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Abstract— The performance of the generalized belief propa-
gation algorithm for computing the noiseless capacity of finite-
sized two-dimensional and three-dimensional run-length limited
constraints is investigated. For each constraint, a method is
proposed to choose a set of clusters. Simulation results for
different sizes of channels with different constraints are reported.
Convergence to the Shannon capacity is also discussed.

I. INTRODUCTION

Run-length limited (RLL) constraints are widely used in

magnetic and optical recording systems. Such constraints

reduce the effect of inter-symbol interference and help in

timing control. In track-oriented storage systems constraints

are defined in one dimension.

We say a binary one-dimensional (1-D) sequence satisfies

the (d, k)-RLL constraint if the runs of 0’s have length at most

k and the runs of 0’s between successive 1’s have length at

least d. We suppose that 0 ≤ d < k ≤ ∞.

The Shannon capacity of a 1-D (d, k)-RLL constraint is

defined as

C
(d,k)
1D

�= lim
m→∞

log2 Z(m)
m

, (1)

where Z(m) denotes the number of binary 1-D sequences of

length m that satisfy the (d, k)-RLL constraint, see [10].

With recent developments in page-oriented storage systems,

such as holographic data storage, two-dimensional (2-D) con-

straints have become more of interest [12]. In these systems,

data is organized on a surface and constraints are defined in

two dimensions.

A 2-D binary array satisfies the (d1, k1, d2, k2)-RLL con-

straint if it satisfies a (d1, k1)-RLL constraint horizontally and

a (d2, k2)-RLL constraint vertically. If a 2-D binary array

satisfies a 1-D (d, k)-RLL constraint both horizontally and

vertically, we simply say that it satisfies a 2-D (d, k)-RLL

constraint.

Example 1 (2-D (2,∞)-RLL constraint)
The 2-D (2,∞)-RLL constraint is satisfied in the following 2-D
binary array segment. In words, in every row and every column of
the array there are at least two 0’s between successive 1’s; but the
runs of 0’s can be of any length (however, 1’s can be diagonally
adjacent).

. . . 0100100001001000100000100010 . . .

. . . 1000010000100010000100000100 . . .

. . . 0001000010000001000000010001 . . .

. . . 0100100100010000001000100000 . . .

The Shannon capacity of a 2-D (d1, k1, d2, k2)-RLL con-

straint is defined as

C
(d1,k1,d2,k2)
2D

�= lim
m,n→∞

log2 Z(m, n)
mn

, (2)

where Z(m, n) denotes the number of 2-D binary arrays of

size m × n that satisfy the (d1, k1, d2, k2)-RLL constraint.

Similarly, the Shannon capacity can be defined for higher

dimensional constrained channels. For example, the Shannon

capacity in three dimensions C
(d1,k1,d2,k2,d3,k3)
3D depends on

Z(m, n, q), the number of three-dimensional (3-D) binary

arrays of size m × n × q satisfying a (d1, k1, d2, k2, d3, k3)-
RLL constraint.

The capacity C is an important quantity that provides an

upper bound to the information rate of any encoder that maps

arbitrary binary input into binary data that satisfies certain

constraints.

There are a number of techniques to compute the 1-D

Shannon capacity (for example combinatorial or algebraic

approaches) [3]. In contrast to the 1-D capacity, except for

a few cases, exact values of two and higher dimensional

(positive) capacities are not known, see [1], [2], [4], [13], [14].

In this paper, we use ideas from statistical mechan-

ics and generalized belief propagation (GBP) to approx-

imate the noiseless capacity of 2-D and 3-D RLL con-

strained channels. Our main motivations were the suc-

cessful application of GBP for the information rate of

2-D finite-state channels with memory in [11] and tree-based

Gibbs sampling for the noiseless capacity of 2-D constrained

channels in [7].

II. PROBLEM SET-UP

Consider a set {X1, X2, . . . , XN} of discrete random vari-

ables taking values in finite sets X1,X2, . . . ,XN . Let X be
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the Cartesian product X = X1 ×X2 . . .×XN . Let x stand for

{x1, x2, . . . , xN} where xi represents the possible realization

of Xi.

Suppose f(x) is an indicator function as follows,

f(x) =
{

1, if x satisfies the RLL constraint,

0, otherwise.
(3)

We are interested in computing Z defined as (also known

as the partition function, see Section III)

Z
�=

∑
x∈X

f(x). (4)

With the above assumptions, the sum (4) counts the number

of sequences that satisfy a given RLL constraint. Therefore

computing the capacity of RLL constraints is closely related

to computing the sum in (4).

Since RLL constraints impose restrictions on the values of

variables that can be verified locally, we can assume that f(x)
factors into a product of non-negative local kernels as

f(x) =
∏
a

fa(xa), (5)

where the kernel fa(xa) has xa some subset of x as arguments.

