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Abstract

We consider a multi-cell MIMO downlink (network MIMO) wher8 base-stations (BS) witd/
antennas connected to a central station (CS) séfvsingle-antenna user terminals (UT). Although
many works have shown the potential benefits of network MIMI® conclusion critically depends
on the underlying assumptions such as channel state infamat transmitters (CSIT) and backhaul
links. In this paper, by focusing on the impact of partial TSke propose an outage-efficient strategy.
Namely, with side information of all UT's messages and |a€8IT, each BS applies zero-forcing (ZF)
beamforming in a distributed manner. For a small number o6 I < M), the ZF beamforming
createsK parallel MISO channels. Based on the statistical knowlezfgbese parallel channels, the CS
performs a robust power allocation that simultaneouslyimmires the outage probability of all UTs and
achieves a diversity gain d8(M — K + 1) per UT. With a large number of UTSK( > M), we propose
a so-called distributed diversity scheduling (DDS) schemeselect a subset ok UTs with limited
backhaul communication. It is proved that DDS achieves ardity gain ofB%(M — K + 1), which
scales optimally with the number of cooperative B3ss well as UTs. Numerical results confirm that
even under realistic assumptions such as partial CSIT amitetli backhaul communications, network
MIMO can offer high data rates with a sufficient reliability individual UTs.
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Fig. 1. A multicell downlink withB = 3 BSs andK = 3 UTs.

. INTRODUCTION

Recently, network MIMO schemes, where neighboring Basgi8ts (BSs) are connected to form an
antenna array, have been proposed as a means to drasticaégse the downlink capacity and solve the
interference management problem of cellular systérns fikpited by this result, we consider the multi-
cell MIMO downlink where B BSs with M antennas connected to a Central Station (CS) communicate
simultaneously withK" User Terminals (UTs) with a single antenna each.[JFig.1tithies an example
of a multi-cell downlink system fol3 = K = 3 and M = 3. The channel at hand is modeled by the

Multi-Input Single-Output (MISO) interference channegfisthed by

B
yelt] = D hixi[t] + nylt] 1)
i=1
fort =1,...,T, wherey[t] is the channel output at U, hg denotes the channel vector from BS

to UT k, n[t] ~ Ne(0,1) is the Additive White Gaussian Noise (AWGN), ange C**! denotes the
input vector transmitted by BSsubject to the average power constrait

If the CS or equivalently all the BSs have perf€@tannel State Information at the Transmit{@SIT)
and share the messages of all UTs, the channel at hand falls thdo a classicaBM x K MIMO
broadcast channel with per-BS power constraints. In thi&ecéhe optimal strategy to maximize the
multi-cell throughput is joint dirty-paper codin@l[1]./[2]3]. In order to capture the essential features
of the multi-cell systems while enabling the analysis @htg#, the Wyner model [4] has been widely

considered in the literature. 10][5], the authors provideuevey on the information theoretic results on
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the multi-cell systems under the Wyner model for the Gausaial fading channels with a single-antenna
BS (M = 1). These include the per-cell downlink capacity based oncttmilar Wyner model[[3],[[6],
[7] and the corresponding analysis in the different asytptegime such as high SNR, a large number
of BSs, UTs[[8], [6]. If each BS is equipped with multiple amb@s (/ > 1), the multi-cell downlink
capacity can be naturally enhanced by exploiting the spdgigrees of freedom (see for example [8], [9],
[10]). For a smallB, the MIMO multi-cell downlink channel is also referred teetMIMO interference
channel or MIMO-X channel under various message sharingnasiions (seel [8],[[11] and references
therein). In these contributions, the sum degrees of freekas been extensively studied.

Unfortunately, the global joint processing at the CS is diffi (if not impossible) in practice. This
calls for practical network MIMO schemes which build on disited processing at each BS by explicitly
taking into account realistic aspects. A large number oeméacontributions have been focused on
practical designs by considering the following main lirtizdas in network MIMO (see e.gl [12] [13],
[14], [15], [186], [17], [18] and references therein). Fjrst substantial amount of resource needs to be
dedicated for the CS to obtain accurate CSI. In particubas, dverhead increases significantly with the
number of cooperative BSs, which in turn leaves few resofoce¢he data transmission within a fixed
coherence block. In[12], such tradeoff between the benefilsetwork MIMO and the overhead in
channel estimation has been studied for the case of thekupiith A/ = 1 and B = K. Second, the
backbone links between the BSs and the CS are typically iiegeThey might be the capacity-limited
[13], [14], [15], erroneous, or delayed [16]. This backhemperfectness will prevent the BSs from fully
sharing the side information on the messages or CSI. Simifacts may occur when only adjacent BSs
are connected to each other and exchange side informat@n[iB].

Our contribution is no exception. We aim to design a praticaeme which ensures high data rates
with sufficient reliability to individual UTs under parti@SIT. The objective at hand is relevant to most
of the current/next wireless standards|[19],![20]. To thisl,eve assume that each B®as local CSIT
while the CS has only statistical CSIT. Notice that the lastuanption is reasonable because the CS
needs to track the downlink channels at a rate much slower tthe coherence time. We consider that
the CS generates the messages destined t& dllITs and sends them to the BS over the backbone
link so that each BS locally encodes the messages and triangmbrder to concentrate on the impact

of partial CSIT, we do not take into account other practigalithtions. In particular, the underlying
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backbone links are assumed to be perfect such Bhd&Ss can fully share the messe%eﬁirst, we
address the case where the number of UTs is smaller than theanwf transmit antennas, i.€<, < M.

