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Abstract

We consider a multi-cell MIMO downlink (network MIMO) whereB base-stations (BS) withM

antennas connected to a central station (CS) serveK single-antenna user terminals (UT). Although

many works have shown the potential benefits of network MIMO,the conclusion critically depends

on the underlying assumptions such as channel state information at transmitters (CSIT) and backhaul

links. In this paper, by focusing on the impact of partial CSIT, we propose an outage-efficient strategy.

Namely, with side information of all UT’s messages and localCSIT, each BS applies zero-forcing (ZF)

beamforming in a distributed manner. For a small number of UTs (K ≤ M ), the ZF beamforming

createsK parallel MISO channels. Based on the statistical knowledgeof these parallel channels, the CS

performs a robust power allocation that simultaneously minimizes the outage probability of all UTs and

achieves a diversity gain ofB(M −K +1) per UT. With a large number of UTs (K ≥ M ), we propose

a so-called distributed diversity scheduling (DDS) schemeto select a subset of̃K UTs with limited

backhaul communication. It is proved that DDS achieves a diversity gain ofBK

K̃
(M − K̃ + 1), which

scales optimally with the number of cooperative BSsB as well as UTs. Numerical results confirm that

even under realistic assumptions such as partial CSIT and limited backhaul communications, network

MIMO can offer high data rates with a sufficient reliability to individual UTs.
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Fig. 1. A multicell downlink withB = 3 BSs andK = 3 UTs.

I. INTRODUCTION

Recently, network MIMO schemes, where neighboring Base-Stations (BSs) are connected to form an

antenna array, have been proposed as a means to drastically increase the downlink capacity and solve the

interference management problem of cellular systems [1]. Inspired by this result, we consider the multi-

cell MIMO downlink whereB BSs withM antennas connected to a Central Station (CS) communicate

simultaneously withK User Terminals (UTs) with a single antenna each. Fig.1 illustrates an example

of a multi-cell downlink system forB = K = 3 andM = 3. The channel at hand is modeled by the

Multi-Input Single-Output (MISO) interference channel, defined by

yk[t] =

B
∑

i=1

hH
ikxi[t] + nk[t] (1)

for t = 1, . . . , T , whereyk[t] is the channel output at UTk, hH
ik denotes the channel vector from BSi

to UT k, nk[t] ∼ NC(0, 1) is the Additive White Gaussian Noise (AWGN), andxi ∈ C
M×1 denotes the

input vector transmitted by BSi subject to the average power constraintPi.

If the CS or equivalently all the BSs have perfectChannel State Information at the Transmitter(CSIT)

and share the messages of all UTs, the channel at hand falls down into a classicalBM × K MIMO

broadcast channel with per-BS power constraints. In this case, the optimal strategy to maximize the

multi-cell throughput is joint dirty-paper coding [1], [2], [3]. In order to capture the essential features

of the multi-cell systems while enabling the analysis tractable, the Wyner model [4] has been widely

considered in the literature. In [5], the authors provide a survey on the information theoretic results on
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the multi-cell systems under the Wyner model for the Gaussian and fading channels with a single-antenna

BS (M = 1). These include the per-cell downlink capacity based on thecircular Wyner model [3], [6],

[7] and the corresponding analysis in the different asymptotic regime such as high SNR, a large number

of BSs, UTs [3], [6]. If each BS is equipped with multiple antennas (M > 1), the multi-cell downlink

capacity can be naturally enhanced by exploiting the spatial degrees of freedom (see for example [8], [9],

[10]). For a smallB, the MIMO multi-cell downlink channel is also referred to the MIMO interference

channel or MIMO-X channel under various message sharing assumptions (see [8], [11] and references

therein). In these contributions, the sum degrees of freedom has been extensively studied.

Unfortunately, the global joint processing at the CS is difficult (if not impossible) in practice. This

calls for practical network MIMO schemes which build on distributed processing at each BS by explicitly

taking into account realistic aspects. A large number of recent contributions have been focused on

practical designs by considering the following main limitations in network MIMO (see e.g. [12], [13],

[14], [15], [16], [17], [18] and references therein). First, a substantial amount of resource needs to be

dedicated for the CS to obtain accurate CSI. In particular, this overhead increases significantly with the

number of cooperative BSs, which in turn leaves few resourcefor the data transmission within a fixed

coherence block. In [12], such tradeoff between the benefitsof network MIMO and the overhead in

channel estimation has been studied for the case of the uplink with M = 1 andB = K. Second, the

backbone links between the BSs and the CS are typically imperfect. They might be the capacity-limited

[13], [14], [15], erroneous, or delayed [16]. This backhaulimperfectness will prevent the BSs from fully

sharing the side information on the messages or CSI. Similareffects may occur when only adjacent BSs

are connected to each other and exchange side information [17], [18].

Our contribution is no exception. We aim to design a practical scheme which ensures high data rates

with sufficient reliability to individual UTs under partialCSIT. The objective at hand is relevant to most

of the current/next wireless standards [19], [20]. To this end, we assume that each BSi has local CSIT

while the CS has only statistical CSIT. Notice that the last assumption is reasonable because the CS

needs to track the downlink channels at a rate much slower than the coherence time. We consider that

the CS generates the messages destined to allK UTs and sends them to theB BS over the backbone

link so that each BS locally encodes the messages and transmits. In order to concentrate on the impact

of partial CSIT, we do not take into account other practical limitations. In particular, the underlying
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backbone links are assumed to be perfect such thatB BSs can fully share the messages1. First, we

address the case where the number of UTs is smaller than the number of transmit antennas, i.e.,K ≤ M .

