) = ZL(q(y, z|z)). This is proved in two steps:

The first step that imposes a cardinality bound on the alphsdteof W follows just from a standard
application of the strengthened Carathéodory theoremeotkel and is left to the reader. The difficult

part is the second step. To show this it suffices to prove mereiglly that

Crr M aly. 210) € T gy, 2la)) (10)
whereC;%* is defined as the union of real four tupleR), R}, R, R),) satisfying

Ry < min(I(W;Y),I(W;2)); (11)

Ry, < I({UW;Y); (12)

Ry < I(VW;Z); (13)

R, < IU;Y|W)+I(V;Z|W)—I(U;V|W)

+min(I(W;Y), I(W; 2)). (14)

over auxiliary random variables satisfying the cardiyatioundsi/| < S, |[V| < S, and|W| < S,,. Note

that the regiorCy:"%°* specifiesCy">", since given any(u,v, w,z,y,z) = p(u,v,w, )q(y, z|z)

S.,50

the corresponding vector rﬁff is providing the values for the right hand side of the 4 inditjea

that define the regiod}; >, Also note thaiCy;_;(q(y, z|x)) is defined as a subset &f*, and not
RY.
It is proved in AppendiX A thaf,’jsv}“_i”’|x|+4(q(y, z|z)) is convex and closed for anfy, andS,. Thus,

to prove equatior (10) it suffices to show that for any real\s, A3, A4,

max Z N R <
4

(R, Ry, Ry, Ry )eCh 7w ¥ 2

> MR

1=1:4
It suffices to prove this for the case af > 0 for i = 1 : 4, since if \; is negative for some, R, can

(R@R;Rg,m)ed’“ P

be made to converge tecco causinngz1 i R. to converge toxo on both sides.
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Take a point(R}, Ry, R}, R)) € C%’_‘?’WH that maximizesy ", , , \;R;. Corresponding to the point
is a joint distributionp(u, v, w, x) where|U| < S,, |V| < S, and|W| < |X|+ 4 and
> AR =M min(I(W;Y), I(W; 2)) + M I(UW;Y) + A I(VWV; Z)
1=1:4

+ A (min(I(W;Y), [(W; 2)) + I(U; Y|W) + I(V; ZIW) — I(U; V|W)).

Let us fixp(w, z). We would like to defing (@, 5w, z) such thatU| < | X|, |V| < | X| achieving the same
or larger weighted sum. Because we have fixéd, =), the termsI (W;Y) andI(W; Z) are fixed. Since
HUW;Y) = IW;Y) + 3, p(w)(U; YW = w), (VW;Z) = IW;2Z) + 3, p(w)I(V; Z|W =
w) and I(U; Y|W) + I(V; Z|W) — I{U; VW) = S, p(w)[I(U; YW = w) + I(V; Z|W = w) —
I(U;VIW = w)], we can construcp(u, v, z|w) for eachw individually. In other words, given the

marginal distributionp(x|w), we would like to construcp(u, v, z|w) such that
MNI(U; YW = w) + NIV ZIW = w) + M (I{U; YW = w) + [(V; ZIW = w) — [(U; VW = w)) <
MI(U; YW =w) + M I(V; ZIW = w) + M(I(T; YW = w) + I(V; ZIW = w) — I(T; VIW = w)).

When )\, > 0, after a normalization we get the problem studied in sedi@nWhen )\, = 0, clearly
U =V = X works. This completes the proof. Thus, we have proved thatfty arbitrary natural
numbersS,,, Sy, Sy, One hasgi}”’s“’Sw(q(y,z]w)) C Cﬁl’lxl’lxlﬁ(q(y,z]w)) = Z(q(y, z|z)).

We now complete the proof of the theorem. In Appendicés B [anave€ prove that the closure of
Cm(q(y, 2|x)) is equal to the closure ¢fjg 5 ¢ ~q C%’S“’Sw(q(y,z]m)), and that% (q(y, z|z)) is equal
to 2 (g(y, z|x)). Using the result thatS % (q(y, zlz))  CL gy 212)) = Lq(y, 2I2)), we
get that the closure @y, (¢(y, z|x)) is equal to the closure a¥(¢(y, z|z)). Lastly note that? (¢(y, z|z))
is closed because of the cardinality constraints on itsliamxirandom variable. [ |

Proof of Theorerhl2:We construct a broadcast channel with binary input alphfmbethich Marton’s
inner bound and the recent outer bound of Nair and El Gamalodoratch.

