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Abstract

The best known inner bound on the two-receiver general broadcast channel without a common

message is due to Marton [3]. This result was subsequently generalized in [p. 391, Problem 10(c) 2] and

[4] to broadcast channels with a common message. However thelatter region is not computable (except

in certain special cases) as no bounds on the cardinality of its auxiliary random variables exist. Nor is

it even clear that the inner bound is a closed set. The main obstacle in proving cardinality bounds is the

fact that the traditional use of the Carathéodory theorem,the main known tool for proving cardinality

bounds, does not yield a finite cardinality result. One of themain contributions of this paper is the

introduction of a new tool based on an identity that relates the second derivative of the Shannon entropy

of a discrete random variable (under a certain perturbation) to the corresponding Fisher information. In

order to go beyond the traditional Carathéodory type arguments, we identify certain properties that the

auxiliary random variables corresponding to the extreme points of the inner bound need to satisfy. These

properties are then used to establish cardinality bounds onthe auxiliary random variables of the inner

bound, thereby proving the computability of the region, andits closedness.

Lastly, we establish a conjecture of [12] that Marton’s inner bound and the recent outer bound of

Nair and El Gamal do not match in general.

I. INTRODUCTION

In this paper, we consider two-receiver general broadcast channels. A two-receiver broadcast channel

is characterized by the conditional distributionq(y, z|x) whereX is the input to the channel andY and

Z are the outputs of the channel at the two receivers. LetX , Y andZ denote the alphabet set ofX,

Y andZ respectively. The transmitter wants to send a common message,M0, to both the receivers and

two private messagesM1 andM2 to Y andZ respectively. Assume thatM0, M1 andM2 are mutually

DRAFT

http://arxiv.org/abs/0904.4541v3


2

independent, andMi (for i = 0, 1, 2) is a uniform random variable over setMi. The transmitter maps

the messages into a codeword of lengthn using an encoding functionζ : M0 ×M1 ×M2 → X n, and

sends it over the broadcast channelq(y, z|x) in n times steps. The receivers use the decoding functions

ϑy : Yn → M0 × M1 and ϑz : Zn → M0 × M2 to map their received signals to(M̂0
(1)

, M̂1)

and (M̂0
(2)

, M̂2) respectively. The average probability of error is then taken to be the probability that

(M̂0
(1)

, M̂1, M̂0
(2)

, M̂2) is not equal to(M0,M1,M0,M2).

The capacity region of the broadcast channel is defined as theset of all triples(R0, R1, R2) such

that for anyǫ > 0, there is some integern, uniform random variablesM0, M1, M2 with alphabet sets

|Mi| ≥ 2n(Ri−ǫ) (for i = 0, 1, 2), encoding functionζ, and decoding functionsϑy andϑz such that the

average probability of error is less than or equal toǫ.

The capacity region of the broadcast channel is not known except in certain special cases. The best

achievable region of triples(0, R1, R2) for the broadcast channel is due to Marton [Theorem 2 3]. Marton’s

work was subsequently generalized in [p. 391, Problem 10(c)2], and Gelfand and Pinsker [4] who

established the achievability of the region formed by taking union over random variablesU, V,W,X, Y, Z,

having the joint distributionp(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x), of

R0, R1, R2 ≥ 0;

R0 ≤ min(I(W ;Y ), I(W ;Z)); (1)

R0 +R1 ≤ I(UW ;Y ); (2)

R0 +R2 ≤ I(V W ;Z); (3)

R0 +R1 +R2 ≤ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

+min(I(W ;Y ), I(W ;Z)). (4)

In Marton’s original work, the auxiliary random variablesU, V andW are finite random variables. We

however allow the auxiliary random variablesU, V andW to be discrete or continuous random variables to

get an apparently larger region. The main result of this paper however implies that this relaxation will not

make the region grow. We refer to this region as Marton’s inner bound for the general broadcast channel.

Recently Liang and Kramer reported an apparently larger inner bound to the broadcast channel [9], which

however turns out to be equivalent to Marton’s inner bound [10]. Marton’s inner bound therefore remains

the currently best known inner bound on the general broadcast channel. Liang, Kramer and Poor showed

that in order to evaluate Marton’s inner bound, it suffices tosearch overp(u, v, w, x) for which either

I(W ;Y ) = I(W ;Z), or I(W ;Y ) > I(W ;Z)&V = constant, or I(W ;Y ) < I(W ;Z)&U = constant
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holds [10]. This restriction however does not lead to a computable characterization of the region.

Unfortunately Marton’s inner bound is not computable (except in certain special cases) as no bounds

on the cardinality of its auxiliary random variables exist.A prior work by Hajek and Pursley derives

cardinality bounds for an earlier inner bound of Cover and van der Meulen for the special case ofX is

binary, andR0 = 0 [5]; Hajek and Pursley showed thatX can be taken as a deterministic function of the

auxiliary random variables involved, and conjectured certain cardinality bounds on the auxiliary random

variables when|X | is arbitrary butR0 is equal to zero. For the case of non-zeroR0, Hajek and Pursley

commented that finding cardinality bounds appears to be considerably more difficult. The inner bound

of Cover and van der Meulen was however later improved by Marton. A Carathéodory-type argument

results in a cardinality bound of|V||X | + 1 on |U|, and a cardinality bound of|U||X | + 1 on |V| for

Marton’s inner bound. This does not lead to fixed cardinalitybounds on the auxiliary random variables

U andV . The main result of this paper is to prove that the subset of Marton’s inner bound defined by

imposing extra constraints|U| ≤ |X |, |V| ≤ |X |, |W| ≤ |X | + 4 andH(X|UVW ) = 0 is identical to

Marton’s inner bound.

One of the main contributions of this paper is the perturbation technique. At the heart of this technique

lies the following observation: consider an arbitrary set of finite random variablesX1,X2, ...,Xn jointly

distributed according top0(x1, x2, ..., xn). One can represent a perturbation of this joint distribution by a

vector consisting of the first derivative of the individual probabilitiesp0(x1, x2, ..., xn) for all values of

x1, x2, ..., xn. We however suggest the following perturbation that can be represented by a real valued

random variable,L, jointly distributed byX1,X2, ...,Xn and satisfyingE[L] = 0,
∣∣E[L|X1 = x1,X2 =

x2, ...,Xn = xn]
∣∣ < ∞ for all values ofx1, x2, ..., xn:

pǫ(X̂1 = x1, ..., X̂n = xn) = p0(X1 = x1, ...,Xn = xn) ·
(
1 + ǫ · E[L|X1 = x1, ...,Xn = xn]

)
,

whereǫ is a real number in some interval[−ǫ1, ǫ2]. Random variableL is a canonical way of representing

the direction of perturbation since given any subset of indicesI ⊂ {1, 2, 3, ..., n}, one can verify that the

following equation for the marginal distribution of randomvariablesX̂i for i ∈ I:

pǫ(X̂i∈I = xi∈I) = p0(Xi∈I = xi∈I) ·
(
1 + ǫ · E[L|Xi∈I = xi∈I ]

)
.

Furthermore for any set of indicesI ⊂ {1, 2, 3, ..., n}, the second derivative of the joint entropy of

random variableŝXi for i ∈ I as a function ofǫ is related to the problem of MMSE estimation ofL

from Xi∈I :
∂2

∂ǫ2
H(X̂i∈I) |ǫ=0= − log e · E

[
E[L|Xi∈I ]

2
]
.
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Lemma 2 describes a generic version of the above identity that relates the second derivative of the

Shannon entropy of a discrete random variable to the corresponding Fisher information. This identity is

to best of our knowledge new. It is repeatedly invoked in our proofs to compute the second derivative

of various expressions.

It is known that Marton’s inner bound coincides with the outer bound of Nair and El Gamal for the

degraded, less noisy, more capable, and semi-deterministic broadcast channels. Nair and Zizhou showed

that Marton’s inner bound and the recent outer bound of Nair and El Gamal are different for a BSSC

channel with parameter12 if a certain conjecture holds1. In this paper, we provide examples of broadcast

channels for which the two bounds do not match. Since the original submission of this paper, Nair, Wang

and Geng [15] showed that the inequalityI(U ;Y )+I(V ;Z)−I(U ;V ) ≤ max
(
I(X;Y ), I(X;Z)

)
holds

for all binary input broadcast channels. The authors employa generalized version of the perturbation

method introduced in this paper that also allows for additive perturbations. The authors of [13] prove

various results that help to restrict the search space for computing the sum-rate for Marton’s inner bound.

The outline of this paper is as follows. In section II, we introduce the basic notation and definitions we

use. Section III contains the main results of the paper followed by section V which gives formal proofs

for the results. Section IV describes the new ideas, and appendices complete the proof of theorems from

section V.