In this case, each BS applies ZF beamforming in a distributedmanner, which createsK parallel MISO

channels. Based on the statistical knowledge of these parallel channels, the CS performs a robust power

allocation that simultaneously minimizes the outage probability of K UTs and achieves a diversity gain

of B(M −K +1) per UT. Next, we consider a more relevant case of a large number of UTs (K > M ).

In this case, we propose a simple scheduling scheme called distributed diversity scheduling (DDS) which

efficiently chooses a set of̃K ≤ M UTs while limiting the amount of the backhaul communication. More

precisely, each BSi with local CSIT knowledge chooses its best set of UTs over thepredefined partition

and reports the corresponding index and value to the CS. The CS then decides and informs the selected

set to all BSs. Finally, the selected UTs are served exactly in the same manner as the previous case of

K ≤ M . It is proved that DDS offers a diversity gain ofBK

K̃
(M − K̃+1) to each UT and moreover this

gain scales optimally inB,K, andM , respectively. We remark that a similar CSIT assumption (local

CSIT at BSs and statistical CSIT at the CS) has been also considered in [21]. However, the objective of

this contribution is maximizing the multi-cell throughputrather than minimizing the outage probability

as we address here.

Numerical results validate the analysis in terms of diversity gain and show that our proposed distributed

ZF beamforming significantly outperforms the non-cooperative scheme. Namely, the outage performance

of our proposed scheme improves with the number of cooperative BS, transmit antennas, and UTs. It is

also shown in a simple one-dimensional topology that the performance gain can be emphasized as the

path-loss between neighboring cells decreases. The main finding of this paper is that even in a realistic

scenario with partial CSIT network MIMO can be beneficial by providing high data rate with a sufficient

reliability to individual UTs. Such merit of network MIMO has been somehow overlooked in most of

existing works assuming perfect CSIT.

The rest of the paper is organized as follows. The following section describes the system model. In

Section III we present the power allocation policies that minimize the outage probability both under

perfect and statistical CSI at the CS. We consider the relevant case ofK ≥ M in Section IV where we

propose a simple user scheduling algorithm and provide its diversity analysis. Section V shows some

numerical results and Section VI concludes the paper.

1If some backbone links are in failure, the corresponding BSsfail to encode the messages toK users. This will reduce the

effective number of BSs.
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Notations: Throughout the paper, we use boldface lower case letters to denote vectors, boldface

capital letters to denote matrices.(·)⋆, (·)T , and(·)H respectively denote the complex conjugation, matrix

transposition, and Hermitian transposition operations.In and0n×m represent then × n identity matrix

andn×m zero matrix. The determinant, rank, trace, and Frobenius norm of a matrixA are denoted by

|A|, rank(A), tr(A), and‖A‖2F, respectively. The dot-equality stands for the near-zero equality, that is,

f(ǫ)
.
= ǫn meanslimǫ→0

log f(ǫ)
log ε = n. We letχ2

m denote the chi-square distribution withm degrees of

freedom.

II. D ISTRIBUTED ZERO-FORCING BEAMFORMING

In order to split the processing at the CS and the BSs, it is reasonable to assume that the CS generates the

messages and performs the resource allocation whereas eachBS encodes and then transmits the symbols

in a distributed fashion. More precisely, we assume that theCS broadcastsK messages intended toK

UTs which enable the BSs to cooperate in transmission. Then,each BSi encodes these messages into

KT symbols{sik[t]} for k = 1, . . . ,K andt = 1, . . . , T by some capacity-achieving space-time coding

(with a sufficiently largeT channel uses). Under this setting, this section focuses on adistributed precoder

design at each BS which requires only local CSIT{hik}Kk=1 for any i.

In the multi-cell downlink channel (1), we model the vectorhik of channel coefficients from BSi

to UT k Gaussian distributed∼ NC(0, σikIM ) where the varianceσik captures the path-loss of the

corresponding link assuming that the UTs are arbitrary distributed. Furthermore,{hik} are assumed to

be i.i.d. over any pairi, k. We start with the definition of zero-forcing beamforming vectors as well as

a useful lemma on the resulting channel statistics.

Definition 1 (Zero-forcing beamforming vectors):For a channel matrixH ∈ C
K×M with K ≤ M

linearly independent row vectorshH
1 , . . . ,hH

K , there exists a zero-forcing beamforming matrixG =

[g1, . . . ,gK ] ∈ C
M×K , composed byK column vectorsg1, . . . ,gK , which is defined as

G = H+diag{ak} (2)

whereH+ = HH
(

HHH
)−1

and diag{ak} is a diagonal matrix that normalizes the norm of the columns

of H+ such that‖gk‖ = 1 for any k.

Lemma 1: If H ∈ C
K×M has i.i.d. entries where each rowhH

k ∼ NC(0, σkI), then |ak|2 as defined

in (2) is χ2
2(M−K+1) distributed with meanE[|ak|2] = σk, ∀ k.

We consider a simple ZF beamforming which enables each UT to achieve a multiplexing gain of one.