We begin by proving that for any arbitrary binary input broast channet(y, z|x) such that for all
yeYandze Z,qY =ylX =0), ¢qY =ylX =1), ¢(Z =2/X =0) andq(Z = z|X = 1) are

non-zero, the following holds:

6Since the ranges of all the involved random variables aridirand the conditional mutual information function is tinoous,
the set of admissible joint probability distributiop$u, v, w, z,y, z) where (UVW ;Y Z|X) = 0 and p(y, z|z) = q(y, z|x)
will be a compact set (when viewed as a subset of the ambiecltdean space). The fact that mutual information functisn i
continuous implies that the Marton region defined by takimg tinion over random variabld$, V, W, XY, Z satisfying the

cardinality bounds is a compact set, and thus closed.
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Lemma:lf Cas(q(y, z|x)) = Cne(q(y, z|z)), the maximum sum rat&; + Ry over triples(Ry, R1, R2)

in Marton’s inner bound is equal to

sweyasley TTWY) + (L= NIW;2) + 3, p(w)T(p(X = 1[W = w))),

W =2

max <m1n7€[0,1] (max

MAX s, V)p(elun)a(y, 2l2) HU:Y) + 1V 2 )>’ (15)
U| = V| = 2,1(U; V) = 0, H(X|UV) = 0
whereT'(p) = max {I(X;Y),1(X;Z)|P(X =1) = p}.

Before proceeding to prove the above lemma, note that if #peession of equation 15 turns out to
be strictly less than the maximum of the sum r&e+ Ry over triples(Ry, R1, R2) in Cne(q(y, z|z))
(which is given in [12]), it will serve as an evidence ©1;(q(y, z|x)) # CnE(q(y, z|x)). The maximum
of the sum rateR; + Ry over triples(Ry, R1, Rz2) in Cyge(q(y, z|z)) is known to be[[1R2]

max min (I(U;Y) + I(V; 2),I(U;Y) + I(V; Z|U), 1(V; Z) + I(U; Y|V)),
p(u, v, )q(y, z|z)
which can be written as (see Bound 4 in][12])
max min (I(U;Y)+ I(V; Z),I(U;Y) + 1(X; Z|U), 1(V; Z) + I(X; Y |V)).

p(u, v, )q(y, z|x)
Ul =|V|=3,I(U;V|X)=0

The constrainf (U; V| X) = 0 is imposed because the outer bound depends only on the miangin, x)
and p(v,z). There are examples for which the expression of equatiorufrfs tout to be strictly less
than the maximum of the sum rafe; + Ry over triples(Ry, R1, R2) in Cne(q(y, z|z)). For instance
given any two positive reals and g in the interval(0,1), consider the broadcast channel for which
(X =V =12[=2,p(Y =0[X =0) =, p(Y =0[X =1) = 8, p(Z = 01X =0) =1 -5, p(Z =
0|X =1) =1 — a. Assuminga = 0.01, Figure[1 plots maximum of the sum rate 6w (q(y, z|x)),
and maximum of the sum rate @y, (q(y, z|x)) (assuming thaCnz(q(y, z|z)) = Cam(q(y, z|x))) as a
function of 5. Where the two curves do not match, Nair and El Gamal's outentd and Marton’s inner
bound can not be equal for the corresponding broadcast ehann

Proof of the lemmaThe maximum of the sum ratR; + Ry over triples(Ry, R, R2) in Cas(q(y, z|x))

is equal to
max U, YW)+ IV, ZIW) - I(U; VW) +min(I(W;Y),I(W;Z)). (16)
p(uvvvwvx)Q(yvzlx)
| =2,|V| =2

H(X|UVW) =0
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Sum rate curves for a=0.01
0.9 T T T

2

1

Maximum of R_+R

Fig. 1. Red curve (top curve): sum rate 0w z(q(y, z|z)); Blue curve (bottom curve): sum rate f6h,(q(y, z|x)) assuming
that Cve(q(y, z|z)) = Ca(q(y, z|z)).

The proof consists of two parts: first we show that the abovaression is equal to the following
expression:

max < max min (I(W; Y), I(W; Z)) + Zp(w)T(p(X =1|W =w)), (17)
p(wz)q(y, z|z) w

max I(U;Y)—I—I(V;Z)>.
p(u, v)p(zluv)q(y, z|z)
U| = V| =2, 1(U; V) = 0, HX|UV) = 0