In this case, each BS applies ZF beamforming in a distribotadner, which create&” parallel MISO
channels. Based on the statistical knowledge of theselglachknnels, the CS performs a robust power
allocation that simultaneously minimizes the outage pbdiy of X UTs and achieves a diversity gain
of B(M — K + 1) per UT. Next, we consider a more relevant case of a large nuofddTs (K > M).

In this case, we propose a simple scheduling scheme cabtriibdied diversity scheduling (DDS) which
efficiently chooses a set g€ < M UTs while limiting the amount of the backhaul communicatibtore
precisely, each B$ with local CSIT knowledge chooses its best set of UTs ovelptieelefined partition
and reports the corresponding index and value to the CS. Bhthé€n decides and informs the selected
set to all BSs. Finally, the selected UTs are served exactijpé same manner as the previous case of
K < M. It is proved that DDS offers a diversity gain Bf%(M — K +1) to each UT and moreover this
gain scales optimally imB, K, and M, respectively. We remark that a similar CSIT assumptiorallo
CSIT at BSs and statistical CSIT at the CS) has been alsodemesi in [21]. However, the objective of
this contribution is maximizing the multi-cell throughpr#ther than minimizing the outage probability
as we address here.

Numerical results validate the analysis in terms of divgrgain and show that our proposed distributed
ZF beamforming significantly outperforms the non-coopeeatcheme. Namely, the outage performance
of our proposed scheme improves with the number of cooper®8$6, transmit antennas, and UTs. It is
also shown in a simple one-dimensional topology that théopmance gain can be emphasized as the
path-loss between neighboring cells decreases. The maimdirof this paper is that even in a realistic
scenario with partial CSIT network MIMO can be beneficial bgypding high data rate with a sufficient
reliability to individual UTs. Such merit of network MIMO Isabeen somehow overlooked in most of
existing works assuming perfect CSIT.

The rest of the paper is organized as follows. The followiegtisn describes the system model. In
Section[l we present the power allocation policies thahimize the outage probability both under
perfect and statistical CSI at the CS. We consider the retesase of K > M in Section 1V where we
propose a simple user scheduling algorithm and provideivsrsity analysis. SectiohlV shows some

numerical results and Secti@n]VI concludes the paper.

1If some backbone links are in failure, the corresponding B#ito encode the messages ko users. This will reduce the

effective number of BSs.
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Notations: Throughout the paper, we use boldface lower case lettereenotd vectors, boldface
capital letters to denote matricds)*, (-)”, and(-) respectively denote the complex conjugation, matrix
transposition, and Hermitian transposition operatidpsand0,, ., represent the: x n identity matrix
andn x m zero matrix. The determinant, rank, trace, and Frobeniusirad a matrix A are denoted by

|A|, rankA), tr(A), and||A||Z, respectively. The dot-equality stands for the near-zeuality, that is,

log f(e)
loge

f(e) = €" meanslim,_, = n. We let \2, denote the chi-square distribution with degrees of

freedom.

[I. DISTRIBUTED ZERO-FORCING BEAMFORMING

In order to split the processing at the CS and the BSs, it somable to assume that the CS generates the
messages and performs the resource allocation wherea88aehcodes and then transmits the symbols
in a distributed fashion. More precisely, we assume thatGBebroadcasté’ messages intended
UTs which enable the BSs to cooperate in transmission. Téaeh BSi encodes these messages into
KT symbols{s;[t]} for k =1,...,K andt = 1,...,T by some capacity-achieving space-time coding
(with a sufficiently largel” channel uses). Under this setting, this section focusesdistrédbuted precoder
design at each BS which requires only local C$H;;.}X | for anyi.

In the multi-cell downlink channel{1), we model the veclos. of channel coefficients from BS
to UT k Gaussian distributed- N¢(0,0,:I5/) where the variance;;, captures the path-loss of the
corresponding link assuming that the UTs are arbitraryridisted. Furthermore{h;;} are assumed to
be i.i.d. over any pait, k. We start with the definition of zero-forcing beamformingcias as well as
a useful lemma on the resulting channel statistics.

Definition 1 (Zero-forcing beamforming vectorsjor a channel matrid e CK*M with K < M

linearly independent row vectos!, ... hil, there exists a zero-forcing beamforming mat€ix =
[g1,...,8Kx] € CM*K composed by column vectorsz:, ..., gk, which is defined as
G = H'diag{a;} (2)

whereH = H (HHH)_1 and diag{ay } is a diagonal matrix that normalizes the norm of the columns
of H such that||g|| = 1 for any k.

Lemma 1:If H € CKX*M has i.i.d. entries where each rdw ~ Ne(0,0.I), then|a;|? as defined
in @) is x5y, s, distributed with meark[|ax|?] = o, V k.

We consider a simple ZF beamforming which enables each UThaeae a multiplexing gain of one.

At each channel usg BS i applies ZF beamforming to transmif symbols in a distributed manner.
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Due to the symmetry over all channel uses, we ignore the indexeafter. We form the transmit vector

of BS i at any channel use as

K
x; = Giu; = Z VPik8ikSik 3)
k=1
where we letG; = [gi1,...,8ix]| be the ZF beamforming matrix corresponding to the channetixna
from BSi formed by row vector&l, ... hiL., v, = [\/pirsi, ..., Pixsik]! is the vector of symbols

where s;, ~ Ne(0,1) denotes the symbol transmitted by BSo UT k& with power p;;. With this
beamforming, the received signal at WTis given by
B
Ve = /DintikSik + M 4)
i=1
wherea;;, = hggik denotes the overall channel from BSo UT k and coincides with the definition in
(@) for eachi. From Lemmdll and the independence af;.} overi, we remark that the originaB x K
MISO interference channdll(1) is decoupled itoparallel B x 1 MISO channels.
Lemma 2:Let y = Hx + z denote a MIMO slow fading channel with standard complex Giauns