At each channel uset, BS i applies ZF beamforming to transmitK symbols in a distributed manner.
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Due to the symmetry over all channel uses, we ignore the indext hereafter. We form the transmit vector

of BS i at any channel use as

xi = Giui =

K
∑

k=1

√
pikgiksik (3)

where we letGi = [gi1, . . . ,giK ] be the ZF beamforming matrix corresponding to the channel matrix

from BS i formed by row vectorshH
i1 , . . . ,h

H
iK , ui = [

√
pi1si1, . . . ,

√
piKsiK ]T is the vector of symbols

where sik ∼ NC(0, 1) denotes the symbol transmitted by BSi to UT k with power pik. With this

beamforming, the received signal at UTk is given by

yk =

B
∑

i=1

√
pikaiksik + nk (4)

whereaik = hH
ikgik denotes the overall channel from BSi to UT k and coincides with the definition in

(2) for eachi. From Lemma 1 and the independence of{aik} over i, we remark that the originalB×K

MISO interference channel (1) is decoupled intoK parallelB × 1 MISO channels.

Lemma 2:Let y = Hx + z denote a MIMO slow fading channel with standard complex Gaussian

noisez. If we have

Pr
{

‖H‖2F < ǫ
} .
= ǫd (5)

then the maximum diversity order of the channel isd.

Theorem 1:With distributed ZF beamforming, the diversity order of each UT is B(M −K + 1).

Proof: Appendix A.

Assuming that each UTk perfectly knows the channel stateak = (a1k, . . . , aBk), it decodes the

space-time code and achieves the following rate

Rk = log

(

1 +
B
∑

i=1

|aik|2pik
)

. (6)

The capacity region of theK parallel MISO channels (4) for afixed set of powerpk = (p1k, . . . , pBk)

and channel stateak = (a1k, . . . , aBk) for all k is given by

R(a;p) =

{

R ∈ R
K
+ : Rk ≤ log

(

1 +
B
∑

i=1

|aik|2pik
)

∀k
}

(7)

where we leta = {ak},p = {pk} for a notation simplicity. The above region is clearly convex

(rectangular forK = 2). The capacity region of theK parallel MISO channels (4) under the individual

BS power constraintsP = (P1, . . . , PB) for a fixed channel statea is given by

C(a;P) =
⋃

P∈F

R(a;p) (8)
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whereP denotes a power allocation policya 7−→ p that maps the channel statea into the power vector

p with componentPik(a) = pik, F denotes the feasibility set satisfying
∑K

k=1 Pik(a) ≤ Pi,∀i for

any channel realizationa. The capacity regionC(a;P) is convex and its boundary can be explicitly

characterized by solving the weighted sum rate maximization as specified in subsection III-A.

III. POWER ALLOCATION MINIMIZING OUTAGE PROBABILITY

In the previous section, we considered the distributed processing at each BS assuming that the power

allocation is already done at the CS and each BS is informed about the resulting power partition. Here, we

address the power allocation problem solved at the CS. In particular, we are interested in a robust power

allocation strategy which requires only statistical CSIT.To this end, we consider a relevant scenario where

the system imposes a set of target rate to each UT depending onits application. This is of typical of the

current standards such as WiMax [20] and LTE [19]. One of the important goals in such a situation is to

minimize the outage probability simultaneously for all UTs. In order to formalize the problem, we letγk

denote the target rate of UTk and form the target rate tupleγ = (γ1, . . . , γK). For a givenγ, we define

the outage probability as the average probability thatγ is not fulfilled by all K UTs simultaneously,

namely

Pout(γ)
∆
= 1− Ea[1{γ ∈ C(a,P)}]

= 1− Pr (γ ∈ C(a,P)) . (9)

This section provides the power allocation policies minimizing the outage probability defined above under

perfect and statistical CSIT.

A. Perfect CSI at CS

We start with a special case where the CS has perfect CSIT. In this case, we are particularly interested

in the power allocation policy that provides the rate tuple proportional to the target rate tuple (rate-

balancing). As seen shortly, this policy equalizes the individual outage probability of all UTs and thus

provides the strict fairness among UTs. The latter is one of the most desired properties. Our objective is

find the set of{pik} satisfying

Rk(p)

R1(p)
=

γk
γ1

∆
= αk, k = 2, . . . ,K (10)

where we definedγk

γ1
= αk andα1 = 1. More precisely, the power allocation is a solution of [22]

min
∑

k θk=1
max

R∈C(a,P)

K
∑

k=1

θk
Rk

αk

. (11)
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Notice that the inner problem is the weighted sum rate maximization for a fixed weight set, while the outer

problem with respect toθ2, . . . , θK is a convex problem for which a(K − 1)-dimensional subgradient

method can be suitably applied [23]. First, we describe a numerical method to solve the inner problem,

given by

max
∑

K
k=1 pik≤Pi,∀i

K
∑

k=1

wk log

(

1 +

B
∑

i=1

|aik|2pik
)

(12)

wherewk = θk/αk denotes a non-negative weight for allk that we assume given for the time being.

Since the above problem is convex (the objective function isconcave and the constraints are linear), it

is necessary and sufficient to solve the KKT condition [24], given by

wk|aik|2
1 +

∑B
j=1 |ajk|2pjk

=
1

µi
, k = 1, . . . ,K, i = 1, . . . , B (13)

whereµi denotes the Lagrangian variable to be determined such that
∑

k pik ≤ Pi. Unfortunately solving

(13) directly seems intractable. Nevertheless, the following waterfilling approach inspired by the iterative

multiuser waterfilling for the MIMO multiple access channel[25] solves the KKT conditions iteratively.