Next, we show that the expression of equafioh 17 is equalddltb expression given in the lemma.
The expression of equatidn116 is greater than or equal to xtpeession of equatioiIEV.For the
first part of the proof we thus need to prove that the expressfoequatior 16 is less than or equal
to the expression of equatign]17. Take the joint distribup¢u, v, w, x) that maximizes the expression

of equationI6. Let/ = (U,W) andV = (V,W). The maximum of the sum rat& + R, over

Consider the following special cases: 1) givéh= w, let (U, V) = (X, constant) if I(X;Y|W =w) > I(X; Z|W = w),
and (U,V) = (constant, X) otherwise. This would produce the first part of the expresgjiven in the lemma. 2) Assume

that W is constant, and/ is independent of”. This would produce the second part of the expression ginghé lemma.
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triples (Ro, R1, Ra) in Cnr(q(y, 2|x)) is greater than or equal toin (I(T;Y) + I(V; Z),I(U;Y) +
I(V;Z|U),I(V; Z) + I(U; Y|V)) (see Bound 3 in[[12]). Sinc€nr(q(y, 2|z)) = Calq(y, z|z)), we

must have:
min (I(UW; )+ I(VW;Z2), I[([UW:;Y)+ I(VW; ZIlUW), [(UW; Z) + I(UW;Y|VW)) <
HU;YW)+ I(V; ZIW) — L({U; VIW) + min(I(W;Y), [(W; Z)).

Or alternatively

min <maX(I(W; Y),IW;2))+ 1(U; VW),
I(W:Y) — min(I(W;Y), I(W; 2)) + 1(U; VIW Z),
I(W: Z) — min(I(W; Y), [(W; Z)) + I(U: V]WY)) <0.

Since each expression is also greater than or equal to 2dessh one of the three terms must be equal
to zero. Therefore at least one of the following must hold:

1) I(W;Y)=I(W;Z)=0andI(U;V|W) =0,

2) I(U;V|WY) =0,

3) I(U;VIWZ)=0.
If (1) holds, I(U;Y|W) + I(V; Z|W) — I(U; VIW) + min(I(W;Y), [(W; Z)) equalsI(U;Y|W) +
I(V; Z|W). Supposemax.,,)so [(U; YW = w) + I(V; Z|W = w) occurs at somev*. Clearly
IU;Y|W)+I(V; Z|W) < I(U;Y|W = w*) + I(V; Z|W = w*). LetU,V, X,Y and Z be distributed
according top(u, v, z,y, z|w*). I({U; V) = I(U; V|W = w*) = 0. Thereforel(U; Y |W)+ I(V; Z|W) —
I(U; VW) +min(I(W;Y),I(W; Z)) is less than or equal to

max IU;Y)+1(V; Z).

p(u, v)p(z|uv)q(y, z|z)
U=V =2,I1U;V)=0,HX|UV)=0

Next assume (2) or (3) holds, i.&(U; V|WY) =0or I[(U;V|WZ) = 0. We show in AppendixD that
for any value ofw wherep(w) > 0, eitherI(U; V|W = w,Y) =0or [(U; V|W = w, Z) = 0 imply that
IU; YW =w)+I(V; ZIW = w)—I(U; VIW = w) < T(p(X = 1|W = w)). Thereforel (U; Y |W)+
I(V; ZIW) = I(U; VIW) + min(I(W;Y), I(W; Z)) < min(I(W;Y),I(W;2)) + >, p(w)T (p(X =
1|W = w)). This in turn implies that (U; Y |W) + I(V; Z|W) — [(U; V|W) +min(I(W;Y), I(W; Z))
is less than or equal to

max  min(I(W;Y),I(W;2)) + > pw)T(p(X = 1|W = w)).

p(w, x)q(y, z|z)
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This completes the first part of the proof.
Next, we would like to show that the expression of equalionsl&qual to the the expression given

in the lemma. In order to show this, note that (see Obsenvdtiof [13])

max  min(I(W;Y),I(W;2)) + > _ pw)T(p(X = 1|W = w)) (18)

p(w, z)q(y, z|z)

is equal to

min_( max YVIW,Y)+ (1 —-y)IW;Z)+ Zp(w)T(p(X =1W =w))). (19)
YOI pwaa(y, #le) w
W] =2

The expression given in equatibnl 18 can be written as

( n)aa(x . min (I(W;Y)+Y_ pw)T(p(X = W = w)), [(W; 2)+Y_ p(w)T(p(X = W = w))).
p(w,x)qly, z|x w w

This expression can be rewritten as

min_( max YVIW;Y)+ (1 —y)I(W;Z) + Zp(w)T(p(X = 1W =w))).
VEOA pwa)q(y, 2|) w

It remains to prove the cardinality bound of two @n. This is done using the strengthened Carathéodory
theorem of Fenchel. Take an arbitrasyw, x)q(y, z|x). The vectorw — p(W = w) belongs to the set