II. D EFINITIONS AND NOTATION

Let R denote the set of real numbers. All the logarithms throughout this paper are in base two,

unless stated otherwise. LetC(q(y, z|x)) denote the capacity region of the broadcast channelq(y, z|x).
We useX1:k to denote(X1,X2, ...,Xk); similarly we useY1:k andZ1:k to denote(Y1, Y2, ..., Yk) and

(Z1, Z2, ..., Zk) respectively.

Definition 1: For two vectors−→v1 and−→v2 in R
d, we say−→v1 ≥ −→v2 if and only if each coordinate of−→v1

is greater than or equal to the corresponding coordinate of−→v2 . For a setA ⊂ R
d, the down-set∆(A) is

defined as:∆(A) = {−→v ∈ R
d : −→v ≤ −→w for some−→w ∈ A}.

Definition 2: Let CM (q(y, z|x)) denote Marton’s inner bound on the channelq(y, z|x). CM (q(y, z|x)) is

defined as the union over non-negative triples(R0, R1, R2) satisfying equations 1, 2, 3, and 4 over random

1The conjecture is as follows: [Conjecture 1 12]: Given any five random variablesU, V,X, Y, Z satisfyingI(UV ;Y Z|X) = 0,

the inequalityI(U ;Y ) + I(V ;Z) − I(U ;V ) ≤ max
(
I(X;Y ), I(X;Z)

)
holds wheneverX, Y and Z are binary random

variables and the channelp(y, z|x) is BSSC with parameter1
2
.
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variablesU, V,W,X, Y, Z, having the joint distributionp(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x). Please

note that the auxiliary random variablesU, V andW may be discrete or continuous random variables.

Definition 3: The regionCSu,Sv,Sw

M (q(y, z|x)) is defined as the union of non-negative triples(R0, R1, R2)

satisfying equations 1, 2, 3 and 4, over discrete random variablesU, V,W,X, Y, Z satisfying the cardinality

bounds|U| ≤ Su, |V| ≤ Sv and |W| ≤ Sw, and having the joint distributionp(u, v, w, x, y, z) =

p(u, v, w, x)q(y, z|x). Note thatCSu,Sv,Sw

M (q(y, z|x)) ⊂ CS′
u,S

′
v,S

′
w

M (q(y, z|x)) wheneverSu ≤ S′
u, Sv ≤ S′

v

andSw ≤ S′
w.

Definition 4: Let L (q(y, z|x)) be equal toC|X |,|X |,|X |+4
M (q(y, z|x)).

Definition 5: The regionC (q(y, z|x)) is defined as the union over discrete random variablesU, V,W,X, Y, Z

satisfying the cardinality bounds|U| ≤ |X |, |V| ≤ |X | and |W| ≤ |X | + 4, and having the joint

distribution p(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x) for which H(X|UVW ) = 0, of non-negative

triples (R0, R1, R2) satisfying equations 1, 2, 3 and 4. Please note that the definition of C (q(y, z|x))
differs from that ofL (q(y, z|x)) since we have imposed the extra constraintH(X|UV W ) = 0 on the

auxiliaries.C (q(y, z|x)) is a computablesubset of the regionCM (q(y, z|x)).

Definition 6: Given broadcast channelq(y, z|x), let CNE(q(y, z|x)) denote the union over random vari-

ablesU, V,W,X, Y, Z, having the joint distributionp(u, v, w, x, y, z) = p(u)p(v)p(w|u, v)p(x|u, v, w)q(y, z|x),
of

R0, R1, R2 ≥ 0;

R0 ≤ min(I(W ;Y ), I(W ;Z));

R0 +R1 ≤ I(UW ;Y );

R0 +R2 ≤ I(VW ;Z);

R0 +R1 +R2 ≤ I(UW ;Y ) + I(V ;Z|UW );

R0 +R1 +R2 ≤ I(VW ;Z) + I(U ;Y |V W ).

CNE(q(y, z|x)) is shown in [11] to be an outer bound to the capacity region of the broadcast channel.

This outer bound matches the best known outer bound discussed in [14] whenR0 = 0. An alternative

characterization of the set of triples(0, R1, R2) in CNE(q(y, z|x)) is as follows [12]: the union over
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random variablesU, V,X, Y, Z having the joint distributionp(u, v, x, y, z) = p(u, v, x)q(y, z|x), of

R1, R2 ≥ 0;

R1 ≤ I(U ;Y );

R2 ≤ I(V ;Z);

R1 +R2 ≤ I(U ;Y ) + I(V ;Z|U);

R1 +R2 ≤ I(V ;Z) + I(U ;Y |V ).

III. STATEMENT OF RESULTS

Theorem 1:For any arbitrary broadcast channelq(y, z|x), the closure ofCM(q(y, z|x)) is equal to

C (q(y, z|x)).
Corollary 1: CM (q(y, z|x)) is closed sinceC (q(y, z|x)) is also a subset ofCM (q(y, z|x)).
Theorem 2:There are broadcast channels for which Marton’s inner boundand the recent outer bound

of Nair and El Gamal do not match.

IV. D ESCRIPTION OF THE MAIN TECHNIQUE

In this section, we demonstrate the main idea of the paper. Inorder to show the essence of the proof

while avoiding the unnecessary details, we consider a simpler problem that is different from the problem

at hand, although it will be used in the later proofs.

Given a broadcast channelq(y, z|x) and an input distributionp(x), let us consider the problem of

finding the supremum of

I(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z)

over all joint distributionsp(uv|x)p(x)q(y, z|x) where λ and γ are arbitrary non-negative reals, and

auxiliary random variablesU , V have alphabet sets satisfying|U| ≤ Su and |V| ≤ Sv for some natural

numbersSu andSv. For this problem, we would like to show that it suffices to take the maximum over

random variablesU andV with the cardinality bounds ofmin(|X |, Su) andmin(|X |, Sv). It suffices to

prove the following lemma:

Lemma 1:Given an arbitrary broadcast channelq(y, z|x), an arbitrary input distributionp(x), non-

negative realsλ andγ, and natural numbersSu andSv whereSu > |X | the following holds:

supUV→X→Y Z;|U|≤Su;|V|≤Sv
I(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z) =

I(Û ; Ŷ ) + I(V̂ ; Ẑ)− I(Û ; V̂ ) + λI(Û ; Ŷ ) + γI(V̂ ; Ẑ),
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where random variableŝU, V̂ , X̂, Ŷ , Ẑ satisfy the following properties: the Markov chain̂UV̂ → X̂ →
Ŷ Ẑ holds; the joint distribution of̂X, Ŷ , Ẑ is the same as the joint distribution ofX,Y,Z, and furthermore

|Û | < Su, |V̂ | ≤ Sv.

A. Proof based on the perturbation method

Since the cardinalities ofU and V are bounded, one can show that the supremum ofI(U ;Y ) +

I(V ;Z) − I(U ;V ) + λI(U ;Y ) + γI(V ;Z) is a maximum2, and is obtained at some joint distribution

p0(u, v, x, y, z) = p0(u, v, x)q(y, z|x). If |U| < Su, one can finish the proof by setting(Û , V̂ , X̂, Ŷ , Ẑ) =

(U, V,X, Y, Z). One can also easily show the existence of appropriate(Û , V̂ , X̂, Ŷ , Ẑ) if p(u) = 0 for

someu ∈ U . Therefore assume that|U| = Su and p(u) 6= 0 for all u ∈ U . Take an arbitrary non-zero

function L : U × V × X → R whereE[L(U, V,X)|X]=0. Let us then perturb the joint distribution of

U, V,X, Y, Z by defining random variableŝU, V̂ , X̂, Ŷ and Ẑ distributed according to

pǫ(Û = u, V̂ = v, X̂ = x, Ŷ = y, Ẑ = z) =

p0(U = u, V = v,X = x, Y = y, Z = z) ·
(
1 + ǫ · E[L(U, V,X)|U = u, V = v,X = x, Y = y, Z = z]

)
,

or equivalently according to

pǫ(Û = u, V̂ = v, X̂ = x, Ŷ = y, Ẑ = z) =

p0(U = u, V = v,X = x, Y = y, Z = z)
(
1 + ǫ · L(u, v, x)

)
=

p0(U = u, V = v,X = x)q(Y = y, Z = z|X = x)
(
1 + ǫ · L(u, v, x)

)
.

The parameterǫ is a real number that can take values in[−ǫ1, ǫ2] where ǫ1 and ǫ2 are some positive

reals representing the maximum and minimum values ofǫ, i.e.minu,v,x 1− ǫ1 ·L(u, v, x) = minu,v,x 1+

ǫ2 · L(u, v, x) = 0. SinceL is a function ofU , V andX only, for any value ofǫ, the Markov chain

Û V̂ → X̂ → Ŷ Ẑ holds, andp(Ŷ = y, Ẑ = z|X̂ = x) is equal toq(Y = y, Z = z|X = x) for all x, y, z

wherep(X = x) > 0. FurthermoreE[L(U, V,X)|X] = 0 implies that the marginal distribution ofX is

preserved by this perturbation. This is because

pǫ(X̂ = x) = p0(X = x) ·
(
1 + ǫ · E[L(U, V,X)|X = x]

)
.