Algorithm A1 : Iterative waterfilling algorithm for B-BS weighted sum rate maximization

1) Initialize p
(0)
i = 0 for i = 1, . . . , B andc(0)ik = 0 for all i, k.

2) At each iterationn

For i = 1, . . . , B

• Computec(n)ik =
∑

j 6=i |ajk|2p
(n)
jk

• Waterfilling step : letp(n)
i be

p
(n)
ik =

[

wkµi −
1 + c

(n)
ik

|aik|2

]

+

, ∀k (14)

whereµi is determined such that
∑K

k=1 p
(n)
ik = Pi.

End

3) Continue until convergence

We have the following remarks on the proposed algorithm.

Remark 3.1: Algorithm A1 is a generalization of the classical waterfilling algorithm for theK

parallel channels under the total power constraint to the case withB transmitters with individual power

constraints. Indeed, for a single-BS case (B = 1), the objective function reduces to the weighted sum

rate of theK parallel non-interfered channels given by

max
q≥0,

∑

k qk≤P

K
∑

k=1

wk log
(

1 + |ak|2qk
)

. (15)
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Remark 3.2: The set of powers in (14) correspond to the solution to the newobjective function

p
(n)
i = arg max

q≥0,
∑

k qk≤Pi

K
∑

k=1

wk log

(

1 +
|aik|2qk
1 + c

(n)
ik

)

. (16)

It can be easily seen that this new problem and the original problem (12) yield the same KKT conditions

(13) for c(n)ik =
∑

j 6=i |ajk|2p
(n)
jk . In other words, the solution (14) of BSi corresponds to treating{cik}Kk=1,

function of the powers{pj}j 6=i of the other BSs, as additional noise (constant), i.e., as ifthey did not

depend onpi. Under the individual power constraints for each BS, the sequential iteration over different

BSs probably converges (see the convergence proof below).

By a rather straightforward extension of [25, Theorem 1, Theorem 2], we have the following conver-

gence result.

Theorem 2:Algorithm A1 converges to the optimal solution of the weighted sum rate maximization

(12).

Proof: The proof follows in the footsteps of the proofs of [25, Theorem 1, Theorem 2]. At each

iteration, the proposed iterative algorithm finds the solution to the weighted sum rate maximization of the

single-BS parallel channels (15) for each BS while treatingthe powers of all the other BSs as additional

noise. Comparing the objective of the single-BS parallel channels (15) and that of the multi-BS parallel

channels (16), they differ only from the constantcik({pjk}j 6=i). Hence, the objective is nondecreasing at

each waterfilling step and further converges to a limit. The powersp1, . . . ,pB of B BSs also converge

to the limit p⋆
1, . . . ,p

⋆
B . This is because the solution to the single-BS parallel channels is unique.

The outer problem consists of minimizing the solution of theinner problem with respect toθ2, . . . , θK .

This can be done by the subgradient method. We summarize the overall algorithm as follows.

Rate balancing algorithm

1) Initialize θ
(0)
k ∈ [0, 1] for k > 1.

2) At iterationn, compute

R(n) = arg max
R∈C(a,P)

2
∑

k=1

θ
(n)
k

Rk

αk

(17)

via waterfilling approach.

Compute a subgradient of userk

∆
(n)
k =

R
(n)
k

αk

−R
(n)
1 .

3) Update the weights by subgradient :

θ(n+1) = θ(n) − sn∆
(n)
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wheresn denotes the step size at iterationn that can be chosen according to a decreasing rule.

The overall algorithm, the inner problem solved by algorithm A1 and the outer problem solved by

the subgradient method, implements the rate-balancing by allocating the rates proportional to the target

rate tuple. Hereafter, we letR⋆
k(a) denote the rate of userk allocated by the rate-balancing algorithm in

channel statea. Notice that the achievable rate (6) is a deterministic function of P⋆(a). Then, we have

the following result.

Theorem 3:The rate-balancing power allocation minimizes the outage probability. Moreover, it equal-

izes the individual outage probability of allK UT by lettingPr(γ1 < R⋆
1(a)) = · · · = Pr(γk < R⋆

k(a)).

Proof: Appendix B.

B. Statistical CSI at CS

We consider a more realistic case when the CS has only statistical knowledge of the equivalent channels

a. Formally, we define the power allocation policyPstat : σ 7→ p as a function mapping the variances of

channel coefficientsσ = (σ11, . . . , σBK) into the power vectorp with componentPstat
ik (σ) = pik. Since

the equivalent channel coefficients{aik} after ZF beamforming are correlated over differentk for each

BS i, the individual outage events are dependent. Nevertheless, this dependency can be made arbitrarily

small by a simple interleaving over frequency bands for example. Under this assumption, we approximate

the outage probability for a fixed power allocationp as

Papp−out(γ,p) = 1−
K
∏

k=1

Pr
(

∆k(p
k) > 2γk − 1

)

(18)

where we let∆k(p
k) =

∑B
i=1 |aik|2pik. First, we remark that for a fixed powerpk = (p1k, . . . , pBk) of

UT k , ∆k(p
k) is a Hermitian quadratic form of complex Gaussian random variables given by

∆k(p
k) = (a∗

1k, . . . , a
∗

Bk)











p1k 0

. . .