of vectorsw — p(W = w) satisfying the constraintgwp(W = w) = 1, p(W = w) > 0 and
pX =1)=> pX =1W = w)p(W = w). The first two constraints ensure that— p(W = w)
corresponds to a probability distribution, and the thirsch&toaint ensures that one can define a random
variable W, jointly distributed with X, Y and Z according top(w, x)q(y, z|z) and further satisfying
p(X = z|W = w) = p(X = z|W = w). Sincew — p(W = w) belongs to the above set, it
can be written as the convex combination of some of the exrpoints of this set. The expression
Yol =HZW = w) —yHY|W = w) +TpX = 1|{W = w))p(W = w) is linear in
p(W = w), therefore this expression far — p(W = w) is less than or equal to the corresponding
expression for at least one of these extreme points. On ther diand, every extreme point of the set
of vectorsw — p(W = w) satisfying the constraintgwp(W = w) = 1, p(W = w) > 0 and
pX=1)=>, pX=1W= w)p(W = w) satisfies the property that = w) £ 0 for at most two
values ofw € W. Thus a cardinality bound of two is established. |

Proof of Lemmd12: The equationH (X) = H(X) + eHp(X) — E[r(e - E[L|X])] wherer(z) =
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2
15f r(x)=(1+x)log(1+x)
Al
osf
ol
-05
-1 05 0 05 1

Fig. 2. Plot of the convex functiom(z) = (1 + z)log(1 4 z) over the interval[—1, 1]. Note thatr(0) = 0, 5=

log(1 + x) + log(e) and aa—;r(:c) = kﬁ(;) > 0.

(1+ 2)log(1 + z) is true because:
H(X) = = Y5 pe(®) log pe(%)
=—2zpo(@) (L + ¢ E[L|X =7]) - log (po@) (14 e -E[L|X = 53]))
=—>2p0(@)(1+ € E[LIX =7]) - [log <p0(£)> + log <1 +e-E[LIX = f]ﬂ
— HOX) - S5 m@ELLIX = 1oz (@) ) -
Y p0(@) (1 + ¢ E[LIX = 7)) - log <1 +e E[LIX = 55]>
= H(X)+eH(X) —E[r(e-E[L|X])].
_ log(e)

Next, note that-(0) = 0, 6%7“(3;) =log(1 + x) + log(e) and 66—;27’(:5) = T3. - We have:

0 (X) = Hy(X)—E[E[L|X]{log(1+e€ -E[L|X])+log e}] = H(X)—E[E[L|X]log(1+¢-E[L| X])],

Oe
where ate = 0 is equal toH(X).

Next, we have:

2 H(X) = — 2E[E[L|X]log(1 + ¢ - E[L] X])]

Oe?

E[L|X E[L|X]?
~E[E[LIX ]HJTM&] loge] = —loge- E[—1+E[.E|[L—}|x]]
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On the other hand,
o~ 2 o~
0=y, (aﬁ log, (pe (X = x>>> p(X =) =
2
5. (%106, (X =) (14 BILX =2]) ) ) (X =) (1+ € BILLX = a]) -
2
. (108, 1+ e BILX =) ) ol =) (14 ¢ BILIX =) =

2
>, (%) po(X =) (1+ ¢ E[LIX = a]) =

E[L| X =x]? E[L|X]?
e tremmmapo(X = ) = E[ i)

APPENDIX A

In this appendix we show thﬂ%’_‘?"xw‘(q(y,z\x)) is convex and closed for any, and.S,. We
7S'Uisw
I

begin by proving that the regkﬁﬁ; is closed. Since the ranges of all the involved random viegb

are limited and the conditional mutual information funatis continuous, the set of admissible joint
probability distributionsp(u, v, w, z,y, z) where(UVW:;Y Z|X) = 0 andp(y, z|x) = q(y, z|x) will be
a compact set (when viewed as a subset of the ambient Euckigieae). The fact that mutual information
function is continuous implies that the union over randomiakdes U, V, W, X,Y, Z satisfying the
cardinality bounds, having the joint distributigriu, v, w, z,y, 2) = p(u,v,w,z)q(y, z|x), of the region

defined by equation$ (I[1-14) is compact, and thus closed.

S, S, | X[ +4 Sy,Suw

Next we prove thaf, ;" (q(y, z|z)) is convex. Sincé’;\q;’_l S, | X|+4

(q(y, z|z)) is a subset of s> ¥4 (4 (y, z|2))

as mentioned in step 1 in the proof of Theorgn 1, it sufficeshtmsthatUg, -, Cyi2 7™ (a(y, 2|2))

is convex. Take two arbitrary points?y, Ry, ..., R4) and (R, Ry, ..., Ra) in Ug, 50 Coi2 7 (a(y, 2|2)).

Corresponding toR;, ..., Ry) and(va, ey RZ) are joint distribution®g (u, v, w, z,y, z) = po(u, v, w, z)q(y, z|z)

U| = S, V| = |V| = S, and furthermore the following equations are satisfled:< min(I(W;Y), I(W; Z)),
Ry < I{UWY), ..., Ry < min(I(W;Y), [(W: Z)), Ry < I(UW;Y), ... etc.