2Since the ranges of all the random variables are finite and theconditional mutual information function is continuous, the set

of admissible joint probability distributionsp(u, v, x, y, z) whereI(UV ;Y Z|X) = 0 andp(y, z, x) = q(y, z|x)p(x) will be a

compact set (when viewed as a subset of the Euclidean space).The fact that mutual information function is continuous implies that

the union over random variablesU, V,X, Y, Z satisfying the cardinality bounds, having the joint distribution p(u, v, x, y, z) =

p(u, v|x)p(x)q(y, z|x), of I(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z) is a compact set, and thus closed.
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This further implies that the marginal distributions ofY andZ are also fixed.3

The expressionI(Û ; Ŷ ) + I(V̂ ; Ẑ)− I(Û ; V̂ ) + λI(Û ; Ŷ ) + γI(V̂ ; Ẑ) as a function ofǫ achieves its

maximum atǫ = 0 (by our assumption). Therefore its first derivative atǫ = 0 should be zero, and its

second derivative should be less than or equal to zero. We usethe following lemma to compute the first

derivative and the second derivative of the above expression.

Lemma 2:Given any finite random variableX, and real valued random variableL where
∣∣E[L|X =

x]
∣∣ < ∞ for all x ∈ X , and E[L] = 0, let random variableX̂ be defined on the same alphabet

set asX according topǫ(X̂ = x) = p0(X = x) ·
(
1 + ǫ · E[L|X = x]

)
, where ǫ is a real number

in the interval [−ǫ1, ǫ2]. ǫ1 and ǫ2 are positive reals for whichminx 1 − ǫ1 · E[L|X = x] ≥ 0 and

minx 1 + ǫ2 · E[L|X = x] ≥ 0 hold. Then

1) H(X̂) |ǫ=0= H(X), and ∂
∂ǫ
H(X̂) |ǫ=0= HL(X) whereHL(X) is defined asHL(X) =

∑
x∈X p(X =

x)E[L|X = x] log 1
p(X=x) for any finite random variableX and real valued random variableL where

∣∣E[L|X = x]
∣∣ < ∞ for all x ∈ X .

2) ∀ǫ ∈ (−ǫ1, ǫ2), ∂2

∂ǫ2
H(X̂) = − log e · E

[
E[L|X]2

1+ǫ·E[L|X]

]
= − log(e) · I(ǫ) where the Fisher Information

I(ǫ) is defined asI(ǫ) =
∑

x

(
∂
∂ǫ

loge
(
pǫ(X̂ = x)

))2

pǫ(X̂ = x). In particular ∂2

∂ǫ2
H(X̂) |ǫ=0=

− log e · E
[
E[L|X]2

]
.

3) H(X̂) = H(X) + ǫHL(X) − E
[
r
(
ǫ · E[L|X]

)]
wherer(x) = (1 + x) log(1 + x).

Using the above lemma, one can compute the first derivative and set it to zero, and thereby get the

following equation:

IL(U ;Y ) + IL(V ;Z)− IL(U ;V ) + λIL(U ;Y ) + γIL(V ;Z) = 0, (5)

whereIL(X;Y ) = HL(X)−HL(X|Y ) = HL(Y )−HL(Y |X), HL(X|Y ) =
∑

y∈Y p(Y = y)HL(X|Y =

y), and HL(X|Y = y) =
∑

x∈X p(X = x|Y = y)E[L|X = x, Y = y] log 1
p(X=x|Y=y) for any finite

random variablesX andY and real valued random variableL where
∣∣E[L|X = x, Y = y]

∣∣ < ∞ for all

x ∈ X andy ∈ Y.

In order to compute the second derivative, one can expand theexpression through entropy terms

and use Lemma 2 to compute the second derivative for each term. We can use the assumption that

E[L(U, V,X)|X] = 0 (which impliesE[L(U, V,X)|Y ] = 0 andE[L(U, V,X)|Z] = 0) to simplify the

expression. In particular the second derivative ofH(Ŷ ) and H(Ẑ) at ǫ = 0 would be equal to zero

(as the marginal distributions ofY andZ are preserved under the perturbation), the second derivative

3The termsE[L(U, V,X)|Y ] = 0 andE[L(U, V,X)|Z] = 0 must be zero ifE[L(U, V,X)|X] = 0
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of I(Û ; Ŷ ) at ǫ = 0 will be equal to− log e · E[E[L(U, V,X)|U ]2] + log e · E[E[L(U, V,X)|UY ]2],

the second derivative ofI(V̂ ; Ẑ) at ǫ = 0 will be equal to− log e · E[E[L(U, V,X)|V ]2] + log e ·
E[E[L(U, V,X)|V Z]2], and the second derivative of−I(Û ; V̂ ) at ǫ = 0 will be equal to+ log e ·
E[E[L(U, V,X)|U ]2] + log e ·E[E[L(U, V,X)|V ]2]− log e ·E[E[L(U, V,X)|UV ]2]. Note that the second

derivatives ofI(Û ; Ŷ ) andI(V̂ ; Ẑ) are always non-negative. Since the second derivative of theexpression

I(Û ; Ŷ )+I(V̂ ; Ẑ)−I(Û ; V̂ )+λI(Û ; Ŷ )+γI(V̂ ; Ẑ) atǫ = 0 must be non-positive, the second derivative of

I(Û ; Ŷ )+I(V̂ ; Ẑ)−I(Û ; V̂ ) must be non-positive atǫ = 0. The second derivative of the latter expression

is equal to+ log e ·E[E[L(U, V,X)|UY ]2]+log e ·E[E[L(U, V,X)|V Z]2]− log e ·E[E[L(U, V,X)|UV ]2].

Hence we conclude that for any non-zero functionL : U ×V ×X → R whereE[L(U, V,X)|X] = 0 we

must have:

E[E[L(U, V,X)|UY ]2] + E[E[L(U, V,X)|V Z]2]− E[E[L(U, V,X)|UV ]2] ≤ 0. (6)

Next, take an arbitrary non-zero functionL′ : U → R whereE[L′(U)|X] = 0. Since|U| = Su > |X |,
such a non-zero functionL′ exists. Note that the direction of perturbationL′ being only a function ofU

implies that

pǫ(Û = u, V̂ = v, X̂ = x, Ŷ = y, Ẑ = z) =

pǫ(Û = u)p0(V = v,X = x, Y = y, Z = z|U = u)

In other words, the perturbation only changes the marginal distribution ofU , but preserves the conditional

distribution ofp0(V = v,X = x, Y = y, Z = z|U = u).

Note that

E[E[L′(U)|UV ]2] = E[E[L′(U)|UY ]2] = E[L′(U)2].

This implies thatE[E[L′(U)|V Z]2] should be non-positive. But this can happen only whenE[L′(U)|V Z] =

0. Therefore any arbitrary functionL′ : U → R whereE[L′(U)|X] = 0 must also satisfyE[L′(U)|V Z] =

0. In other words, any arbitrary direction of perturbationL′ that is a function ofU and preserves the

marginal distribution ofX, must also preserve the marginal distribution ofV Z.4

We next show that the expressionI(Û ; Ŷ )+ I(V̂ ; Ẑ)− I(Û ; V̂ )+λI(Û ; Ŷ )+ γI(V̂ ; Ẑ) as a function

4Note thatpǫ(V̂ = v, Ẑ = z) = p0(V = v, Z = z) ·
(
1 + ǫ · E[L(U, V,X)|V = v, Z = z]

)
= p0(V = v, Z = z).
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of ǫ is constant.5 Using the last part of Lemma 2, one can write:

I(Û ; Ŷ ) = I(U ;Y ) + ǫ · IL(Û ; Ŷ )− E
[
r
(
ǫ · E[L|U ]

)]
− E

[
r
(
ǫ · E[L|Y ]

)]
+ E

[
r
(
ǫ · E[L|UY ]

)]
=

I(U ;Y ) + ǫ · IL(Û ; Ŷ ), (7)

where r(x) = (1 + x) log(1 + x). Equation (7) holds becauseE[L|Y ] = 0 and E[L|U ] = E[L|UY ].