0 pBk





















a1k

...

aBk











= (wH

1k . . .w
H

Bk)











p1kI 0

. . .

0 pBkI





















w1k

...

wBk











where the second equality follows by replacing a chi-squarerandom variable|aik|2 ∼ χ2
2(M−K+1)

with ||wik||2 wherewik ∼ NC(0,
σik

M−K+1IM−K+1). The individual outage probability that UTk cannot

supportγk for a fixedpk is

Pr(∆k(p
k) ≤ ck) =

1

2πj

∫ c+j∞

c−j∞

esckΦ∆k(pk)(s)

s
ds (19)
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where we letck = 2γk −1 denote the target SNR of UTk, and the Laplace transform of∆k(p
k) is given

by

Φ∆k(pk)(s) =

B
∏

i=1

1

(1 + s pikσik

M−K+1)
M−K+1

. (20)

From (20), we see immediately that each UT achieves a diversity gain ofB(M −K + 1), which agrees

well with Theorem 1. The widely used upper bound is the Chernoff bound for fixed powerspk given by

Pr(∆k(p
k) ≤ ck) ≤ min

λ≥0
eλckΦ∆k(pk)(λ)

∆
= F (ck,p

k). (21)

Using the last expression of the Chernoff upper bound for each k, the approximated outage probability

for a fixedp is upper-bounded by

Papp−out(γ,p) ≤ 1−
K
∏

k=1

(1− F (ck,p
k)) (22)

Since the power optimization based on the exact outage probability is not amenable, we search the power

allocation that minimizes the Chernoff upper bound, equivalently solves

maximize f({λk}, {pik}) ∆
=

K
∏

j=1

(1− hk(λk,p
k)) (23)

subject to
K
∑

k=1

pik ≤ Pi, i = 1, . . . , B

λk ≥ 0, k = 1, . . . ,K

pik ≥ 0, i = 1, . . . , B, k = 1, . . . ,K

where we define

hk(λk,p
k) =

eλkck

∏B
i=1(1 + βikλkpik)M−K+1

(24)

whereβik = σik

M−K+1 . If hk ≥ 1 for somek, the objective becomes null regardless of the power allocation.

In this case a reasonable choice is to letpik = 0,∀i for suchk and equally allocate the power to{pik′}
for k′ 6= k. In the following, by focusing on the casehk < 1 for all k, we provide an efficient numerical

method to solve the problem (23). We remark first that the maximization off with respect to{λk} can

be decoupled into the minimization ofhk overλk for eachk, wherehk is convex inλk. Moreover, since

f is concave in{pik}, the overall problem is convex.

Minimization of hk over λk It can be easily verified thathk is monotonically decreasing inλk. The

optimal λk for a fixed set of powers is the solution of

ck
M −K + 1

=
B
∑

i=1

βikpik
1 + λkβikpik

(25)
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which is a polynomial of degreeB. For B = 2, the solution is given in a closed form.

λk =











M−K+1
ck

− 1
β1kp1k+β2kp2k

, if
∑2

j=1 βjkpjk = 0

−
(

β1kp1k+β2kp2k−
2(M−1)β1kp1kβ2kp2k

ck

)

+

√

(β1kp1k−β2kp2k)2+
(

2(M−1)β1kp1kβ2kp2k
ck

)2

2β1kp1kβ2kp2k
, otherwise

(26)

Maximization of f over pik Since f is concave in{pik}, we form the Lagrangian function by

introducingB Lagrangian multipliers{µi} each of which is associated to the power constraint of BSi.

By arranging the term common for allk, we obtain the KKT conditions fork = 1, . . . ,K

hk(p
k)

1− hk(pk)

βikλk

1 + pikβikλk

= µi. (27)

When treatingp1k, . . . , pi−1,k, pi+1,k, . . . , pB,k fixed, the LHS of (27), denoted byφik, is a strictly positive

and monotonically decreasing function ofpik (since we exclude the caseλk = 0). It remains to determine

µi such that the power constraint of BSi is satisfied , i.e.,pi1+ · · ·+piK = Pi. When treating the powers

{pj}j 6=i of the other BSsj 6= i fixed, the powerspi of BS i can be found by a simple line search ofµi.

The following summarizes our proposed iterative algorithmto minimize the Chernoff upper bound,

equivalently solve (23).

Algorithm A2 : iterative algorithm for the Chernoff upper bo und minimization

1) Initialize p(0)

2) At iterationn

For i = 1, . . . , B

• Updateλ(n) by solving the polynomial (25)

• Find the new power vectorp(n)
i of BS i by line search

End

3) Continue until convergef

Although we are unable to provide a formal proof, we conjecture that Algorithm A2 converges to its

optimal solution. At each iteration,λ(n)
k is determined as a unique solution for allk and a fixed set of

powers. Regarding the power iteration, since the objective(27) is concave inpik when fixing all other

powers, a sequential update of the powersp1,p2, . . . ,pB ,p1... shall converge under individual BS power

constraints by a similar argument as the proof of Theorem 2.