Without loss of generality we can assume th&t V', W, X,Y,Z7) and (U,V,W,X,Y, Z) are in-

dependent. Let) be a uniform binary random variable independent of all presiy defined ran-

dom variables. Le{U,V, W, X Y, Z) be equal to(U,V,WQ,X,Y,Z) when@ = 0, and equal to
(U,V,WQ,X,Y,Z) when@ = 1. One can verify thap(Y = y,Z = 2|X = 2) = oY = y,Z =
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—

2| X =), ([UVW;YZ|X) =0, and furthermore

~

H(OW;Y) > Liuw;y) + L1(0Ow;Y)

Hence(1Ri + $R1, $ Ry + L Ra, ..., s R4 + L Ry) belongs to g -, Cri- " (a(y, z|z)). Thus
Suysvysw Su,Sv, X|+4 .
Us, >0 Carr """ (a(y, z|lz)) = Cyp 7 I+ (4(y, 2|2)) is convex.
APPENDIX B

In this appendix, we prove that the closure@f (¢(y, z|z)) is equal to the closure of
Us,.s..5,50Cap”>""" (a(y, 2|x)). In order to show this it suffices to show that any trigley, R, Ry) in
Car(qly, 2|2)) is alimit point of U, ¢ g o Cap ™" (aly, z|z)). Since(Ro, Ry, Ra) is inCar(q(y, 2]2)),
random variable$/, V, W, X,Y and Z for which equation§]1,]2,] 3 arid 4 are satisfied exist. Firsirass
U,V,W are discrete random variables taking valueqin2,3,...}. For any integem, let U,,, V,, and
W, be truncated versions d@f,V and W defined on{1,2,3,...,m} as follows:U,,,V,, andW,, are

jointly distributed according te(U,, = u, V,, = v, Wy, = w) = p’gﬁ?g;ﬁ’n%ﬁ% for everyu, v and

w less than or equal te». Further assume that,,, Y,,, and Z,, are random variables defined af )
and Z wherep(Y,, =y, Zm = 2, X = 2|Upy =0, Vi, =0, Wy, =w) =p(Y =y, Z =2, X =z|U =
u,V =v,W = w) for everyu, v andw less than or equal tm, and for everyz, y andz. Note that the
joint distribution ofU,,,, V., Wi, X1, Yy, @and Z,,, converges to that o/, V, W, X, Y andZ asm — cc.
Therefore the mutual information termdéW,,,; Ys,,), I(Wi; Zi), I(Wi, U Vi), ... (that define a region
in Ci7™"™ (q(y, z|z))) converge to the corresponding terfidV;Y"), I(W;Z2), [WU;Y), ... Therefore
(Ro, R, Ry) is a limit point of Ug ¢ ¢ ~0Chp”"""" (a(y, 2|7)).

Next assume that some of the random varialdtles” and W are continuous. Given any positive
one can quantize the continuous random variables to a egisand get discrete random variablgg,
V, andW,. We have already established that any point in the Martewign bound region correspond-

SwSe (g(y, 2|z)). The joint distribution

ing to Uy, Vg, Wy, X, Y, Z is a limit point of Usu,sv,swzoczif’
of U, V,,W,,X,Y,Z converges to that ol/;) ;W X,Y,Z as ¢ converges to zero. Therefore the
corresponding mutual information termdgW,;Y,), I(Wy; Z,), I(W,Uy;Yy), ... (that define a region

in Car(q(y, z|x))) converge to the corresponding termélWV;Y"), I(W;Z), I(WU;Y),.... Therefore

S0:Su
(

(Ro, Ry, Ry) is alimit point of Ug ¢ ¢ 50 Cap"""" (q(y, 2[2)).
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APPENDIXC

In this appendix, we prove th&t(q(y, z|x)) is equal taZ (¢(y, z|z)). Clearly? (q(y, z|x)) C L (q(y, z|z)).
Therefore we need to show th&f(q(y, z|z)) C €(q(y, z|x)).
We need two definitions before proceeding. L#t(q(y, z|z)) be a subset oR® defined as the union

of
A{IW;Y), I(W;2), (UW;Y), I(VW; Z),
U, YW)+ I(V; Z\W) — I(U; VIW) + I(W,Y),
U, YW)+ I(V; Z\W) — I(U; VIW) + I(W; Z))}),

over random variables, V, W, X, Y, Z, having the joint distributiop(u, v, w, z,y, 2) = p(u,v,w, x)q(y, z|z)
and satisfying the cardinality constrainig| < |X|, |V| < |X| and [W| < |X| + 4. €' (q(y, z|z))

is defined similarly, except that the additional constrathtX|UV W) = 0 is imposed on the aux-
iliary random variables. Note that the regio#’(q(y, z|z)) specifies.Z(q(y, z|z)), since given any
p(u,v,w,z,y,z) = plu,v,w,z)q(y,z|x) the corresponding vector it¥’(¢(y, z|x)) is providing the
values for the right hand side of the 6 inequalities that define region.Z(¢(y, z|x)). Similarly
'(a(y, 2|z)) specifiest (q(y, zIz)).