noisez. If we have
Pr {||HH,2: <e}= el (5)

then the maximum diversity order of the channetlis
Theorem 1:With distributed ZF beamforming, the diversity order of eadT is B(M — K + 1).
Proof: Appendix[A. [ |
Assuming that each U perfectly knows the channel stat¢ = (ay,...,ap;), it decodes the
space-time code and achieves the following rate
B
R, = log (1 + Z \aik\2pik> . (6)
=1
The capacity region of thé parallel MISO channelg14) for fixed set of powerp” = (pix, ..., psk)
and channel state® = (a1, ...,ap;) for all k is given by
B
R(a;p) = {R € RE : Ry, <log (1 +)° \aik\2pik> Vk} (7)
i=1
where we leta = {a*},p = {p*} for a notation simplicity. The above region is clearly caxve

(rectangular forK = 2). The capacity region of th& parallel MISO channeld14) under the individual

BS power constraint® = (P,..., Pg) for afixed channel stata is given by
C(a;P) = | R(a;p) ®)
PeF
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where® denotes a power allocation poliey— p that maps the channel staieinto the power vector
p with component®?;;(a) = p;, F denotes the feasibility set satisfyinEk,K:1 Pir(a) < P, Vi for
any channel realizatioa. The capacity regiore(a;P) is convex and its boundary can be explicitly

characterized by solving the weighted sum rate maximinadi® specified in subsectién IIIFA.

I1l. POWER ALLOCATION MINIMIZING OUTAGE PROBABILITY

In the previous section, we considered the distributedgssing at each BS assuming that the power
allocation is already done at the CS and each BS is informedtabe resulting power partition. Here, we
address the power allocation problem solved at the CS. liicpkar, we are interested in a robust power
allocation strategy which requires only statistical CSId this end, we consider a relevant scenario where
the system imposes a set of target rate to each UT dependiitg application. This is of typical of the
current standards such as WiMax[20] and LTE![19]. One of thpdrtant goals in such a situation is to
minimize the outage probability simultaneously for all UTrs order to formalize the problem, we lgt
denote the target rate of UT and form the target rate tupte= (71, ...,vx). For a giverry, we define
the outage probability as the average probability #hat not fulfilled by all K UTs simultaneously,

namely

1>

Pout(’Y) 1- Ea[1{7 € G(a’ P)}]

= 1—-Pr(yeCa,P)). 9)

This section provides the power allocation policies mizimg the outage probability defined above under

perfect and statistical CSIT.

A. Perfect CSI at CS

We start with a special case where the CS has perfect CSliidrcase, we are particularly interested
in the power allocation policy that provides the rate tupteportional to the target rate tuple (rate-
balancing). As seen shortly, this policy equalizes theviiddial outage probability of all UTs and thus
provides the strict fairness among UTs. The latter is ondefmost desired properties. Our objective is

find the set of{p;;} satisfying

R’f(p):%éak, k=2... K (10)
Ri(p) m

where we defined% = oy anda; = 1. More precisely, the power allocation is a solution [of|[22]

K R,
' O, —. 11
S B 20, =
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Notice that the inner problem is the weighted sum rate magdtiun for a fixed weight set, while the outer
problem with respect t@-,...,0x is a convex problem for which &K — 1)-dimensional subgradient
method can be suitably applied [23]. First, we describe aarigal method to solve the inner problem,
given by
K B

o A ; wy log (1 + ; |aik|2pik> (12)
wherew;, = 0/« denotes a non-negative weight for &llthat we assume given for the time being.
Since the above problem is convex (the objective functiocoilscave and the constraints are linear), it
is necessary and sufficient to solve the KKT condition [24Jeg by

w|ag|® 1

L+ S0 fagulpe mi

wherey; denotes the Lagrangian variable to be determined suchythat;, < P;. Unfortunately solving

k=1,..,K,i=1,....,B (13)

(13) directly seems intractable. Nevertheless, the fatiguwvaterfilling approach inspired by the iterative
multiuser waterfilling for the MIMO multiple access chanifigb] solves the KKT conditions iteratively.

Algorithm Al : Iterative waterfilling algorithm for B-BS weighted sum rate maximization

1) Initialize p§°> =0fori=1,....B andcgg) =0 for all 4, k.
2) At each iteratiom
For:=1,...,B

. Computec!” = D i yajkag.’,;)

« Waterfilling step : IetpE") be

(n)
T+c¢,

|ai|?

pEZ’ = [wk#i—

, Vk (14)

wherey; is determined such th@ff:lpgz) =P,
End
3) Continue until convergence
We have the following remarks on the proposed algorithm.
Remark 3.1: Algorithm Al is a generalization of the classical wateriidji algorithm for the K’
parallel channels under the total power constraint to thse egith B transmitters with individual power
constraints. Indeed, for a single-BS cadge £ 1), the objective function reduces to the weighted sum

rate of theK parallel non-interfered channels given by

K
2
qzofgﬁkgp;wk log (1 + |ax|*qr) - (15)
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Remark 3.2: The set of powers i (14) correspond to the solution to the akjective function
p” =arg _ ma ZK:w log [ 14 Lotk (16)
i X k |-
4202 aksF T 1+ ey
It can be easily seen that this new problem and the origiralpm [12) yield the same KKT conditions
@3) forcgg) = isi |ajk|2p§.’;). In other words, the solutiofi.(lL4) of B orresponds to treating; 1<,

function of the powergp,},.; of the other BSs, as additional noise (constant), i.e., #@isely did not

depend orp;. Under the individual power constraints for each BS, theusatjal iteration over different
BSs probably converges (see the convergence proof below).