IV. EFFECT OF USER SCHEDULING

In this section we address the relevant case when the number of UTs is larger than the number of

transmit antennasK > M . In order for each BS to apply the ZF beamforming in a distributed fashion,
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a set ofK̃ ≤ M UTs shall be selected beforehand. We assume that the user selection (scheduling) is

handled by the CS together with the power allocation. In particular, we focus on a user selection method

which achieves a high diversity order while limiting the amount of the side information necessary at the

CS and the BSs. In the following, we present our proposed userselection scheme as well as the analysis

on its achievable diversity gain.

A. Distributed Diversity Scheduling (DDS)

Let S,U denote the set of allK users, theK̃ selected users, with|S| = K, |U| = K̃, respectively. Let

us also defineQ(K̃) as the set of all possible user selections, i.e.,Q(K̃) =
{

U | U ⊆ S, |U| = K̃
}

for

K̃ ≤ M .2 Then, the equivalent channel from the BSs to the selected users is

yk = akuk + zk, k ∈ U, (28)

which is a MISO channel withak = [a1k · · · aBk] anduk =
[√

p1ks1k · · ·
√
pBksBk

]T
. For convenience,

we only consider the diversity order of the worst user and refer it as the diversity of the system hereafter.

Since the diversity order of a given channel depends solely on the Euclidean norm of the channel matrix,

as shown in lemma 2, the following user selection scheme maximizes the diversity of the system

U
∗ = arg

U
max
U∈Q

min
k∈U

‖ak‖2. (29)

Unfortunately, this scheduling scheme has two major drawbacks: 1) perfect knowledge at the CS on

{ak}, crucial for the scheduling, is hardly implementable as aforementioned, and 2) the maximization

over all |Q(K̃)| =
(

K
K̃

)

possible setsU grows in polynomial time withK.

To overcome the first drawback, we use the following selection scheme

Ud = arg
U

max
i=1...B

max
U∈Q

min
k∈U

|aik|2. (30)

That is, BSi finds out the setU that maximizesmink∈U |aik|2 and sends both the index of the set and

the corresponding maximum value to the CS. Upon the reception of B values and the corresponding sets

from theB BS, the CS makes a decision by selecting the largest one. Therefore, only partial channel

state information is communicated in the BS-CS link. To address the second drawback, we narrow down

the choices ofU to the followingκ = K/K̃ possibilities3

PS = {U1,U2, . . . ,Uκ} ,
⋃

i

Ui = S, Ui ∩Uj = ∅, ∀ i 6= j, |Ui| = K̃, ∀ i.

2For convenience of notation, we will drop the argumentK̃ whenever confusion is unlikely.

3Here, we assume thatK/K̃ is integer for simplicity of demonstration. However, it will be shown that same conclusion holds

otherwise.
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set 1

set 2

CS

BS1

BS2

set 3

set 1

set 3 (−4dB)

set 1 (−
3dB)

set 1

Fig. 2. An example scenario of user scheduling with two BSs and six UTs.

In other words,PS is partition of the set of all usersS. Furthermore, it is assumed that the partitionPS

is fixed by the CS and known to all BSs. Hence, the proposed scheduling scheme selects the following

set of users

Ud = arg
U

max
i=1...B

max
U∈PS

min
k∈U

|aik|2. (31)

To summarize, the scheduling scheme works as follows

i) The CS fixes a partitionPS and informs it to all BSs.

ii) BS i findsmaxU∈PS
mink∈U |aik|2, and sends this value and the index of the maximizing setU to

the CS.

iii) The CS chooses the largest value and broadcasts the index of the winner setUd as defined in (31).

iv) All the BSs serve simultaneously the UTs inUd.

An example of two BSs and six UTs is shown in Fig. 2. In this example, in order to serve two

UTs simultaneously, a partition of three sets is fixed by the CS. With local CSI, each BS compares the

coefficientsmink∈U |aik|2 for all three setsU, finds out the largest one, and sends the corresponding

“index(value)” pair to the CS. The CSI compares the values and broadcasts the index of the winning

set (set1 in this example).

B. Diversity gain analysis

In this subsection, we analyze the diversity gain achieved by our proposed DDS and compare it with

the upper bound. The result is summarized in the following Theorem.

Theorem 4:Let K, B, andM denote the number of UTs, number of BSs, and number of antennas
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per BS. By servingK̃ UTs simultaneously, the following diversity gain is achievable with DDS

dUd(K̃) ≥ B
K

K̃

(

M − K̃ + 1
)

, (32)

for K = nK̃ with an integern. Furthermore, the optimal diversity gain achieved by (29) is upper-bounded

by

dU∗(K̃) ≤ B(K − K̃ + 1)
(

M − K̃ + 1
)

. (33)

Proof: Appendix C.

Remark 4.1: For a fixedK̃, the diversity gain of the proposed scheduling scheme growsasO(BKM),

i.e., the optimal diversity scaling withB, K, and M . In this sense, the proposed scheme is order

optimal in terms of diversity gain. Also note that the lower bound (32) and the upper bound (33)

coincide in some specific settings. First,dUd(1) = dU∗(1) = BKM , ∀B,K,M . That is, the proposed

scheme is diversity optimal if only one user is served in the system. Then, forK ≤ M , we have

dUd(K) = dU∗(K) = B(M − K + 1). This corresponds to the case where all users in the system are

served simultaneously.

Remark 4.2: Interestingly, exactly the same diversity order is achieved for U∗ if we setQ = PS.