Instead of showing that?(q(y, z|z)) C %(q(y,z|z)), it suffices to show that?’(q(y, z|z)) C
€' (q(y, z|z))8 It suffices to prove tha%”’(q(y, z|x)) is convex, and that for any;, Ag, ..., Xs, the
maximum of Z?:l \iR; over triples (Ry, Ry, ..., Rg) in Z'(q(y, z|x)), is less than or equal to the
maximum on?zl \iR; over triples(Ry, Rs, ..., Rg) in €' (q(y, z|)).

In order to show tha®”(¢(y, z|z)) is convex, we take two arbitrary points #'(¢(y, z|z)). Corre-
sponding to them are joint distributiongu,, v1, w1, z1, y1, 21) and p(ug, vy, we, x2, Y2, 22). Let @ be a
uniform binary random variable independent of all previguefined random variables, and Et= Uy,
V=Vo, W=(WqQ), X=X Y=YyandZ = Zy. Clearly H(X|UVW) = 0, and furthermore
IW;Y) > S(I(Wi; Y1)+ I(Was Ya)), I(W; Z) > $(I(Wh; Z1) + I(Wa; Zs)), ... etc. Random variable
W is not defined on an alphabet set of siZg| + 4. However, one can reduce the cardinality 1of
using the Carathéodory theorem by fixip§u, v, z,y, z|w) and changing the marginal distribution of

W in a way that at mostX| + 4 elements get non-zero probability assigned to them. Sinedhave

8This is true becaus@Ro, R1, Rz) being inZ(q(y, z|z)) implies that(Ro, Ro, Ro+Ri1, Ro+R2, Ro+Ri+Ra, Ro+Ri1+Rs)
is in £ (q(y, z|z)). If £'(q(y, 2]z))(q(y, z|z)) is a subset of6’ (q(y, z|z)), the latter point would belong t&” (¢(y, z|z)).
Therefore(Ry, R1, Rz) belongs to% (q(y, z|z)).
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preserved(u, v, x, y, z|w) throughout the process(z|u, v, w) will continue to belong to the sd0, 1}
after reducing the cardinality df’.

Next, we need to show that for any, Ao, ..., Ag, the maximum 01'22.6:1 A\iR; over triples(Ry, Ra, ..., Rg)
in Z(q(y, z|z)), is less than or equal to the maximum BI°_, \;R; over triples(Ry, Ry, ..., Rg) in
¢"(q(y, z|z)). As discussed in the proof of theorém 1, without loss of galitgrwe can assume,; is
non-negative for = 1,2, ..., 6.

Take an arbitrary pointR;, Ra, ..., Rg) in .£'(q(y, z|x)). By definition there exist random variables

U, V,IW,X,Y and Z for which
SO NR <M IWSY) 4+ Ao - I(W; Z) + A3 - I(UW;Y) + Ay - I(VW; Z) + (20)
s (LU Y W)+ I(V; ZIW) — LU VW) + I(W3Y)) +
oo (LU Y W)+ I(V; Z|W) — I(U; VIW) + I(W; Z)).

Fix p(u,v,w). The right hand side of equation (20) would then be a convextfan ofp(x]u,v,w)H

Therefore its maximum occurs at the extreme points wieiu, v, w) € {0,1} whenevep(u, v, w) # 0.

AN N~ A~ ~

Therefore random variablds, V., W, X Y, and Z exist for which

A IW3Y) 4 X - I(W; Z) + o+ A - (LU Y W) + I(V; ZIW) = I(U; VW) + I(W; 2)) <

A~~~ A~~~ A~~~

M IWsY) + X - IW;2) 4 o4 X - (LU Y|W) + I(V; ZIW) — L(U; VIW) + I(W; 2))

and furthermorep(z|u, v, w) € {0,1} for all z, u, v andw wherep(u, v, w) > 0.

APPENDIXD

In this appendix, we complete the proof of Theorein 2 by shgwimat given any random vari-
ablesU,V,W, X, Y and Z wherep(u,v,w,z,y,z) = p(u,v,w,x)q(y, z|x) holds,U andV are binary,
H(X|UVW) is zero, the transition matriceB, | x and P x have positive elements, and for any value
of w wherep(w) > 0, either[(U; V|W = w,Y) = 0 or I(U; V|W = w, Z) = 0 holds, the following

inequality is true:

IU; YW =w)+ I(V; ZIW =w) — I({U; VIW =w) <T(p(X = 1|W = w)).