By a rather straightforward extension 6f [25, Theorem 1,6FBe 2], we have the following conver-
gence result.

Theorem 2:Algorithm Al converges to the optimal solution of the wemgghtsum rate maximization
a2.

Proof: The proof follows in the footsteps of the proofs 6f [25, Thaar 1, Theorem 2]. At each
iteration, the proposed iterative algorithm finds the sofuto the weighted sum rate maximization of the
single-BS parallel channels (15) for each BS while treatirggpowers of all the other BSs as additional
noise. Comparing the objective of the single-BS parallelnetels [Ib) and that of the multi-BS parallel
channels[(16), they differ only from the constant({p;} ;). Hence, the objective is nondecreasing at
each waterfilling step and further converges to a limit. Toevgrsp+,...,pp of B BSs also converge
to the limit pj, ..., p}%. This is because the solution to the single-BS parallel shknis unique. =

The outer problem consists of minimizing the solution of itm@er problem with respect t, . . ., k.
This can be done by the subgradient method. We summarizevtralbalgorithm as follows.
Rate balancing algorithm

1) Initialize H,EO) € [0,1] for k£ > 1.

2) At iterationn, compute

R™ =arg max 0, — a7)

via waterfilling approach.

Compute a subgradient of uskr

A B o)
k Qg Rl

3) Update the weights by subgradient :

ot — g(n) _ g A
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wheres,, denotes the step size at iteratiarthat can be chosen according to a decreasing rule.

The overall algorithm, the inner problem solved by algartiAl and the outer problem solved by
the subgradient method, implements the rate-balancinglbgating the rates proportional to the target
rate tuple. Hereafter, we lgt;(a) denote the rate of usérallocated by the rate-balancing algorithm in
channel state.. Notice that the achievable rafel (6) is a deterministic fiamcof P*(a). Then, we have
the following result.

Theorem 3:The rate-balancing power allocation minimizes the outagbability. Moreover, it equal-
izes the individual outage probability of ai UT by letting Pr(v; < Rj(a)) = --- = Pr(y < Rj(a)).

Proof: Appendix[B. [

B. Statistical CSI at CS

We consider a more realistic case when the CS has only &tatikhowledge of the equivalent channels
a. Formally, we define the power allocation poli#§*®* : o — p as a function mapping the variances of
channel coefficients = (011, ...,0pK) into the power vectop with component’}* (o) = p;;. Since
the equivalent channel coefficienfs;; } after ZF beamforming are correlated over differénfor each
BS i, the individual outage events are dependent. Neverthalessdependency can be made arbitrarily
small by a simple interleaving over frequency bands for gdarmJnder this assumption, we approximate

the outage probability for a fixed power allocatipnas
K
Pap-ow(7:p) = 1= [ Pr(Axph) > 2% 1) (18)
k=1

where we letA, (p*) = -2 | |a;x|*pix. First, we remark that for a fixed powe¥ = (pyy,...,pgi) of
UT &, Ar(p") is a Hermitian quadratic form of complex Gaussian randonmatégs given by

Dik 0 aik
Ak(Pk) = (aik,---,aBk)
0 PBk 4Bk
p1kl 0 Wik
= (Wﬁmwgk)
0 pBrl W Bk

where the second equality follows by replacing a chi-squarelom variablela;;|? ~ X%(M—K-{-l)

with ||w;x||?> wherew;;, ~ Ne(0, =1 Im—rk+1). The individual outage probability that UF cannot

supporty; for a fixedp” is

1 Cc+joo oSCk P . (pk (3)

= ds (19)
2mj s
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where we let;, = 27+ — 1 denote the target SNR of UF, and the Laplace transform & (p*) is given

by
B

1
(I)Ak k (8) = Oin — . (20)
(p*) 21;[1 (1 +SJ\/§)—K+1)M K+1

From [20), we see immediately that each UT achieves a diyagain of B(M — K + 1), which agrees
well with TheorenfL. The widely used upper bound is the Chigtmaund for fixed powerp* given by

Pr(Au(p*) < i) < mine* @y, o) (A) 2 Fler, pP). (21)

Using the last expression of the Chernoff upper bound foh éadhe approximated outage probability

for a fixedp is upper-bounded by
K

Papp—out(77 p) < 1- H(l - F(Cka pk)) (22)
k=1

Since the power optimization based on the exact outage pildkpas not amenable, we search the power

allocation that minimizes the Chernoff upper bound, edeivily solves
K

.. A
maximize  f({\e}, {pir}) = [ (1 = hu(Ae P)) (23)
j=1

K

subjectto > pux <P, i=1,...,B
k=1
Ne >0, k=1,....K
pir>0, i=1,...,B,k=1,....K

where we define

e)\kck

12, (1 + Bippar) MK+
wheregs;;, = M_Uiigﬂ If hy, > 1 for somek, the objective becomes null regardless of the power ailmtat

(24)

In this case a reasonable choice is todgt= 0, Vi for suchk and equally allocate the power {@;x }
for k' # k. In the following, by focusing on the case < 1 for all £, we provide an efficient numerical
method to solve the probler (23). We remark first that the madtion of f with respect to{\;} can
be decoupled into the minimization &f, over \;, for eachk, whereh,, is convex in)\;. Moreover, since
f is concave in{p;;}, the overall problem is convex.

Minimization of h, over \; It can be easily verified thdt, is monotonically decreasing ik,. The

optimal A, for a fixed set of powers is the solution of

B

Ck Bikpik
E (25)
=1

M-K+1 - 1+ M\ Bikpik
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which is a polynomial of degre®. For B = 2, the solution is given in a closed form.