Similarly using the last part of Lemma 2, one can write:

I(Û ; V̂ ) = I(U ;V ) + ǫ · IL(Û ; V̂ )− E
[
r
(
ǫ · E[L|U ]

)]
− E

[
r
(
ǫ · E[L|V ]

)]
+ E

[
r
(
ǫ · E[L|UV ]

)]
=

I(U ;V ) + ǫ · IL(Û ; V̂ ) (8)

wherer(x) = (1 + x) log(1 + x). Equation (8) holds becauseE[L|V ] = 0 andE[L|U ] = E[L|UV ]. One

can similarly show that the termI(V̂ ; Ẑ) can be written asI(V ;Z) + ǫ · IL(V̂ ; Ẑ) = 0. Therefore the

expressionI(Û ; Ŷ ) + I(V̂ ; Ẑ)− I(Û ; V̂ ) + λI(Û ; Ŷ ) + γI(V̂ ; Ẑ) as a function ofǫ is equal to

I(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z) +

ǫ ·
(
IL(U ;Y ) + IL(V ;Z)− IL(U ;V ) + λIL(U ;Y ) + γIL(V ;Z)

)
. (9)

Equation (5) implies that this expression is equal toI(U ;Y )+I(V ;Z)−I(U ;V )+λI(U ;Y )+γI(V ;Z).

Therefore the expressionI(Û ; Ŷ ) + I(V̂ ; Ẑ)− I(Û ; V̂ ) + λI(Û ; Ŷ ) + γI(V̂ ; Ẑ) as a function ofǫ is

constant. Since the functionL′ is non-zero, settingǫ = −ǫ1 or ǫ = ǫ2 will result in a marginal distribution

on Û with a smaller support thanU since the marginal distribution ofU is being perturbed as follows:

pǫ(Û = u) = p0(U = u) ·
(
1 + ǫL′(u)

)
.

This perturbation does not increase the support and would decrease it by at least one whenǫ is at its

maximum or minimum, i.e. whenǫ = −ǫ1 or ǫ = ǫ2. Therefore one is able to define a random variable

with a smaller cardinality as that ofU while leaving the value ofI(U ;Y ) + I(V ;Z) − I(U ;V ) +

λI(U ;Y ) + γI(V ;Z) unaffected.

Discussion:Aside from establishing cardinality bounds, the above argument implies that if the max-

imum of I(U ;Y ) + I(V ;Z) − I(U ;V ) + λI(U ;Y ) + γI(V ;Z) is obtained at some joint distribu-

tion p0(u, v, x, y, z) = p0(u, v, x)q(y, z|x), equations 5 and 6 must hold for any non-zero function

L : U × V × X → R whereE[L(U, V,X)|X] = 0. The proof used these properties to a limited extent.

5The authors would like to thank Chandra Nair for suggesting this shortcut to simplify the original proof.
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B. Alternative proof

In this subsection we provide an alternative proof for Lemma1. Assume that the maximum ofI(U ;Y )+

I(V ;Z) − I(U ;V ) + λI(U ;Y ) + γI(V ;Z) is obtained at some joint distributionp0(u, v, x, y, z) =

p0(u, v, x)q(y, z|x). Without loss of generality we can assume thatp(u) > 0 for all u ∈ U . Let us fix

p0(v, x|u)q(y, z|x) and vary the marginal distribution ofU in such a way that the marginal distribution of

X is preserved. In other words, we consider the set of p.m.f’sq(u) satisfying
∑

u,v q(u)p0(v, x|u) = p0(x)

for all x ∈ X . We can then view the expressionI(U ;Y )+I(V ;Z)−I(U ;V )+λI(U ;Y )+γI(V ;Z) as a

function of a p.m.fq(u) defined onU . HereU, V,X, Y, Z are jointly distributed asq(u)p0(v, x|u)q(y, z|x).
We claim thatI(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z) is convex function overq(u). To

see this note thatI(U ;Y ) + I(V ;Z) − I(U ;V ) = H(Y ) −H(Y |U) −H(V |Z) +H(V |U). Since the

marginal distribution ofX is preserved,H(Y ) is fixed. The term−H(Y |U)+H(V |U) is linear inq(u),

and−H(V |Z) is convex inq(u). ThereforeI(U ;Y )+I(V ;Z)−I(U ;V ) is a convex function overq(u).

Next, note thatλI(U ;Y ) = λH(Y )− λH(Y |U) is linear inq(u), andγI(V ;Z) = γH(Z)− γH(Z|V )

is convex inq(u). The latter is because the marginal distribution ofX is preserved and henceH(Z) is

fixed. All in all, we can conclude thatI(U ;Y )+ I(V ;Z)− I(U ;V )+λI(U ;Y )+γI(V ;Z) is convex in

q(u). This implies that it will have a maximum at the extreme points of the domain. We claim that any

extreme point of the domain corresponds to a p.m.fq(u) with support at most|X |. This completes the

proof. The domain of the function is the polytope formed by the set of vectors(q(u) : u ∈ U) satisfying

the following constraints

q(u) ≥ 0, ∀u ∈ U
∑

u∈U
q(u) = 1

∑

u,v

q(u)p0(v, x|u) = p0(x), ∀x ∈ X

Note that the equation
∑

u∈U q(u) = 1 is redundant and implied by the others because1 =
∑

x p0(x) =
∑

x

∑
u,v q(u)p0(v, x|u) =

∑
u

∑
v,x q(u)p0(v, x|u) =

∑
u q(u). Thus, we can describe the domain of

the function by

q(u) ≥ 0, ∀u ∈ U
∑

u,v

q(u)p0(v, x|u) = p0(x), ∀x ∈ X

Any extreme point of this polytope must lie on at least|U| hyperplanes because the polytope lies inR
|U|.

Because there are|X | equations of the type
∑

u,v q(u)p0(v, x|u) = p0(x), any extreme point has to pick
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up at least|U| − |X | equation of the typeq(u) ≥ 0. This implies thatq(u) = 0 for at least|U| − |X |
different values ofu ∈ U . Therefore the support of any extreme point must be less thanor equal to

|U| − (|U| − |X |) = |X |.

V. PROOFS

Proof of Theorem 1: We begin by showing that for any natural numbersSu, Sv, Sw, one has

CSu,Sv ,Sw

M (q(y, z|x)) ⊂ C|X |,|X |,|X |+4
M (q(y, z|x)) = L (q(y, z|x)). This is proved in two steps:

1) CSu,Sv,Sw

M (q(y, z|x)) ⊂ CSu,Sv,|X |+4
M (q(y, z|x)).

2) CSu,Sv,|X |+4
M (q(y, z|x)) ⊂ C|X |,|X |,|X |+4

M (q(y, z|x)).

The first step that imposes a cardinality bound on the alphabet set ofW follows just from a standard

application of the strengthened Carathéodory theorem of Fenchel and is left to the reader. The difficult

part is the second step. To show this it suffices to prove more generally that

CSu,Sv ,|X |+4
M−I (q(y, z|x)) ⊂ C|X |,|X |,|X |+4

M−I (q(y, z|x)) (10)

whereCSu,Sv ,Sw

M−I is defined as the union of real four tuples(R′
1, R

′
2, R

′
3, R

′
4) satisfying

R′
1 ≤ min(I(W ;Y ), I(W ;Z)); (11)

R′
2 ≤ I(UW ;Y ); (12)

R′
3 ≤ I(VW ;Z); (13)

R′
4 ≤ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

+min(I(W ;Y ), I(W ;Z)). (14)

over auxiliary random variables satisfying the cardinality bounds|U| ≤ Su, |V| ≤ Sv and|W| ≤ Sw. Note

that the regionCSu,Sv,Sw

M−I specifiesCSu,Sv,Sw

M , since given anyp(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x)
the corresponding vector inCSu,Sv ,Sw

M−I is providing the values for the right hand side of the 4 inequalities

that define the regionCSu,Sv,Sw

M . Also note thatCM−I(q(y, z|x)) is defined as a subset ofR4, and not

R
4
+.

It is proved in Appendix A thatCSu,Sv,|X |+4
M−I (q(y, z|x)) is convex and closed for anySu andSv. Thus,

to prove equation (10) it suffices to show that for any realλ1, λ2, λ3, λ4,

max
(R′

1,R
′
2,R

′
3,R

′
4)∈CSu,Sv,|X|+4

M−I

∑

i=1:4

λiR
′
i ≤ max

(R′
1,R

′
2,R

′
3,R

′
4)∈C|X|,|X|,|X|+4

M−I

∑

i=1:4

λiR
′
i.

It suffices to prove this for the case ofλi ≥ 0 for i = 1 : 4, since if λi is negative for somei, R′
i can

be made to converge to−∞ causing
∑4

i=1 λiR
′
i to converge to∞ on both sides.
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Take a point(R′
1, R

′
2, R

′
3, R

′
4) ∈ CSu,Sv ,|X |+4

M−I that maximizes
∑

i=1:4 λiR
′
i. Corresponding to the point

is a joint distributionp(u, v, w, x) where|U | ≤ Su, |V | ≤ Sv and |W | ≤ |X |+ 4 and

∑

i=1:4

λiR
′
i =λ1 min(I(W ;Y ), I(W ;Z)) + λ2I(UW ;Y ) + λ3I(V W ;Z)

+ λ4

(
min(I(W ;Y ), I(W ;Z)) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

)
.