®This is true becaus&(W;Y") is convex in the conditional distributiop(y|w); similarly I(U; Y |W = w) is convex for any
fixed value ofw. The termI(U; V|WW) that appears with a negative sign is constant since the gisttibution of p(u, v, w) is

fixed.
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We assumd (U; V|W = w,Y) = 0 (the proof for the casé(U;V|W = w, Z) = 0 is similar). First
consider the case in which the individual capacity,, is zero. We will then havé(U; Y |W = w) =0
andT(p(X = 1|{W =w)) = I(X;Z|W =w) > I(V; ZIW = w) — I(U; V|W = w). Therefore the
inequality holds in this case. Assume therefore g} . is non-zero.

It suffices to prove the following proposition:

Proposition: For any random variables, V, X, Y and Z satisfying

e UV X Y7,

H(X|UV) =0,
o U=V = X =2,

o forallye ), p(Y =y|X =0) andp(Y = y|X = 1) are non-zero,

o Cpyx #0,

« I(U;V|Y) =0,
one of the following two cases must be true: (1) at least onthefrandom variablex', U or V is
constant, (2) Eithef =X orU=1—-XorV=XorV=1-X.

Proof: Assume that neither (1) nor (2) holds. SinBgX |UV) = 0, there are2* possible descriptions
for p(z|uv), some of which are ruled out because neither (1) nor (2) hdfdthe following we prove
that X =U &V and X = U AV can not hold. The proof for other cases is essentially theesam

Since Cp, , # 0, we conclude that the transition matri%-y has linearly independent rows. This
implies the existence afi, y» € ) forwhichp(X = 1|Y = y;) #p(X =1|Y = yz) Furthermore since
X is not constant, ang(Y" = y1|X = 0),p(Y = y1|X = 1), p(Y = y2|X = 0), andp(Y = yo|X = 1)
are all non-zero, both(X = 1|Y = y;) andp(X = 1|Y = y9) are in the open interval, 1). Note that
I(U;V|Y) =0 implies that/(U; V|Y = y1) = 0 and I(U; VY = y3) = 0.

Leta;; =p(U =1,V =j) for i,5 € {0,1}. First assume thak = U & V. We have

o pu=0,0=0y =y) = —4—p(X =0]Y =),
o plu=0,v=1y=1y)=—H—pX =1Y =y),
e plu=1v=0y =y) = ——p(X = 1Y =y),
e plu=Lv=1y=1y) = 3—p(X =0]Y =y).

10If this were not the case we would have we haN& = 1]Y = y;) = p(X = 1|Y = y2) for all y1,y2 € Y. This would
imply that X andY are independent. Sinc¥ is not constant, independence &f andY implies thatP(Y = y|X = 1) =
p(Y = y|X =0) for all y € Y. Therefore the transition matriky| x has linearly dependent rows. HenteX;Y") = 0 for all

p(z). ThereforeCp,. , = 0 which is a contradiction.

DRAFT



24
ThereforeI (U; V|Y =y;) = 0 for i = 1,2 implies that
plu=1v=1ly=y) xplu=0,0=00y=y) =plu=0,v=1y =y) x plu=1,v =00y =y).

Therefore

40,161,0

QIR0 X Y = )2,
(a07l+a170)2p( \ Yi)

ap,001,1 2
[ At R X g 0 Y = . g
(CL070 +a1’1)2p( ’ yl)

or alternatively

v/00,001,1 \/01,000,1
+——— " p(X =0|Y =y;) = ——p(X =1|Y =y). (21)
ap,0 + a1 aio + ap,1

SinceX is not deterministicP(X = 0) = ago+ a1, andP(X = 1) = aj 9+ ag,1 are non-zero. Next, if

either ofag o or a; ; are zero, it implies that, o or ag; is zero. But this implies that eithér or V' is a

constant random variable which is a contradiction. Heﬁé}%ﬁ and% are non-zero. But then

equatior2lL uniquely specifiegg§ X = 1|Y = y;), implying thatp(X = 1|Y = 31) = p(X = 1|Y = y9)
which is again a contradiction.

Next assume thak = U A V. We have:

e plu=0,0v=0ly=1y;) = mp(X =0lY =y,),
o plu=0,v=1y=y) = mp()( =0lY = y;),
o plu=1Lv=0/y=1y)= = —p(X =0]Y = y),
o plu=1lwv=1ly=y)=pX =1]Y =y).

Note thatP(X = 0) = ago + ao,1 + a1,0 iS non-zero. Independence bf andV givenY = y; implies

that

plu=lLv=1y=y) xplu=0,v=0y=y) =plu=0,v=1y=y) xplu=1,v=0]y =y).