M-K+1 1 . 2 ' o
Ck Bikpik+B2xp2k’ if Zj:l Bjkpjk =0

_ _ 2(M—1)B1,P1kBokPak _ 2 2(M—1)B1 Py Bokrak )2
(Blkplk-‘rﬁzkpzk T )+\/(61kp1k Bakpar) +( o ) h .
, otherwise
2B1kP1k B2k P2k

Maximization of f over p;; Since f is concave in{p;.}, we form the Lagrangian function by

A\ = (26)

introducing B Lagrangian multipliers{y;} each of which is associated to the power constraint ofiBS

By arranging the term common for &l we obtain the KKT conditions fok = 1,..., K

hi(p*) Bik Ak
= ui. 27
1 — hy(P*) 1+ pirBir e a (27)

When treating1y, . .., Di—1.k, Pi+1,ks - - - » PB,J Tixed, the LHS of[(2l7), denoted by, is a strictly positive

and monotonically decreasing functiongjf, (since we exclude the casg = 0). It remains to determine
1; such that the power constraint of B$s satisfied , i.e.p;1 +- - -+ p;x = P;. When treating the powers
{p,} ;=i of the other BSg # i fixed, the powersp; of BS i can be found by a simple line search;qf
The following summarizes our proposed iterative algorittivminimize the Chernoff upper bound,
equivalently solve[{23).
Algorithm A2 : iterative algorithm for the Chernoff upper bo und minimization
1) Initialize p(®
2) At iterationn
For:=1,...,B
« Updatex™ by solving the polynomial{25)
« Find the new power vectqbz(") of BS i by line search
End
3) Continue until convergg
Although we are unable to provide a formal proof, we conjextihat Algorithm A2 converges to its
optimal solution. At each iterationxlg") is determined as a unique solution for alland a fixed set of
powers. Regarding the power iteration, since the objed@ is concave irp;, when fixing all other
powers, a sequential update of the poweysps, . . ., ps, p1..- Shall converge under individual BS power

constraints by a similar argument as the proof of Thedrem 2.

IV. EFFECT OF USER SCHEDULING

In this section we address the relevant case when the nunfidéf®is larger than the number of

transmit antenna®& > M. In order for each BS to apply the ZF beamforming in a distedufashion,
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a set of K < M UTs shall be selected beforehand. We assume that the usetisel(scheduling) is

handled by the CS together with the power allocation. Inipaler, we focus on a user selection method
which achieves a high diversity order while limiting the ambof the side information necessary at the
CS and the BSs. In the following, we present our proposedaedection scheme as well as the analysis

on its achievable diversity gain.

A. Distributed Diversity Scheduling (DDS)

Let 8, U denote the set of alk users, thek selected users, witl§| = K, |U| = K, respectively. Let
us also definé(K) as the set of all possible user selections, QEK) = {u lucs, |ul = K’} for

K < MH Then, the equivalent channel from the BSs to the selected ise
_ ko k
yp =a"u" + 2z, kel (28)

which is a MISO channel witl* = [ayy, - - - apy] andu® = [\ /prgsik - ./kasBk]T. For convenience,
we only consider the diversity order of the worst user andrrié¢fas the diversity of the system hereafter.
Since the diversity order of a given channel depends solelthe Euclidean norm of the channel matrix,

as shown in lemmal 2, the following user selection scheme miags the diversity of the system
* : k)2
= ar . 29
U G max min [[a] (29)
Unfortunately, this scheduling scheme has two major dral&ial) perfect knowledge at the CS on
{ay}, crucial for the scheduling, is hardly implementable ageftentioned, and 2) the maximization

over all |Q(K)| = (ﬁg) possible set&l grows in polynomial time with/'.

To overcome the first drawback, we use the following selacsicheme

Ug = arg, max maxmin |a;z|>. 30
d Gu e =) keu’ ik (30)

That is, BSi finds out the setl that maximizesmingcy |a;.|?> and sends both the index of the set and
the corresponding maximum value to the CS. Upon the reaepfid values and the corresponding sets
from the B BS, the CS makes a decision by selecting the largest oneefbiner only partial channel

state information is communicated in the BS-CS link. To addrthe second drawback, we narrow down

the choices ofll to the followingx = K/K possibilitie§

Ps = {Up, Usz,..., U}, JWi=8, WinlU;=0, Vi#j W] =K, Vi.

)

2For convenience of notation, we will drop the arguméhtwhenever confusion is unlikely.

3Here, we assume thdt/ K is integer for simplicity of demonstration. However, it iile shown that same conclusion holds

otherwise.
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Fig. 2. An example scenario of user scheduling with two BS$ iR UTSs.

In other words,Pg is partition of the set of all usei®. Furthermore, it is assumed that the partitiBg
is fixed by the CS and known to all BSs. Hence, the proposeddsitihg scheme selects the following
set of users

Ug = arg,, max max min |a;z|>. 31
d gui:l...B"L(eTg keu’ ik (31)

To summarize, the scheduling scheme works as follows

i) The CS fixes a partitios and informs it to all BSs.

ii) BS i finds maxycp, mingey( |a;x|?, and sends this value and the index of the maximizind.istt

the CS.

i) The CS chooses the largest value and broadcasts the& wfdtae winner selly as defined in[{31).

iv) All the BSs serve simultaneously the UTs 1ity.

An example of two BSs and six UTs is shown in Hig. 2. In this eglmin order to serve two
UTs simultaneously, a partition of three sets is fixed by ti& @/ith local CSI, each BS compares the
coefficientsmingcq( |a;|? for all three setdl, finds out the largest one, and sends the corresponding
“index(value)” pair to the CS. The CSI compares the values larmadcasts the index of the winning

set (setl in this example).

B. Diversity gain analysis

In this subsection, we analyze the diversity gain achiewedur proposed DDS and compare it with
the upper bound. The result is summarized in the followingadrem.