Let us fixp(w, x). We would like to definep(û, v̂|w, x) such that|Û | ≤ |X|, |V̂ | ≤ |X| achieving the same

or larger weighted sum. Because we have fixedp(w, x), the termsI(W ;Y ) andI(W ;Z) are fixed. Since

I(UW ;Y ) = I(W ;Y ) +
∑

w p(w)I(U ;Y |W = w), I(V W ;Z) = I(W ;Z) +
∑

w p(w)I(V ;Z|W =

w) and I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ) =
∑

w p(w)[I(U ;Y |W = w) + I(V ;Z|W = w) −
I(U ;V |W = w)], we can constructp(û, v̂, x|w) for eachw individually. In other words, given the

marginal distributionp(x|w), we would like to constructp(û, v̂, x|w) such that

λ2I(U ;Y |W = w) + λ3I(V ;Z|W = w) + λ4

(
I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w)

)
≤

λ2I(Û ;Y |W = w) + λ3I(V̂ ;Z|W = w) + λ4

(
I(Û ;Y |W = w) + I(V̂ ;Z|W = w)− I(Û ; V̂ |W = w)

)
.

Whenλ4 > 0, after a normalization we get the problem studied in sectionIV. When λ4 = 0, clearly

Û = V̂ = X works. This completes the proof. Thus, we have proved that for any arbitrary natural

numbersSu, Sv, Sw, one hasCSu,Sv,Sw

M (q(y, z|x)) ⊂ C|X |,|X |,|X |+4
M (q(y, z|x)) = L (q(y, z|x)).

We now complete the proof of the theorem. In Appendices B and C, we prove that the closure of

CM (q(y, z|x)) is equal to the closure of
⋃

Su,Sv,Sw≥0 C
Su,Sv,Sw

M (q(y, z|x)), and thatC (q(y, z|x)) is equal

to L (q(y, z|x)). Using the result thatCSu,Sv,Sw

M (q(y, z|x)) ⊂ C|X |,|X |,|X |+4
M (q(y, z|x)) = L (q(y, z|x)), we

get that the closure ofCM (q(y, z|x)) is equal to the closure ofL (q(y, z|x)). Lastly note thatL (q(y, z|x))
is closed because of the cardinality constraints on its auxiliary random variables.6

Proof of Theorem 2:We construct a broadcast channel with binary input alphabetfor which Marton’s

inner bound and the recent outer bound of Nair and El Gamal do not match.

We begin by proving that for any arbitrary binary input broadcast channelq(y, z|x) such that for all

y ∈ Y and z ∈ Z, q(Y = y|X = 0), q(Y = y|X = 1), q(Z = z|X = 0) and q(Z = z|X = 1) are

non-zero, the following holds:

6Since the ranges of all the involved random variables are limited and the conditional mutual information function is continuous,

the set of admissible joint probability distributionsp(u, v, w, x, y, z) whereI(UVW ;Y Z|X) = 0 and p(y, z|x) = q(y, z|x)

will be a compact set (when viewed as a subset of the ambient Euclidean space). The fact that mutual information function is

continuous implies that the Marton region defined by taking the union over random variablesU,V,W,X, Y, Z satisfying the

cardinality bounds is a compact set, and thus closed.
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Lemma:If CM (q(y, z|x)) = CNE(q(y, z|x)), the maximum sum rateR1+R2 over triples(R0, R1, R2)

in Marton’s inner bound is equal to

max

(
minγ∈[0,1]

(
max

p(wx)q(y, z|x)
|W| = 2

γI(W ;Y ) + (1− γ)I(W ;Z) +
∑

w p(w)T (p(X = 1|W = w))
)
,

max
p(u, v)p(x|uv)q(y, z|x)
|U| = |V| = 2, I(U ;V ) = 0, H(X|UV ) = 0

I(U ;Y ) + I(V ;Z)

)
, (15)

whereT (p) = max
{
I(X;Y ), I(X;Z)|P (X = 1) = p

}
.

Before proceeding to prove the above lemma, note that if the expression of equation 15 turns out to

be strictly less than the maximum of the sum rateR1 +R2 over triples(R0, R1, R2) in CNE(q(y, z|x))
(which is given in [12]), it will serve as an evidence forCM (q(y, z|x)) 6= CNE(q(y, z|x)). The maximum

of the sum rateR1 +R2 over triples(R0, R1, R2) in CNE(q(y, z|x)) is known to be [12]

max
p(u, v, x)q(y, z|x)

min
(
I(U ;Y ) + I(V ;Z), I(U ;Y ) + I(V ;Z|U), I(V ;Z) + I(U ;Y |V )

)
,

which can be written as (see Bound 4 in [12])

max
p(u, v, x)q(y, z|x)
|U| = |V| = 3, I(U ;V |X) = 0

min
(
I(U ;Y ) + I(V ;Z), I(U ;Y ) + I(X;Z|U), I(V ;Z) + I(X;Y |V )

)
.

The constraintI(U ;V |X) = 0 is imposed because the outer bound depends only on the marginalsp(u, x)

and p(v, x). There are examples for which the expression of equation 15 turns out to be strictly less

than the maximum of the sum rateR1 + R2 over triples(R0, R1, R2) in CNE(q(y, z|x)). For instance

given any two positive realsα and β in the interval(0, 1), consider the broadcast channel for which

|X | = |Y| = |Z| = 2, p(Y = 0|X = 0) = α, p(Y = 0|X = 1) = β, p(Z = 0|X = 0) = 1 − β, p(Z =

0|X = 1) = 1 − α. Assumingα = 0.01, Figure 1 plots maximum of the sum rate forCNE(q(y, z|x)),
and maximum of the sum rate forCM (q(y, z|x)) (assuming thatCNE(q(y, z|x)) = CM (q(y, z|x))) as a

function ofβ. Where the two curves do not match, Nair and El Gamal’s outer bound and Marton’s inner

bound can not be equal for the corresponding broadcast channel.

Proof of the lemma:The maximum of the sum rateR1+R2 over triples(R0, R1, R2) in CM (q(y, z|x))
is equal to

max
p(u, v, w, x)q(y, z|x)
|U| = 2, |V| = 2

H(X|UVW ) = 0

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)). (16)
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Fig. 1. Red curve (top curve): sum rate forCNE(q(y, z|x)); Blue curve (bottom curve): sum rate forCM (q(y, z|x)) assuming

thatCNE(q(y, z|x)) = CM (q(y, z|x)).

The proof consists of two parts: first we show that the above expression is equal to the following

expression:

max

(
max

p(wx)q(y, z|x)
min

(
I(W ;Y ), I(W ;Z)

)
+
∑

w

p(w)T (p(X = 1|W = w)), (17)

max
p(u, v)p(x|uv)q(y, z|x)
|U| = |V| = 2, I(U ; V ) = 0, H(X|UV ) = 0

I(U ;Y ) + I(V ;Z)

)
.

Next, we show that the expression of equation 17 is equal to the the expression given in the lemma.

The expression of equation 16 is greater than or equal to the expression of equation 17.7 For the

first part of the proof we thus need to prove that the expression of equation 16 is less than or equal

to the expression of equation 17. Take the joint distribution p(u, v, w, x) that maximizes the expression

of equation 16. LetŨ = (U,W ) and Ṽ = (V,W ). The maximum of the sum rateR1 + R2 over

7Consider the following special cases: 1) givenW = w, let (U, V ) = (X, constant) if I(X;Y |W = w) ≥ I(X;Z|W = w),

and (U, V ) = (constant,X) otherwise. This would produce the first part of the expression given in the lemma. 2) Assume

thatW is constant, andU is independent ofV . This would produce the second part of the expression given in the lemma.
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triples (R0, R1, R2) in CNE(q(y, z|x)) is greater than or equal tomin
(
I(Ũ ;Y ) + I(Ṽ ;Z), I(Ũ ;Y ) +

I(Ṽ ;Z|Ũ), I(Ṽ ;Z) + I(Ũ ;Y |Ṽ )
)

(see Bound 3 in [12]). SinceCNE(q(y, z|x)) = CM (q(y, z|x)), we

must have:

min
(
I(UW ;Y ) + I(V W ;Z), I(UW ;Y ) + I(VW ;Z|UW ), I(UW ;Z) + I(UW ;Y |V W )

)
≤

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)).

Or alternatively

min

(
max(I(W ;Y ), I(W ;Z)) + I(U ;V |W ),

I(W ;Y )−min(I(W ;Y ), I(W ;Z)) + I(U ;V |WZ),

I(W ;Z)−min(I(W ;Y ), I(W ;Z)) + I(U ;V |WY )

)
≤ 0.