Therefore
ap,0 a1,0a0,1 2
X =0y =y)p(X =1|Y =y;) = X =0y =),
200 T a0 +a170p( Y = yi)p( Y = y;) (Go0 a0 + al’o)gp( Y = y;)
or alternatively
a1,000,1
app - p(X =1Y =y;) = — p(X =0Y =), (22)

ap,0 + ao,1 +aip
If apo is zero, eithera; o or ap; must also be zero, but this implies that eittiéror V' is a constant
random variable which is a contradiction. Therefag, is non-zero. But then equatidnl22 uniquely
specifiesp(X = 1|Y = y;), implying thatp(X = 1|Y = y;) = p(X = 1|V = y,) which is again a

contradiction.

DRAFT



25
ACKNOWLEDGEMENT

The authors would like to thank Chandra Nair for suggestisgart cut to simplify the original proof,
and Young Han Kim for valuable comments that improved thesgméation of the article. The authors
would like to thank TRUST (The Team for Research in Ubiquit@ecure Technology), which receives
support from the National Science Foundation (NSF awardb@in€CF-0424422) and the following
organizations: Cisco, ESCHER, HP, IBM, Intel, MicrosoftRNL, Pirelli, Qualcomm, Sun, Symantec,
Telecom ltalia and United Technologies, for their suppdrthis work. The research was also partially
supported by NSF grant numbers CCF-0500234, CCF-06353¥3-@%27161 and ARO MURI grant
W911NF-08-1-0233 “Tools for the Analysis and Design of CdempMulti-Scale Networks.”

REFERENCES

[1] T. M. Cover and J. A. Thomaglements of Information Thegryohn Wiley and Sons, 1991.

[2] I. Csiszar and J. Kdrner, “Information Theory: Codifipeorems for Discrete Memoryless Systems.” Budapest, &iyng
Akadmiai Kiad, 1981.

[3] K. Marton, “A coding theorem for the discrete memoryldssadcast channel,” IEEE Trans. IT, 25 (3): 306-311 (1979).

[4] S.I. Gelfand and M. S. Pinsker, “Capacity of a broadcdstnnel with one deterministic component,” Probl. Inf. Tam,

16 (1): 17-25 (1980).

[5] B. E. Hajek and M. B. Pursley, “Evaluation of an achievabhte region for the broadcast channel,” IEEE Trans. IT,135 (
36-46 (1979).

[6] J. Korner and K. Marton, “General broadcast channelh wegraded message sets,” IEEE Trans. IT, 23 (1): 60-647§197

[7] T. Cover, “An achievable rate region for the broadcasirutel,” IEEE Trans. IT, 21 (4): (399-404) (1975).

[8] E. C. van der Meulen, “Random coding theorems for the gandiscrete memoryless broadcast channel,” IEEE Trans. IT
21 (2): 180-190 (1975).

[9] Y, Liang, G. Kramer, “Rate regions for relay broadcastwhels,” |EEE Trans. IT, 53 (10): 3517-3535 (2007).

[10] Y. Liang, G. Kramer, and H.V. Poor, “Equivalence of twaner bounds on the capacity region of the broadcast channel,
46th Annual Allerton Conf. on Commun., Control and Comp.12-4421, (2008).

[11] C. Nair and A. El Gamal, “An outer bound to the capacitgiom of the broadcast channel,” IEEE Trans. IT, 53 (1):
350-355 (2007).

[12] C. Nair and V.W. Zizhou, “On the inner and outer bounds freceiver discrete memoryless broadcast channels,”
Proceedings of the ITA workshop, San Diego, 2008.

[13] A. A. Gohari, A. El Gamal and V. Anantharan@n an Outer bound and an Inner Bound for the General Broadcast
Channe] “Proceedings of the 2010 IEEE International Symposiumrdormation Theory”, Austin, Texas, Jun. 13-18, pp.
540 - 544, 2010

[14] C. Nair, “A note on outer bounds for broadcast channekgsented at International Zurich Seminar (2010), availab
http://arxiv.org/abs/1101.0640.

DRAFT


http://arxiv.org/abs/1101.0640

26
[15] C. Nair, Z. V. Wang, and Y. GendgAn information inequality and evaluation of Marton’s innkbound for binary input

broadcast channels'Proceedings of the 2010 IEEE International Symposiummdorimation Theory”, Austin, Texas, Jun.
13-18, pp.550 - 554, 2010

DRAFT



	I Introduction
	II Definitions and Notation
	III Statement of results
	IV Description of the main technique
	IV-A Proof based on the perturbation method
	IV-B Alternative proof

	V Proofs
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