Theorem 4:Let K, B, and M denote the number of UTs, number of BSs, and number of andenna
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per BS. By servingk UTs simultaneously, the following diversity gain is achible with DDS

d,(K) > B% (M ~ K+ 1) , (32)

for K = nK with an integem. Furthermore, the optimal diversity gain achieved[by (3Q)pper-bounded
by

du*(K)SB(K—K+1)<M—f(+1>. (33)

Proof: Appendix[C. [ |

Remark 4.1: For a fixedK, the diversity gain of the proposed scheduling scheme gas@s BK M),
i.e., the optimal diversity scaling wittB, K, and M. In this sense, the proposed scheme is order
optimal in terms of diversity gain. Also note that the lowevund [32) and the upper bound133)
coincide in some specific settings. Firgi, (1) = dy-(1) = BKM, VB, K, M. That is, the proposed
scheme is diversity optimal if only one user is served in tlisteam. Then, forK < M, we have
dyy(K) = dy-(K) = B(M — K + 1). This corresponds to the case where all users in the system ar
served simultaneously.

Remark 4.2: Interestingly, exactly the same diversity order is achiefer U* if we setQ = Pg.

To see this, let us rewrite

min [|a*||? = max min ||a”|? (34)
keu~ UePs k€U
< max [|a®|]?, VEkeU (35)
UePs

and thatmaxycp, [|a*||* is of diversity BX (M +1— K’).
Remark 4.3: When K does not dividek, we consider onIyL%J K out of K users. Sincek

divides L%J K, the following diversity gain can be achieved

dy,(K) =B {%J (M ~K+ 1) (36)

with the proposed DDS.

V. NUMERICAL EXAMPLES

This section provides some numerical examples to verifybiilegavior of our proposed distributed ZF
beamforming scheme in a simple network MIMO configuratiothw® = 2 cooperative BSs. We assume
the same power constraint at both BBs= P, and let P denote the SNR.

Fig.[3 shows the outage probability performance versus SMRT= 2 and M = 2,4. The target rate

is fixed to (v1,72) = (3,1) bit/channel use, and we let; = 1 for all i,k. We compare the different
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0 > 2 4
UT1 uT2

Fig. 3. One dimensional configuration.

power allocation strategies, algorithm Al with perfect TShlgorithm A2 with statistical CSIT, and
equal power allocationp(; = p;2 = P/2 for i = 1,2). For the sake of comparison, we also consider the
case without network MIMO (no message sharing) where eackeéB@s a message to its corresponding
UT in a distributed fashion. In order to make the comparisgnih terms of complexity, we let each BS

i send the symbos; by ZF beamforming, i.ex; = v/ Pg;s; whereg; is a unit-norm vector orthogonal

to h;, for k # i. From Lemmdll, such a system offers a diversity ordekbfof- K + 1 for each UT. As
expected from Theorefm 1, we observe that our BS cooperatioenses enables to achieve a diversity
gain of2(M — K + 1), i.e. 2,6 with M = 2,4, respectively. These gains are twice as large as the case
without network MIMO. Moreover, the proposed algorithmeyide a significant power gain compared

to equal power allocation.

In Fig.[d, we plot the individual outage probability suchtteach UTk cannot support its target rate
v under the same setting as Hig. 5 fof = 2. With perfect CSIT, our proposed waterfilling allocation
Al guarantees the identical outage probability for both Wysoffering the strict fairness. This agrees
well with the second part of Theorelmh 3. Under statistical TC@lgorithm A2 provides a better outage
probability to UT 1 but keeps the gap between two UTs smaliantthe equal power allocation.

In order to evaluate the impact of asymmetric path loss onotlitage performance, we consider a
simple 1-D configuration illustrated in Fig]l 3 where UT 2 icdted atz = 3 and UT 1 moves from
x = 0tox = 2. Assuming that BS 1, 2 is at = 1, 3, respectively, we varyiy; = /1 + (1 — x)2,dj =
V/1+ (3 — )2 while we fix the position of UT2 by lettingl;» = v/5, ds2 = 1. By taking into account
the path loss;, = di‘g, we plot the outage probability as a function of the positioof UT 1 in Fig.[7.
We considerM = 4, SNR P = 10 dB and fix the target rate; = ~» = 1 bit/channel use. We observe

that the proposed distributed ZF scheme provides a signifgain compared to the case without network
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MIMO especially as UT 1 gets closed to the cell boundary= 2). This is because the performance
without network MIMO only depends o} ; while the distributed ZF becomes more and more beneficial
asdy; decreases.

Finally, Fig.[8 shows the outage probability versus SNR wiverhave more users than the number of
served users , i.6K > K = 2. Considering the same setting as . 5 idr= 4, we apply distributed
diversity scheme to select a set of two users amang 2,4,6. Once the user selection is done, any
power allocation studied in Sectignllll can be applied. Hegveit is non-trivial (if not impossible) to
characterize the statistics of the overall channel gainthénpresence of any user scheduling. Hence,
we illustrate here only the performance with equal powescaltion under statistical CSIT. As a matter
of fact, any smarter allocation shall perform between theevfifling allocation and the equal power
allocation. As expected from Theordm 4, the diversity gacreases significantly as the numbé€rof

users in the system gets large.