Since each expression is also greater than or equal to zero, at least one of the three terms must be equal

to zero. Therefore at least one of the following must hold:

1) I(W ;Y ) = I(W ;Z) = 0 andI(U ;V |W ) = 0,

2) I(U ;V |WY ) = 0,

3) I(U ;V |WZ) = 0.

If (1) holds, I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)) equalsI(U ;Y |W ) +

I(V ;Z|W ). Supposemaxw:p(w)>0 I(U ;Y |W = w) + I(V ;Z|W = w) occurs at somew∗. Clearly

I(U ;Y |W )+ I(V ;Z|W ) ≤ I(U ;Y |W = w∗)+ I(V ;Z|W = w∗). Let Û , V̂ , X̂, Ŷ andẐ be distributed

according top(u, v, x, y, z|w∗). I(Û ; V̂ ) = I(U ;V |W = w∗) = 0. ThereforeI(U ;Y |W )+I(V ;Z|W )−
I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)) is less than or equal to

max
p(u, v)p(x|uv)q(y, z|x)
|U| = |V| = 2, I(U ; V ) = 0,H(X|UV ) = 0

I(U ;Y ) + I(V ;Z).

Next assume (2) or (3) holds, i.e.I(U ;V |WY ) = 0 or I(U ;V |WZ) = 0. We show in Appendix D that

for any value ofw wherep(w) > 0, eitherI(U ;V |W = w, Y ) = 0 or I(U ;V |W = w,Z) = 0 imply that

I(U ;Y |W = w)+I(V ;Z|W = w)−I(U ;V |W = w) ≤ T (p(X = 1|W = w)). ThereforeI(U ;Y |W )+

I(V ;Z|W ) − I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)) ≤ min(I(W ;Y ), I(W ;Z)) +
∑

w p(w)T (p(X =

1|W = w)). This in turn implies thatI(U ;Y |W )+ I(V ;Z|W )− I(U ;V |W )+min(I(W ;Y ), I(W ;Z))

is less than or equal to

max
p(w,x)q(y, z|x)

min(I(W ;Y ), I(W ;Z)) +
∑

w

p(w)T (p(X = 1|W = w)).
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This completes the first part of the proof.

Next, we would like to show that the expression of equation 17is equal to the the expression given

in the lemma. In order to show this, note that (see Observation 1 of [13])

max
p(w, x)q(y, z|x)

min(I(W ;Y ), I(W ;Z)) +
∑

w

p(w)T (p(X = 1|W = w)) (18)

is equal to

min
γ∈[0,1]

(
max

p(wx)q(y, z|x)
|W| = 2

γI(W ;Y ) + (1− γ)I(W ;Z) +
∑

w

p(w)T (p(X = 1|W = w))
)
. (19)

The expression given in equation 18 can be written as

max
p(w,x)q(y, z|x)

min
(
I(W ;Y )+

∑

w

p(w)T (p(X = 1|W = w)), I(W ;Z)+
∑

w

p(w)T (p(X = 1|W = w))
)
.

This expression can be rewritten as

min
γ∈[0,1]

(
max

p(wx)q(y, z|x)
γI(W ;Y ) + (1− γ)I(W ;Z) +

∑

w

p(w)T (p(X = 1|W = w))
)
.

It remains to prove the cardinality bound of two onW . This is done using the strengthened Carathéodory

theorem of Fenchel. Take an arbitraryp(w, x)q(y, z|x). The vectorw → p(W = w) belongs to the set

of vectorsw → p(W̃ = w) satisfying the constraints
∑

w p(W̃ = w) = 1, p(W̃ = w) ≥ 0 and

p(X = 1) =
∑

w p(X = 1|W = w)p(W̃ = w). The first two constraints ensure thatw → p(W̃ = w)

corresponds to a probability distribution, and the third constraint ensures that one can define a random

variableW̃ , jointly distributed withX, Y and Z according top(w̃, x)q(y, z|x) and further satisfying

p(X = x|W̃ = w) = p(X = x|W = w). Sincew → p(W = w) belongs to the above set, it

can be written as the convex combination of some of the extreme points of this set. The expression
∑

w[−(1 − γ)H(Z|W = w) − γH(Y |W = w) + T (p(X = 1|W = w))]p(W̃ = w) is linear in

p(W̃ = w), therefore this expression forw → p(W = w) is less than or equal to the corresponding

expression for at least one of these extreme points. On the other hand, every extreme point of the set

of vectorsw → p(W̃ = w) satisfying the constraints
∑

w p(W̃ = w) = 1, p(W̃ = w) ≥ 0 and

p(X = 1) =
∑

w p(X = 1|W = w)p(W̃ = w) satisfies the property thatp(W̃ = w) 6= 0 for at most two

values ofw ∈ W. Thus a cardinality bound of two is established.

Proof of Lemma 2: The equationH(X̂) = H(X) + ǫHL(X) − E
[
r
(
ǫ · E[L|X]

)]
wherer(x) =
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r(x)=(1+x)log(1+x)

Fig. 2. Plot of the convex functionr(x) = (1 + x) log(1 + x) over the interval[−1, 1]. Note thatr(0) = 0, ∂

∂x
r(x) =

log(1 + x) + log(e) and ∂
2

∂x2 r(x) =
log(e)
1+x

> 0.

(1 + x) log(1 + x) is true because:

H(X̂) = −∑
x̂ pǫ(x̂) log pǫ(x̂)

= −
∑

x̂ p0(x̂)
(
1 + ǫ · E[L|X = x̂]

)
· log

(
p0(x̂) ·

(
1 + ǫ · E[L|X = x̂]

))

= −
∑

x̂ p0(x̂)
(
1 + ǫ · E[L|X = x̂]

)
·
[
log

(
p0(x̂)

)
+ log

(
1 + ǫ · E[L|X = x̂]

)]

= H(X)− ǫ
∑

x̂ p0(x̂)E[L|X = x̂] log

(
p0(x̂)

)
−

∑
x̂ p0(x̂)

(
1 + ǫ · E[L|X = x̂]

)
· log

(
1 + ǫ · E[L|X = x̂]

)

= H(X) + ǫHL(X) − E
[
r
(
ǫ · E[L|X]

)]
.

Next, note thatr(0) = 0, ∂
∂x

r(x) = log(1 + x) + log(e) and ∂2

∂x2 r(x) =
log(e)
1+x

. We have:

∂

∂ǫ
H(X̂) = HL(X)−E

[
E[L|X]{log(1+ǫ·E[L|X])+log e}

]
= HL(X)−E

[
E[L|X] log(1+ǫ·E[L|X])

]
,

where atǫ = 0 is equal toHL(X).

Next, we have:

∂2

∂ǫ2
H(X̂) = − ∂

∂ǫ
E
[
E[L|X] log(1 + ǫ · E[L|X])

]

−E
[
E[L|X] E[L|X]

1+ǫ·E[L|X] log e
]
= − log e · E

[
E[L|X]2

1+ǫ·E[L|X]

]
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On the other hand,

I(ǫ) =
∑

x

(
∂
∂ǫ

loge(pǫ(X̂ = x))

)2

pǫ(X̂ = x) =

∑
x

(
∂
∂ǫ

loge

(
p0(X = x) ·

(
1 + ǫ · E[L|X = x]

)))2

p0(X = x) ·
(
1 + ǫ · E[L|X = x]

)
=

∑
x

(
∂
∂ǫ

loge
(
1 + ǫ · E[L|X = x]

))2

p0(X = x) ·
(
1 + ǫ · E[L|X = x]

)
=

∑
x

(
E[L|X=x]

1+ǫ·E[L|X=x]

)2

p0(X = x) ·
(
1 + ǫ · E[L|X = x]

)
=

∑
x

E[L|X=x]2

1+ǫ·E[L|X=x]p0(X = x) = E
[

E[L|X]2

1+ǫ·E[L|X]

]
.

APPENDIX A

In this appendix we show thatCSu,Sv,|X |+4
M−I (q(y, z|x)) is convex and closed for anySu andSv. We

begin by proving that the regionCSu,Sv,Sw

M−I is closed. Since the ranges of all the involved random variables

are limited and the conditional mutual information function is continuous, the set of admissible joint

probability distributionsp(u, v, w, x, y, z) whereI(UVW ;Y Z|X) = 0 andp(y, z|x) = q(y, z|x) will be

a compact set (when viewed as a subset of the ambient Euclidean space). The fact that mutual information

function is continuous implies that the union over random variables U, V,W,X, Y, Z satisfying the

cardinality bounds, having the joint distributionp(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x), of the region

defined by equations (11-14) is compact, and thus closed.