To see this, let us rewrite

min
k∈U∗

‖ak‖2 = max
U∈PS

min
k∈U

‖ak‖2 (34)

≤ max
U∈PS

‖ak‖2, ∀ k ∈ U (35)

and thatmaxU∈PS
‖ak‖2 is of diversityBK

K̃

(

M + 1− K̃
)

.

Remark 4.3: When K̃ does not divideK, we consider only
⌊

K

K̃

⌋

K̃ out of K users. SinceK̃

divides
⌊

K

K̃

⌋

K̃, the following diversity gain can be achieved

dUd(K̃) = B

⌊

K

K̃

⌋

(

M − K̃ + 1
)

(36)

with the proposed DDS.

V. NUMERICAL EXAMPLES

This section provides some numerical examples to verify thebehavior of our proposed distributed ZF

beamforming scheme in a simple network MIMO configuration with B = 2 cooperative BSs. We assume

the same power constraint at both BSsP1 = P2 and letP denote the SNR.

Fig. 5 shows the outage probability performance versus SNR for K = 2 andM = 2, 4. The target rate

is fixed to (γ1, γ2) = (3, 1) bit/channel use, and we letσik = 1 for all i, k. We compare the different
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x
0 2

BS1 BS2

UT2 4
UT1

d11

d21

d12
d22=1

Fig. 3. One dimensional configuration.

power allocation strategies, algorithm A1 with perfect CSIT, algorithm A2 with statistical CSIT, and

equal power allocation (pi1 = pi2 = P/2 for i = 1, 2). For the sake of comparison, we also consider the

case without network MIMO (no message sharing) where each BSsends a message to its corresponding

UT in a distributed fashion. In order to make the comparison fair in terms of complexity, we let each BS

i send the symbolsi by ZF beamforming, i.e.xi =
√
Pgisi wheregi is a unit-norm vector orthogonal

to hik for k 6= i. From Lemma 1, such a system offers a diversity order ofM −K +1 for each UT. As

expected from Theorem 1, we observe that our BS cooperation schemes enables to achieve a diversity

gain of 2(M −K + 1), i.e. 2, 6 with M = 2, 4, respectively. These gains are twice as large as the case

without network MIMO. Moreover, the proposed algorithms provide a significant power gain compared

to equal power allocation.

In Fig. 6, we plot the individual outage probability such that each UTk cannot support its target rate

γk under the same setting as Fig. 5 forM = 2. With perfect CSIT, our proposed waterfilling allocation

A1 guarantees the identical outage probability for both UTsby offering the strict fairness. This agrees

well with the second part of Theorem 3. Under statistical CSIT, algorithm A2 provides a better outage

probability to UT 1 but keeps the gap between two UTs smaller than the equal power allocation.

In order to evaluate the impact of asymmetric path loss on theoutage performance, we consider a

simple 1-D configuration illustrated in Fig. 3 where UT 2 is located atx = 3 and UT 1 moves from

x = 0 to x = 2. Assuming that BS 1, 2 is atx = 1, 3, respectively, we varyd11 =
√

1 + (1− x)2, d12 =
√

1 + (3− x)2 while we fix the position of UT2 by lettingd12 =
√
5, d22 = 1. By taking into account

the path lossσik = d−3
ik , we plot the outage probability as a function of the positionx of UT 1 in Fig. 7.

We considerM = 4, SNRP = 10 dB and fix the target rateγ1 = γ2 = 1 bit/channel use. We observe

that the proposed distributed ZF scheme provides a significant gain compared to the case without network
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MIMO especially as UT 1 gets closed to the cell boundary (x = 2). This is because the performance

without network MIMO only depends ond11 while the distributed ZF becomes more and more beneficial

asd21 decreases.

Finally, Fig. 8 shows the outage probability versus SNR whenwe have more users than the number of

served users , i.e.K ≥ K̃ = 2. Considering the same setting as Fig. 5 forM = 4, we apply distributed

diversity scheme to select a set of two users amongK = 2, 4, 6. Once the user selection is done, any

power allocation studied in Section III can be applied. However, it is non-trivial (if not impossible) to

characterize the statistics of the overall channel gains inthe presence of any user scheduling. Hence,

we illustrate here only the performance with equal power allocation under statistical CSIT. As a matter

of fact, any smarter allocation shall perform between the waterfilling allocation and the equal power

allocation. As expected from Theorem 4, the diversity gain increases significantly as the numberK of

users in the system gets large.

VI. CONCLUSIONS

We considered the multi-cell downlink system (network MIMO) whereB BSs, perfectly connected

via the reliable backbone links to the CS, wish to communicate simultaneously withK UTs. As one of

the realistic limitations of network MIMO, we explicitly accounted for partial CSIT, i.e. local channel

knowledge at each BS and statistical channel knowledge at the CS. Under this setting, we proposed an

outage-efficient strategy which builds on distributed ZF beamforming to be performed at each BS and

efficient power allocation algorithms at the CS. For the caseof a small number of usersK ≤ M , the

proposed scheme enables each UT to achieve a diversity gain of B(M −K + 1). For the case of many

usersK ≥ M , we proposed distributed diversity scheduling (DDS) whichcan be implemented in a

distributed fashion at each BS and requires only limited amount of the backbone communications. We

also proved that DDS can offer the diversity gain ofBK

K̃
(M − K̃ + 1) and this gain scales optimally

with the number of cooperative BSs as well as the number of UTs. The main finding is that limited BS

cooperation can still make network MIMO attractive in the sense that a well designed scheme can offer

high data rates with sufficient reliability to individual UTs. The proposed scheme can be suitably applied

to any other interference networks where the transmitters can perfectly share the messages to all UTs

and a master transmitter can handle the resource allocation.
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(γ1, γ2)