The factorization in (5) can be represented with a graphical

model. In this paper, we focus on graphical models defined

in terms of (Forney-style) factor graphs. If the factorization

(5) yields a cycle-free factor graph, the sum in (4) can be

computed efficiently by the sum-product message passing

algorithm [6].

However, for the examples we study in this paper, factor

graphs have (many short) cycles, see Fig. 1. In such cases

computing Z, as expressed in (4), needs a sum with an

exponential number of terms. Therefore we are interested in

applying approximate methods.

Due to the presence of many short cycles in factor graph

representation of 2-D and 3-D RLL constraints, loopy belief

propagation often fails to converge. As a result, we apply GBP

and ideas from statistical mechanics to estimate Z which leads

to estimating the capacity of RLL constraints.

III. GBP AND THE REGION GRAPH METHOD

In statistical physics, the quantity Z in (4) is known as the

partition function and the Helmholtz free energy is defined as

FH
�= − ln(Z). (6)

The partition function and the Helmholtz free energy are

important quantities in statistical physics since they carry

information about all thermodynamic properties of a system.

A number of techniques have been developed in statistical

physics to approximate the free energy. The method we apply

in this paper is known as the region-based free energy approx-

imation, in particular we use the cluster variation method to

select a valid set of regions and counting numbers, see [16].

We start by introducing the region graph representing our

problem. Such a region graph will provide a graphical frame-

work for GBP. For each RLL constraint, the size of the basic

= = = =

= = = =

= = = =

= = = =

Fig. 1. Forney-style factor graph for a 2-D (1,∞)-RLL constraint.

region is chosen based on the constraint parameters. For a 2-D

(d1, k1, d2, k2)-RLL constraint with finite k1 and k2, the width

and the height of the basic region is chosen as

WR = k1 + 1
HR = k2 + 1,

and for the infinite case, the size is chosen as d + 1, see [9].

Such a choice for the basic regions seems plausible since

the validity of a given array can be determined by verifying

the constraints in each region and sliding it along the rows

and along the columns of the array. See the region graph for

a 2-D (1,∞)-RLL constraint in Section III-A.

After forming the region graph using the cluster variation

method, we perform GBP on this graph by sending messages

between the regions while performing exact computations

inside each region.

We will need the region-based free energy to estimate the

number of arrays that satisfy a given constraint. Therefore,

we first operate GBP on the corresponding region graph until

convergence and use the obtained region beliefs bR(xR) to

compute the region-based free energy F̂H (as an estimate of

FH ) as

F̂H = min
{bR}

FR({bR(xR)})

=
∑
R∈R

cR

∑
xR

bR(xR)
(

ln bR(xR) − ln
∏
a

fa(xa)
)

(7)

Here xR stands for the set of variables in region R, the set

of all regions is denoted by R, and cR is the counting number.

Secondly, we use F̂H to estimate the finite-sized capacity of

the RLL constraint. Finally, we demonstrate how the capacity

converges (to the Shannon capacity, see Fig. 4) by increasing

the size of the channel.

A. A Region Graph for a 2-D (1,∞)-RLL Constraint

Consider a grid of N = m×m binary random variables. The

2-D (1,∞)-RLL constraint is satisfied if no two (horizontally

or vertically) adjacent variables have both the value 1.
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= x7
fL

x8 = x8
fM

x9 =

x7 x8 x9

fH fI fK

x4 x5 x6

= x4
fF

x5 = x5
fG

x6 =

x4 x5 x6

fC fD fE
x1 x2 x3

= x1

fA
x2 = x2

fB
x3 =

Fig. 2. Basic region of size 2 × 2 for a 2-D (1,∞)-RLL constraint.

In this case, the indicator function, as explained in (5),

factors into a product of local kernels of the following form

fa(xi, xj) =
{

0, if xi = xj = 1,

1, otherwise,
(8)

with one such factor for each adjacent pair (xi, xj).
The corresponding Forney-style factor graph of f is shown

in Fig. 1 where the unlabeled boxes represent factors as in (8).

For this constraint, we chose basic regions with size 2 × 2
in a sliding window manner over the factor graph representing

the factorization with local kernels as in (8), see Fig. 2.

Starting from such basic regions, we applied the cluster

variation method on the factor graph in Fig. 2 to obtain the

corresponding region graph depicted in Fig. 3. The counting

numbers {cR} are shown next to each region.

In order to avoid numerical instabilities with asynchronous

GBP message passing update rules, we include the factor

nodes only in the basic regions. The cluster variation method

counting numbers cR ensure that each variable and factor node

are counted only once. Our choice of region graph in Fig. 3

does not affect the values of the counting numbers. Moreover,

since the kernels take their values in {0, 1}, considering several

kernels as multiplicative factors does not affect the value of

the indicator function. See [9] for more details.