VI. CONCLUSIONS

We considered the multi-cell downlink system (network MIM®here B BSs, perfectly connected
via the reliable backbone links to the CS, wish to commueictnultaneously with’ UTs. As one of
the realistic limitations of network MIMO, we explicitly aounted for partial CSIT, i.e. local channel
knowledge at each BS and statistical channel knowledgeeaC®. Under this setting, we proposed an
outage-efficient strategy which builds on distributed ZFRrmé&rming to be performed at each BS and
efficient power allocation algorithms at the CS. For the oafsa small number of user& < M, the
proposed scheme enables each UT to achieve a diversity i — K + 1). For the case of many
usersK > M, we proposed distributed diversity scheduling (DDS) whaan be implemented in a
distributed fashion at each BS and requires only limited am@f the backbone communications. We
also proved that DDS can offer the diversity gainl@%(M — K +1) and this gain scales optimally
with the number of cooperative BSs as well as the number of. Ufie main finding is that limited BS
cooperation can still make network MIMO attractive in thexse that a well designed scheme can offer
high data rates with sufficient reliability to individual STThe proposed scheme can be suitably applied
to any other interference networks where the transmittars perfectly share the messages to all UTs

and a master transmitter can handle the resource allocation
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Fig. 4. Rate regiore(a; P) and subregiorR,
APPENDIX

A. Proof of Theorernll

The channel[4) is a MISO channel defineddly= (ays,...,ap;) and

Pr {HakH2 < e} = Pr {max lagk]? < e} (37)
= [T Pr{lawl® <} (38)
= (Pr{|ax|* < e})B (39)
- 6B(]W—I(-i—l) (40)

From lemmdXR, the maximum diversity 8(M — K + 1).

B. Proof of Theorerhl3
First we remark that for a given channel realizatwthe following two cases occur:

(a) The target rate tuple is outside the regtpt C(a, P)
(b) The target rate tuple is inside the regigre C(a, P)

The above two cases are illustrated in [Big.4(a), (b) resmdgtfor K = 2. For the case (a), we are in

an outage event regardless of the power allocation. Fordke (b), we define the subregi(a)
Ry(a) 2 {RIR € C(a,P), Ry > i, k=1,..., K} (41)

depicted in a shadow area in FIg. 4 (b). We defiheas a class of the power allocation policies that
mapsa into the rate tupleR inside Rs;(a) whenever we are in case (b). We remark that any policy

belonging toP, results in a successful transmission, and thus minimizesotltage probability. Since
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the proposed rate balancing scheme allocates the p@wer. . , pj.) so that the rate-tuplery, ..., R})
is proportional toy on the boundary 0€(a, P) whenevery € C(a, P), it belongs to the clas®;. This
establishes the first part.

We now prove the second part. It is immediate to see that Wwighrate balancing scheme, we have

for any a
1w < Ri(a)) = Haxn < axRi(a)) = 1(n < Ri(a)), k=2,....K (42)

where the first equality follows froni_(10). The outage prdhighwith the rate balancing scheme can be

always written as
Phaance() = 1 Pr(nf { < Ri(a)})
= 1= Pr(y < Rg(a)) Pr(Nezi{w < R (a)}w < Ri(a))
= 1-Pr(y < Rj(a))

where the last equality follows since the equalities (42pimPr (N e < Ri(a)ly < Ri(a)) = 1

for any k. This completes the second part.

C. Proof of Theorerl4

In order to examine the diversity gain of the proposed sclirgigcheme, we first remark

. k2 . 2
m a > min m ; 43
ke}LILtH H - kegt ?X|alk| ( )
> max min |a;|? 44
= iXkeud‘ zk‘ ( )
. 2
= ; 45

where the[(44) follows from the max-min inequality and thst laquality holds since we can rewrife (31)
as

Ug = arg, max max min |a;.|%. 46
d guue?gizl...Bkeu| it| (46)
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by swapping the maximization ovéfr and that oves. To find the diversity order of the scheme, we need

to look at the following near-zero behavior of the channedftioients

Pr {min |a¥|? < 6} < Pr { max max min |a;|? < 6} 47)
keUq UePs 1+ kel
B|Ps|
= ( Pr<{ mi 2 48
< r{inelquﬂabﬂ < e}) (48)
B|Ps]|
< (Z Pr {|abk|2 < 6}) (49)
kew
B|P
— (U] Pr {Jaw |2 < e}) 77! (50)
_\ B|Ps|
= (=) 7 (51)
- EB%(M—H—K)’ (52)

where [48) follows from the fact that’s are disjoint inPs and thatmingcq( |a;,|> are independent for
different Ul and; (@9) is from the union bound. From lemria P, ](32) is straightiard. For the upper
bound of the diversity gain of the scheduling schemeé (29)udefirst write

max min ||a¥||? < max||a!|? (53)
UeQ kel UeQ
<B a1 54
< Bmax max|ai| (54)

where the first inequality is from the fact that the worst usannot be better than the first user; the
second inequality is fromja!||? < Bmax; |a;;|?>. From [26, Theorem 1], we know that the diversity
gain of |a;|? is (K — K + 1)(M — K + 1). Therefore, it readily follows that the diversity gain of
maxy o mingey ||a”||? is upper-bounded by3(K — K + 1)(M — K +1).

ACKNOWLEDGMENT

This work is partially supported by the European Commisstmough the FP7 project WIMAGIC
(www.wimagic.eu) and by the French cluster System@ticughothe project POSEIDON. The authors

would like to thank Jakob Hoydis for his help in generatingneonumerical examples.

REFERENCES

[1] M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela,étork coordination for spectrally efficient communicatoin
cellular systems,|IEEE Trans. on Wireless Communication®l. 13, no. 4, pp. 5661, 2006.

[2] S. Shamai and B. Zaidel, “Enhancing the cellular dowklgapacity via co-processing at the transmitter end,Pioc.
IEEE Vehicular Technology Conf. VTC-Springp. 1745-1749.