Next we prove thatCSu,Sv,|X |+4
M−I (q(y, z|x)) is convex. SinceCSu,Sv,Sw

M−I (q(y, z|x)) is a subset ofCSu,Sv,|X |+4
M−I (q(y, z|x))

as mentioned in step 1 in the proof of Theorem 1, it suffices to show that
⋃

Sw≥0 C
Su,Sv,Sw

M−I (q(y, z|x))
is convex. Take two arbitrary points(R1, R2, ..., R4) and(R̃1, R̃2, ..., R̃4) in

⋃
Sw≥0 C

Su,Sv,Sw

M−I (q(y, z|x)).
Corresponding to(R1, ..., R4) and(R̃1, ..., R̃4) are joint distributionsp0(u, v, w, x, y, z) = p0(u, v, w, x)q(y, z|x)
on U, V,W,X, Y, Z, andp0(ũ, ṽ, w̃, x̃, ỹ, z̃) = p0(ũ, ṽ, w̃, x̃)q(ỹ, z̃|x̃) on Ũ , Ṽ , W̃ , X̃, Ỹ , Z̃, where|U| =
|Ũ | = Su, |V| = |Ṽ | = Sv, and furthermore the following equations are satisfied:R1 ≤ min(I(W ;Y ), I(W ;Z)),

R2 ≤ I(UW ;Y ), ..., R̃1 ≤ min(I(W̃ ; Ỹ ), I(W̃ ; Z̃)), R̃2 ≤ I(ŨW̃ ; Ỹ ), ... etc.

Without loss of generality we can assume that (Ũ , Ṽ , W̃ , X̃, Ỹ , Z̃) and (U, V,W,X, Y, Z) are in-

dependent. LetQ be a uniform binary random variable independent of all previously defined ran-

dom variables. Let(Û , V̂ , Ŵ , X̂, Ŷ , Ẑ) be equal to(U, V,WQ,X, Y, Z) when Q = 0, and equal to

(Ũ , Ṽ , W̃Q, X̃, Ỹ , Z̃) when Q = 1. One can verify thatp(Ŷ = y, Ẑ = z|X̂ = x) = q(Ŷ = y, Ẑ =
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z|X̂ = x), I(Û V̂ Ŵ ; Ŷ Ẑ|X̂) = 0, and furthermore

I(Ŵ ; Ŷ ) ≥ 1
2I(W ;Y ) + 1

2I(W̃ ; Ỹ )

I(Ŵ ; Ẑ) ≥ 1
2I(W ;Z) + 1

2I(W̃ ; Z̃)

I(ÛŴ ; Ŷ ) ≥ 1
2I(UW ;Y ) + 1

2I(ŨW̃ ; Ỹ )

...

Hence(12R1 +
1
2 R̃1,

1
2R2 +

1
2R̃2, ...,

1
2R4 +

1
2R̃4) belongs to

⋃
Sw≥0 C

Su,Sv,Sw

M−I (q(y, z|x)). Thus
⋃

Sw≥0 C
Su,Sv,Sw

M−I (q(y, z|x)) = CSu,Sv,|X |+4
M−I (q(y, z|x)) is convex.

APPENDIX B

In this appendix, we prove that the closure ofCM (q(y, z|x)) is equal to the closure of
⋃

Su,Sv,Sw≥0 C
Su,Sv,Sw

M (q(y, z|x)). In order to show this it suffices to show that any triple(R0, R1, R2) in

CM (q(y, z|x)) is a limit point of
⋃

Su,Sv,Sw≥0 C
Su,Sv,Sw

M (q(y, z|x)). Since(R0, R1, R2) is in CM (q(y, z|x)),
random variablesU, V,W,X, Y andZ for which equations 1, 2, 3 and 4 are satisfied exist. First assume

U, V,W are discrete random variables taking values in{1, 2, 3, ...}. For any integerm, let Um, Vm and

Wm be truncated versions ofU, V andW defined on{1, 2, 3, ...,m} as follows:Um, Vm andWm are

jointly distributed according top(Um = u, Vm = v,Wm = w) = p(U=u,V=v,W=w)
p(U≤m,V≤m,W≤m) for everyu, v and

w less than or equal tom. Further assume thatXm, Ym andZm are random variables defined onX , Y
andZ wherep(Ym = y, Zm = z,Xm = x|Um = u, Vm = v,Wm = w) = p(Y = y, Z = z,X = x|U =

u, V = v,W = w) for everyu, v andw less than or equal tom, and for everyx, y andz. Note that the

joint distribution ofUm, Vm,Wm,Xm, Ym andZm converges to that ofU, V,W,X, Y andZ asm → ∞.

Therefore the mutual information termsI(Wm;Ym), I(Wm;Zm), I(WmUm;Ym), ... (that define a region

in Cm,m,m
M (q(y, z|x))) converge to the corresponding termsI(W ;Y ), I(W ;Z), I(WU ;Y ), ... Therefore

(R0, R1, R2) is a limit point of
⋃

Su,Sv,Sw≥0 C
Su,Sv,Sw

M (q(y, z|x)).
Next assume that some of the random variablesU , V andW are continuous. Given any positiveq,

one can quantize the continuous random variables to a precision q, and get discrete random variablesUq,

Vq andWq. We have already established that any point in the Marton’s inner bound region correspond-

ing to Uq, Vq,Wq,X, Y, Z is a limit point of
⋃

Su,Sv,Sw≥0 C
Su,Sv,Sw

M (q(y, z|x)). The joint distribution

of Uq, Vq,Wq,X, Y, Z converges to that ofU, V,W,X, Y, Z as q converges to zero. Therefore the

corresponding mutual information termsI(Wq;Yq), I(Wq;Zq), I(WqUq;Yq), ... (that define a region

in CM (q(y, z|x))) converge to the corresponding termsI(W ;Y ), I(W ;Z), I(WU ;Y ),.... Therefore

(R0, R1, R2) is a limit point of
⋃

Su,Sv,Sw≥0 C
Su,Sv,Sw

M (q(y, z|x)).
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APPENDIX C

In this appendix, we prove thatC (q(y, z|x)) is equal toL (q(y, z|x)). ClearlyC (q(y, z|x)) ⊂ L (q(y, z|x)).
Therefore we need to show thatL (q(y, z|x)) ⊂ C (q(y, z|x)).

We need two definitions before proceeding. LetL ′(q(y, z|x)) be a subset ofR6 defined as the union

of

∆
({(

I(W ;Y ), I(W ;Z), I(UW ;Y ), I(V W ;Z),

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Y ),

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Z)
)})

,

over random variablesU, V,W,X, Y, Z, having the joint distributionp(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x)
and satisfying the cardinality constraints|U| ≤ |X |, |V| ≤ |X | and |W| ≤ |X | + 4. C ′(q(y, z|x))
is defined similarly, except that the additional constraintH(X|UV W ) = 0 is imposed on the aux-

iliary random variables. Note that the regionL ′(q(y, z|x)) specifiesL (q(y, z|x)), since given any

p(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x) the corresponding vector inL ′(q(y, z|x)) is providing the

values for the right hand side of the 6 inequalities that define the regionL (q(y, z|x)). Similarly

C ′(q(y, z|x)) specifiesC (q(y, z|x)).
Instead of showing thatL (q(y, z|x)) ⊂ C (q(y, z|x)), it suffices to show thatL ′(q(y, z|x)) ⊂

C ′(q(y, z|x)).8 It suffices to prove thatC ′(q(y, z|x)) is convex, and that for anyλ1, λ2, ..., λ6, the

maximum of
∑6

i=1 λiRi over triples (R1, R2, ..., R6) in L ′(q(y, z|x)), is less than or equal to the

maximum of
∑6

i=1 λiRi over triples(R1, R2, ..., R6) in C ′(q(y, z|x)).
In order to show thatC ′(q(y, z|x)) is convex, we take two arbitrary points inC ′(q(y, z|x)). Corre-

sponding to them are joint distributionsp(u1, v1, w1, x1, y1, z1) andp(u2, v2, w2, x2, y2, z2). Let Q be a

uniform binary random variable independent of all previously defined random variables, and letU = UQ,

V = VQ, W = (WQ, Q), X = XQ, Y = YQ andZ = ZQ. ClearlyH(X|UVW ) = 0, and furthermore

I(W ;Y ) ≥ 1
2

(
I(W1;Y1) + I(W2;Y2)

)
, I(W ;Z) ≥ 1

2

(
I(W1;Z1) + I(W2;Z2)

)
, ... etc. Random variable

W is not defined on an alphabet set of size|X | + 4. However, one can reduce the cardinality ofW

using the Carathéodory theorem by fixingp(u, v, x, y, z|w) and changing the marginal distribution of

W in a way that at most|X | + 4 elements get non-zero probability assigned to them. Since we have

8This is true because(R0, R1, R2) being inL (q(y, z|x)) implies that(R0, R0, R0+R1, R0+R2, R0+R1+R2, R0+R1+R2)

is in L
′(q(y, z|x)). If L

′(q(y, z|x))(q(y, z|x)) is a subset ofC ′(q(y, z|x)), the latter point would belong toC ′(q(y, z|x)).