IV. NUMERICAL EXPERIMENTS

Here we present the results of applying GBP to estimate the

finite-sized capacity of RLL constraints.

For a 2-D RLL constraint of size m × m, suppose

E(m) =
log2 Z(m)

m × m
, (9)

where Z(m) denotes the number of 2-D binary arrays of size

m × m that satisfy the constraint.

The simulation results show the convergence of E as the

width of the channel m increases.

Tight upper and lower bounds were given for the Shannon

capacity of a 2-D (1,∞)-RLL constraint in [1]. The bounds

x1x2x4x5 x2x3x5x6 x4x5x7x8 x5x6x8x9

cR = 1

fAfCfDfF

cR = 1

fBfDfEfG

cR = 1

fF fHfIfL

cR = 1

fGfIfKfM

cR = −1

x2x5

cR = −1

x4x5

cR = −1

x5x6

cR = −1

x5x8

cR = 1

x5

Fig. 3. The region graph for the Forney-style factor graph in Fig. 2.

were further improved in [15] and [8], now known to nine

decimal digits.

0.5878911617... ≤ C
(1,∞)
2D ≤ 0.5878911618...

For this constraint, Fig. 4 shows E defined in (9) versus

the channel width over the interval [2, 300]. The estimation

was performed using the two-way and the parent-to-child GBP

algorithms. Exact values of the noiseless capacity were also

computed for channels up to width m = 6. The horizontal line

in Fig. 4 shows the Shannon capacity for this channel.

Illustrated in Fig. 5, are the numerical values for the plots

in Fig. 4. For a channel of width 300, the estimated noiseless

capacity is about 0.588423 which is 0.09% away from the

Shannon capacity.

Shown in Fig. 6 are plots of E for 2-D (1,∞, d,∞)-RLL

constraints with d = (1, 2, 3, 4), versus the channel width

over the interval [2, 200]. For a channel of width 200, the

estimated noiseless capacities for d = (2, 3, 4) are about

(0.499401, 0.434579, 0.386388). The plots are obained using

the parent-to-child algorithm.

Also shown in Fig. 7 is the plot of E for a 2-D (2,∞)-
RLL constraint versus the channel width over the interval

[3, 400]. Best upper and lower bounds for the Shannon capacity

of a 2-D (2,∞)-RLL constraint are given in [14] and [13]

respectively, as

0.444202 ≤ C
(2,∞)
2D ≤ 0.4457

Illustrated in Fig. 8, are the numerical values for the plots

in Fig. 7. For a channel of width 400, the estimated noiseless

capacity is about 0.446152 which is 0.1% away from the upper

bound to the Shannon capacity [14].

Our proposed method can be generalized to compute the

noiseless capacity of 3-D and higher dimensional RLL con-

straints. For a 3-D (1,∞)-RLL constraint the following upper

and lower bounds were introduced in [8] as

0.5225017418... ≤ C
(1,∞)
3D ≤ 0.5268808478...
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Fig. 4. Capacity estimates for a 2-D (1,∞)-RLL constraint

Channel width Parent-to-child Two-way

2 0.701839 0.701839

4 0.641767 0.639539

6 0.622615 0.621627

8 0.613436 0.612882

10 0.608075 0.607721

20 0.597695 0.597607

30 0.594338 0.594298

40 0.592678 0.592656

50 0.591689 0.591674

100 0.589723 0.589720

150 0.589072 0.589071

200 0.588747 0.588747

300 0.588423 0.588423

Fig. 5. Numerical values for a 2-D (1,∞) channel reported in Fig. 4
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Fig. 6. Capacity estimates for a 2-D (1,∞, d,∞)-RLL constraint.
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Fig. 7. Capacity estimates for a 2-D (2,∞)-RLL constraint.

Channel width Parent-to-child

3 0.565274

6 0.499583

8 0.484770

10 0.476293

20 0.460274

30 0.455197

40 0.452707

50 0.451230

100 0.448310

150 0.447347

200 0.446868

300 0.446390

400 0.446152

Fig. 8. Numerical values for a 2-D (2,∞) channel reported in Fig. 7
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Fig. 9. Capacity estimates for a 3-D (1,∞)-RLL constraint.
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Fig. 9 shows the noiseless capacity estimates of a

3-D (1,∞)-RLL constraint, obtained using the parent-to-child

algorithm, versus the channel width m . The horizontal dotted

lines show the upper and lower bounds for the Shannon

capacity.

For a channel of width m = 40 the estimated capacity is

about 0.52679 which falls within these bounds.

Simulation results and numerical values for many other

constraints are reported in [9].

V. CONCLUDING REMARKS

We introduced a method to estimate the noiseless capacity

of two and three dimensional RLL constraints. The proposed

method can be used to estimate the finite-sized noiseless

capacity and to illustrate convergence to the Shannon capacity

of constrained channels specially in the cases that these values

are not known to a useful accuracy.
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