November 2, 2018 DRAFT



21

[3] O. Somekh, B. Zaidel, and S. Shamai, “Sum Rate Charaetiton of Joint Multiple Cell-Site ProcessingEEE Trans.
on Inform. Theoryvol. 53, no. 12, pp. 4473-4497, Dec. 2007.

[4] A. Wyner, “Shannon-theoretic approach to a Gaussiatuleel multiple-accesschannellEEE Trans. on Inform. Theory
vol. 40, no. 6, pp. 1713-1727, June 1994.

[5] O. Somekh, O. Simeone, Y. Bar-Ness, A. Haimovich, U. $méigi, and S. Shamai, “An information theoretic view
of distributed antenna processing in cellular systerbsstributed antenna systems: open architecture for futuieless
communications2007.

[6] S.Jing, D. N. C. Tse, J. B. Soriaga, J. Hou, J. Smee, ancaBo\Rni, “Downlink Macro-Diversity in Cellular NetworKs,
in Proc. IEEE International Symposium on Information The&907, pp. 1-5.

[7] O. Somekh, O. Simeone, Y. Bar-Ness, A. Haimovich, and&nsai, “Distributed multi-cell zero-forcing beamformiing
cellular downlink channels,” ifProc. IEEE Global Telecommunications Conferen2@06.

[8] M. A. Maddah-Ali, S. A. Motahari, and A. K. Khandani, “Camunication over MIMO X Channels: Signaling and
Performance Analysis,Technical Report University of Waterloo E&CE 2006-27

[9] G. Caire, S. A. Ramprashad, H. C. Papadopoulos, C. Papith,C.-E. W. Sundberg, “Multiuser MIMO Downlink with
Limited Inter-Cell Cooperation: Approximate Interferenélignment in Time, Frequency, and Spacéllerton’ 2008
2008.

[10] W. Choi and J. G. Andrews, “The Capacity Gain from BasatiSh Cooperative Scheduling in a MIMO DPC Cellular
System,” inProc. IEEE International Symposium on Information The®§06, pp. 1224-1228.

[11] S. A. Jafar and S. Shamai, “Degrees of Freedom Regiorth®rMIMO X Channel,”IEEE Trans. on Inform. Theory
vol. 54, Jan. 2008.

[12] J. Hoydis, M. Kobayashi, and M. Debbah, “On the optimainiber of cooperative base stations in network mimo,” De@mb
2009, submitted to IEEE Symposium on Information TheoryT)R010, preprint available http://arxiv.org/abs/094595.

[13] O. Simeone, O. Somekh, H. Poor, and S. Shamai, “Downtmkticell processing with limited-backhaul capacity,”
EURASIP Journal on Advances in Signal Processirg. 2009, pp. 1-10, 2009.

[14] S. Shamai, O. Somekh, O. Simeone, A. Sanderovich, Blefaand H. Poor, “Cooperative Multi-Cell Networks: Impact
of Limited-Capacity Backhaul and Inter-Users Link#fxiv preprint arXiv:0710.38832007.

[15] P. Marsch and G. Fettweis, “A Framework for OptimizirtgetDownlink Performance of Distributed Antenna Systems
under a Constrained Backhaul,” Rroceedings of the 13th European Wireless Conference (EMWRaris 2007.

[16] T. Tamaki, K. Seong, and J. Cioffi, “Downlink MIMO Systentsing Cooperation Among Base Stations in a Slow Fading
Channel,” inProc. IEEE International Conference on Communicatiohsne 2007, pp. 4728-4733.

[17] B. L. Ng, J. S. Evans, S. V. Hanly, and D. Aktas, “Distried downlink beamforming with cooperative base stations,”
IEEE Trans. on Inform. Theorwol. 54, no. 12, pp. 5491-5499, Dec. 2008.

[18] N. Levy and S. Shamai, “Clustered local decoding for Vfytype cellular models,” irProc. Information Theory and
Applications Workshqp2009, pp. 318-322.

[19] S. Sesia, I. Toufik, and M. BakeL,TE, The UMTS Long Term Evolution: From Theory to Practic&Viley Publishing,
2009.

[20] J. G. Andrews, A. Ghosh, and R. Muhamédjndamentals of WIMAX: Understanding Broadband Wirelessmdrking
Prentice Hall PTR, 2007.

[21] E. Bjornson, R. Zakhour, D. Gesbert, and B. OtterstBistributed multicell and multiantenna precoding: Chaeaization

and performance evaluation,” ifroc. IEEE Global Telecommunications Confergn2@09.

November 2, 2018 DRAFT



22

[22] J. Lee and N. Jindal, “Symmetric capacity of MIMO dowii channels,” inProc. IEEE International Symposium on
Information Theory Seattle, WA, 2006.

[23] D. P. BertsekasiNonlinear Programming Belmont, MA : Athena Scientific, 1999.

[24] S. Boyd and L. Vandenbergh€onvex Optimization Cambridge University Press, 2004.

[25] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative Watgitling for Gaussian Vector Multiple-Access Channel&EE
Trans. on Inform. Theoryol. 50, Jan. 2004.

[26] J. Jalden and B. Ottersten, “On the maximal diversityeorof spatial multiplexing with transmit antenna seletcfidEEE
Trans. on Inform. Theoryol. 53, no. 11, pp. 4273-4276, Nov. 2007.

November 2, 2018 DRAFT



23

Outage probability

| A perfect CSIT
10~%F O statistical CSIT
F O equal power

< w/o netwlork MIMO

5 10 15 20 25
SNR per BS [dB]

Fig. 5. Outage probability vs. SNR witB = K =2 and M = 2,4.
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Fig. 6. Individual outage probabilities vs. SNR with= K = 2 and M = 2.
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Fig. 8. Outage probability vs. SNR for many users with= K = 2 and M = 4.
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