Therefore(R0, R1, R2) belongs toC (q(y, z|x)).
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preservedp(u, v, x, y, z|w) throughout the process,p(x|u, v, w) will continue to belong to the set{0, 1}
after reducing the cardinality ofW .

Next, we need to show that for anyλ1, λ2, ...,λ6, the maximum of
∑6

i=1 λiRi over triples(R1, R2, ..., R6)

in L ′(q(y, z|x)), is less than or equal to the maximum of
∑6

i=1 λiRi over triples(R1, R2, ..., R6) in

C ′(q(y, z|x)). As discussed in the proof of theorem 1, without loss of generality we can assumeλi is

non-negative fori = 1, 2, ..., 6.

Take an arbitrary point(R1, R2, ..., R6) in L ′(q(y, z|x)). By definition there exist random variables

U, V,W,X, Y andZ for which

∑6
i=1 λiRi ≤ λ1 · I(W ;Y ) + λ2 · I(W ;Z) + λ3 · I(UW ;Y ) + λ4 · I(V W ;Z) + (20)

λ5 ·
(
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Y )

)
+

λ6 ·
(
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Z)

)
.

Fix p(u, v, w). The right hand side of equation (20) would then be a convex function of p(x|u, v, w).9

Therefore its maximum occurs at the extreme points whenp(x|u, v, w) ∈ {0, 1} wheneverp(u, v, w) 6= 0.

Therefore random variableŝU, V̂ , Ŵ , X̂, Ŷ , andẐ exist for which

λ1 · I(W ;Y ) + λ2 · I(W ;Z) + ...+ λ6 ·
(
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Z)

)
≤

λ1 · I(Ŵ ; Ŷ ) + λ2 · I(Ŵ ; Ẑ) + ...+ λ6 ·
(
I(Û ; Ŷ |Ŵ ) + I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ) + I(Ŵ ; Ẑ)

)

and furthermorep(x̂|û, v̂, ŵ) ∈ {0, 1} for all x̂, û, v̂ and ŵ wherep(û, v̂, ŵ) > 0.

APPENDIX D

In this appendix, we complete the proof of Theorem 2 by showing that given any random vari-

ablesU, V,W,X, Y andZ wherep(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x) holds,U andV are binary,

H(X|UVW ) is zero, the transition matricesPY |X andPZ|X have positive elements, and for any value

of w wherep(w) > 0, eitherI(U ;V |W = w, Y ) = 0 or I(U ;V |W = w,Z) = 0 holds, the following

inequality is true:

I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w) ≤ T (p(X = 1|W = w)).

9This is true becauseI(W ;Y ) is convex in the conditional distributionp(y|w); similarly I(U ;Y |W = w) is convex for any

fixed value ofw. The termI(U ;V |W ) that appears with a negative sign is constant since the jointdistribution ofp(u, v, w) is

fixed.
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We assumeI(U ;V |W = w, Y ) = 0 (the proof for the caseI(U ;V |W = w,Z) = 0 is similar). First

consider the case in which the individual capacityCPY |X
is zero. We will then haveI(U ;Y |W = w) = 0

andT (p(X = 1|W = w)) = I(X;Z|W = w) ≥ I(V ;Z|W = w) − I(U ;V |W = w). Therefore the

inequality holds in this case. Assume therefore thatCPY |X
is non-zero.

It suffices to prove the following proposition:

Proposition:For any random variablesU, V,X, Y andZ satisfying

• UV → X → Y Z,

• H(X|UV ) = 0,

• |U| = |V| = |X | = 2,

• for all y ∈ Y, p(Y = y|X = 0) andp(Y = y|X = 1) are non-zero,

• CPY |X
6= 0,

• I(U ;V |Y ) = 0,

one of the following two cases must be true: (1) at least one ofthe random variablesX, U or V is

constant, (2) EitherU = X or U = 1−X or V = X or V = 1−X.

Proof: Assume that neither (1) nor (2) holds. SinceH(X|UV ) = 0, there are24 possible descriptions

for p(x|uv), some of which are ruled out because neither (1) nor (2) holds. In the following we prove

thatX = U ⊕ V andX = U ∧ V can not hold. The proof for other cases is essentially the same.

SinceCPY |X
6= 0, we conclude that the transition matrixPY |X has linearly independent rows. This

implies the existence ofy1, y2 ∈ Y for whichp(X = 1|Y = y1) 6= p(X = 1|Y = y2).10 Furthermore since

X is not constant, andp(Y = y1|X = 0), p(Y = y1|X = 1), p(Y = y2|X = 0), andp(Y = y2|X = 1)

are all non-zero, bothp(X = 1|Y = y1) andp(X = 1|Y = y2) are in the open interval(0, 1). Note that

I(U ;V |Y ) = 0 implies thatI(U ;V |Y = y1) = 0 andI(U ;V |Y = y2) = 0.

Let ai,j = p(U = i, V = j) for i, j ∈ {0, 1}. First assume thatX = U ⊕ V . We have

• p(u = 0, v = 0|y = yi) =
a0,0

a0,0+a1,1
p(X = 0|Y = yi),

• p(u = 0, v = 1|y = yi) =
a0,1

a0,1+a1,0
p(X = 1|Y = yi),

• p(u = 1, v = 0|y = yi) =
a1,0

a0,1+a1,0
p(X = 1|Y = yi),

• p(u = 1, v = 1|y = yi) =
a1,1

a0,0+a1,1
p(X = 0|Y = yi).

10If this were not the case we would have we havep(X = 1|Y = y1) = p(X = 1|Y = y2) for all y1, y2 ∈ Y. This would

imply that X andY are independent. SinceX is not constant, independence ofX andY implies thatP (Y = y|X = 1) =

p(Y = y|X = 0) for all y ∈ Y. Therefore the transition matrixPY |X has linearly dependent rows. HenceI(X;Y ) = 0 for all

p(x). ThereforeCPY |X
= 0 which is a contradiction.
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ThereforeI(U ;V |Y = yi) = 0 for i = 1, 2 implies that

p(u = 1, v = 1|y = yi)× p(u = 0, v = 0|y = yi) = p(u = 0, v = 1|y = yi)× p(u = 1, v = 0|y = yi).

Therefore
a0,0a1,1

(a0,0 + a1,1)2
p(X = 0|Y = yi)

2 =
a0,1a1,0

(a0,1 + a1,0)2
p(X = 1|Y = yi)

2,

or alternatively √
a0,0a1,1

a0,0 + a1,1
p(X = 0|Y = yi) =

√
a1,0a0,1

a1,0 + a0,1
p(X = 1|Y = yi). (21)

SinceX is not deterministic,P (X = 0) = a0,0+a1,1 andP (X = 1) = a1,0+a0,1 are non-zero. Next, if

either ofa0,0 or a1,1 are zero, it implies thata1,0 or a0,1 is zero. But this implies that eitherU or V is a

constant random variable which is a contradiction. Hence
√
a0,0a1,1

a0,0+a1,1
and

√
a1,0a0,1

a1,0+a0,1
are non-zero. But then

equation 21 uniquely specifiesp(X = 1|Y = yi), implying thatp(X = 1|Y = y1) = p(X = 1|Y = y2)

which is again a contradiction.

Next assume thatX = U ∧ V . We have:

• p(u = 0, v = 0|y = yi) =
a0,0

a0,0+a0,1+a1,0
p(X = 0|Y = yi),

• p(u = 0, v = 1|y = yi) =
a0,1

a0,0+a0,1+a1,0
p(X = 0|Y = yi),

• p(u = 1, v = 0|y = yi) =
a1,0

a0,0+a0,1+a1,0
p(X = 0|Y = yi),

• p(u = 1, v = 1|y = yi) = p(X = 1|Y = yi).

Note thatP (X = 0) = a0,0 + a0,1 + a1,0 is non-zero. Independence ofU andV given Y = yi implies

that

p(u = 1, v = 1|y = yi)× p(u = 0, v = 0|y = yi) = p(u = 0, v = 1|y = yi)× p(u = 1, v = 0|y = yi).

Therefore

a0,0

a0,0 + a0,1 + a1,0
p(X = 0|Y = yi)p(X = 1|Y = yi) =

a1,0a0,1

(a0,0 + a0,1 + a1,0)2
p(X = 0|Y = yi)

2,

or alternatively

a0,0 · p(X = 1|Y = yi) =
a1,0a0,1

a0,0 + a0,1 + a1,0
p(X = 0|Y = yi), (22)

If a0,0 is zero, eithera1,0 or a0,1 must also be zero, but this implies that eitherU or V is a constant

random variable which is a contradiction. Thereforea0,0 is non-zero. But then equation 22 uniquely

specifiesp(X = 1|Y = yi), implying thatp(X = 1|Y = y1) = p(X = 1|Y = y2) which is again a

contradiction.
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