R1R1

R2

C(a;P) (γ1, γ2)

Rs

R1R1

R2

C(a;P)

(a) outage (b) sucess

(R1*,R2*)
(R1*,R2*)

Fig. 4. Rate regionC(a;P) and subregionRs

APPENDIX

A. Proof of Theorem 1

The channel (4) is a MISO channel defined byak = (a1k, . . . , aBk) and

Pr
{

‖ak‖2 < ǫ
}

.
= Pr

{

max
i

|aik|2 < ǫ

}

(37)

=
∏

i

Pr
{

|aik|2 < ǫ
}

(38)

=
(

Pr
{

|aik|2 < ǫ
})B

(39)

.
= ǫB(M−K+1) (40)

From lemma 2, the maximum diversity isB(M −K + 1).

B. Proof of Theorem 3

First we remark that for a given channel realizationa the following two cases occur:

(a) The target rate tuple is outside the regionγ /∈ C(a,P)

(b) The target rate tuple is inside the regionγ ∈ C(a,P)

The above two cases are illustrated in Fig.4(a), (b) respectively for K = 2. For the case (a), we are in

an outage event regardless of the power allocation. For the case (b), we define the subregionRs(a)

Rs(a)
∆
= {R|R ∈ C(a,P), Rk ≥ γk, k = 1, . . . ,K} (41)

depicted in a shadow area in Fig. 4 (b). We definePs as a class of the power allocation policies that

mapsa into the rate tupleR inside Rs(a) whenever we are in case (b). We remark that any policy

belonging toPs results in a successful transmission, and thus minimizes the outage probability. Since
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the proposed rate balancing scheme allocates the power(p⋆1, . . . , p
⋆
K) so that the rate-tuple(R⋆

1, . . . , R
⋆
K)

is proportional toγ on the boundary ofC(a,P) wheneverγ ∈ C(a,P), it belongs to the classPs. This

establishes the first part.

We now prove the second part. It is immediate to see that with the rate balancing scheme, we have

for any a

1(γk < R⋆
k(a)) = 1(αkγ1 < αkR

⋆
1(a)) = 1(γ1 < R⋆

1(a)), k = 2, . . . ,K (42)

where the first equality follows from (10). The outage probability with the rate balancing scheme can be

always written as

P balance
out (γ) = 1− Pr(∩K

k=1{γk < R⋆
k(a)})

= 1− Pr(γk < R⋆
k(a)) Pr(∩k′ 6=k{γk′ < R⋆

k′(a)}|γk < R⋆
k(a))

= 1− Pr(γk < R⋆
k(a))

where the last equality follows since the equalities (42) imply Pr(∩k′ 6=kγk′ < R⋆
k′(a)|γk < R⋆

k(a)) = 1

for any k. This completes the second part.

C. Proof of Theorem 4

In order to examine the diversity gain of the proposed scheduling scheme, we first remark

min
k∈Ud

‖ak‖2 ≥ min
k∈Ud

max
i

|aik|2 (43)

≥ max
i

min
k∈Ud

|aik|2 (44)

= max
U∈PS

max
i

min
k∈U

|aik|2 (45)

where the (44) follows from the max-min inequality and the last equality holds since we can rewrite (31)

as

Ud = arg
U
max
U∈PS

max
i=1...B

min
k∈U

|aik|2. (46)
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by swapping the maximization overU and that overi. To find the diversity order of the scheme, we need

to look at the following near-zero behavior of the channel coefficients

Pr

{

min
k∈Ud

‖ak‖2 < ǫ

}

≤ Pr

{

max
U∈PS

max
i

min
k∈U

|aik|2 < ǫ

}

(47)

=

(

Pr

{

min
k∈U

|abk|2 < ǫ

})B|PS|

(48)

≤
(

∑

k∈U

Pr
{

|abk|2 < ǫ
}

)B|PS|

(49)

=
(

|U|Pr
{

|abk|2 < ǫ
})B|PS| (50)

.
=
(

|U|ǫM+1−K̃
)B|PS|

(51)

.
= ǫB

K

K̃
(M+1−K̃), (52)

where (48) follows from the fact thatU’s are disjoint inPS and thatmink∈U |aik|2 are independent for

different U and i; (49) is from the union bound. From lemma 2, (32) is straightforward. For the upper

bound of the diversity gain of the scheduling scheme (29), let us first write

max
U∈Q

min
k∈U

‖ak‖2 ≤ max
U∈Q

‖a1‖2 (53)

≤ Bmax
i

max
U∈Q

|ai1|2 (54)

where the first inequality is from the fact that the worst usercannot be better than the first user; the

second inequality is from‖a1‖2 ≤ Bmaxi |ai1|2. From [26, Theorem 1], we know that the diversity

gain of |ai1|2 is (K − K̃ + 1)(M − K̃ + 1). Therefore, it readily follows that the diversity gain of

maxU∈Q mink∈U ‖ak‖2 is upper-bounded byB(K − K̃ + 1)(M − K̃ + 1).
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Fig. 5. Outage probability vs. SNR withB = K = 2 andM = 2, 4.
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