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Abstract

We provide a complete characterization of the achievalst®dion region for the problem of sending a bivariate
Gaussian source over bandwidth-matched Gaussian braatheamels, where each receiver is interested in only one
component of the source. This setting naturally genemlie simple single Gaussian source bandwidth-matched
broadcast problem for which the uncoded scheme is known toptienal. We show that a hybrid scheme can
achieve the optimum for the bivariate case, but neither aroded scheme alone nor a separation-based scheme
alone is sufficient. We further show that in this joint soudt®nnel coding setting, the Gaussian setting is the
worst scenario among the sources and channel noises witsathe covariances.

Index Terms

Gaussian source, joint source-channel coding, squared @igtortion measure.

. INTRODUCTION

It is well known that Shannon’s source-channel separagésualt for point-to-point communication![1]
does not hold for in general for multi-terminal systems, dnds joint source-channel coding may be
required to achieve the optimum. One simple yet intriguiognsirio where source-channel separation is
known to be suboptimal is broadcasting Gaussian sourcesaoissian channels.

When a single Gaussian source is at the encoder, the acldedbortion region is known when
the source bandwidth and the channel bandwidth are mat@jedof which a simple analog scheme
is optimal. However when the source and channel bandwidthsnat matched, exact characterization
of the achievable distortion region is not known. The bestvikm coding schemes are based on joint
source-channel using hybrid signaling [3]) [4], and appr@ate characterizations were given in [5]; see
references therein for related works. As a simple extengiothis problem of single Gaussian source
broadcasting, when the source is a bandwidth-matchedifiegBaussian and each decoder is interested
in one source component, only partial characterizationnewn when uncoded scheme is shown to be
optimal under certain signal-to-noise ratio conditiong [6

In this work, we provide a complete characterization of tblei@able distortion region for broadcasting
bivariate Gaussian sources over Gaussian channels whiemezaiver is interested in only one component,
where the source bandwidth and the channel bandwidth arehettWe further show that in this joint
source channel coding setting, the Gaussian problem is ¢ingt wcenario among the sources and channel
noises with the same covariances, in the sense that anytiistpair that is achievable in the Gaussian
setting is also achievable for other sources and channeksoOur work is built on the outer bounds
given in [6] and we show that a hybrid coding scheme (diffefesm the one given in[[7] proposed for
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Fig. 1. Broadcasting bivariate Gaussian sources.

the same problem) can achieve the outer bounds. Our maintagian in this work is this new coding
scheme and a detailed and systematic analysis of the indeowter bounds, which result in a complete
solution. To the best of our knowledge, this is the first casehie literature that a hybrid scheme is
shown to be optimal for a joint source-channel problem, wagmeither an uncoded scheme alone nor a
separation-based scheme alone is optimal.

II. PROBLEM DEFINITION

Let {S1(i), S2(i)} be a memoryless and stationary bivariate Gaussian sourte 280 mean and
covariance matrix
o po?
(7.7 @
poe o

where without loss of generality, we can assyne 0. The vector( S, (1), Sk(2), ..., Sk(n)) will be written
as Sy for k =1,2. We useR to denote the domain of reals. The Gaussian memoryless dastachannel
is given by the model

Ye=X+2Z,, k=12, (2)

where Y}, is the channel output observed by theh receiver, and”Z, is the zero-mean independent
additive Gaussian noise in the channel. Thus the channe¢isaryless in the sense thet; (i), Z(i)) is

a memoryless and stationary process. The variancg, ag denoted asv,, and without loss of generality,
we shall assuméV; < N,. Throughout the paper, we use natural logarithm.

The mean squared error distortion measure is used, whidteis by d(sy, 57) = L 377" | (si(i)— 85 (4))?
for k = 1,2. The encoder maps a source sample biggk S3) into a channel input block™; the decoder
observing channel output blocK™ reconstruct the sourc&] within certain distortion; see Figl 1. The
channel inputX is subject to an average power constraint. More formallg, pnoblem is defined as
follows.

Definition 1: An (n, P,d;,d,) bivariate Gaussian source-channel broadcast code is diyeman

encoding function

iR x R* - R", ©)



such that

=Y E(X(#)* <P, )
n
=1
and two decoding functions
g :R"—>R", k=12, (5)
and their induced distortions

wherel(-) is the expectation operation.

In the definition,+ in the expressiorf (ST, S3) + Z; is understood as the lengthvector addition. It is
clear that the performance of any Gaussian joint sourcaredacode depends only on the marginal
distribution of (57, 5%, X", Y;"), but not the joint distribution(Sy, Sy, X™, Y]",Y5"). Note that this
implies that physical degradedness does not differ froristitzal degradedness in terms of the system
performance. Since the Gaussian broadcast channel is slatayistically degraded, we can assume
physical degradedness without loss of generality.

Definition 2: A distortion pair(D;, Ds) € R, x R, is achievable under power constraift if for any
e > 0 and sufficiently largen there exists arin, P, d;, d;) bivariate Gaussian source-channel broadcast
code such that

Dz+€2d27 Z:1,2 (7)

The collection of all the achievable distortion pairs ungemwer constraint” for a given bivariate
source is denoted b (P, d?%, p, N1, N,), and this is the region we shall characterize in this work. In
fact, we shall determine the following function which clggorovides a characterization of the achievable
distortion region.

Dy(P, 0-27p7 Ni, Ny, Dy) = min da. (8)

(D1,d2)€D(P,02,p,N1,N2)
Note thatD(P, o2, p, N1, N,) is a closed set, and thus the minimization above is mearin§foce the

minimum D; that is achievable is given by

A N10'2
P+ Ny’
when the second receiver is completely ignored, the funcii(P, o2, p, N1, Ny, Dy) is thus only
meaningfully defined on the domaj®}™", cc].

min
Dl

(9)

When the source is not Gaussian but with the same covariangetise, and the channel noises
are not Gaussian, but has the same variances, we shall démtachievable distortion region as
D*(P, 0%, p, N1, N»). We shall show that the Gaussian setting has the worst capeny, and thus the
Gaussian scheme is a “robust” scheme.



. MAIN RESULT

The main result of this paper is summarized in the followingarem.
Theorem1: If D; > D where Dmax & 52U=2)P+N) then

P+N;
Ds(P, 0%, p, Ny, Ny, Dy) = o Ne (10)
Y ) ) ) Y P+N2
If P <221 then in the range), € D", D™,
DZ(P7 UZ,P, N17N27D1) = Dg(Pv U27p7 N17N27D1)7 (11)

where
D;(P7O-27p7N17N27D1)
ég2[<\/1_M+Nl \/ P’ <(P+N1)D1 &))2(1—p2)P N,

Po? P 1—p? Ps2 P PiN, (PiMN,|
(12)
On the other hand i? > %, then
Dy(P, 0% p, Ny, Ny, Dy) Dy € [D"™, D7) U (Dff, Dy
DQ(P, 0_2’p’ Nl,Ng,Dl) — i( 7027P7 1, 4V2, 1) 1€ [ 1 > 1)_U <+1 » 1 ] (13)
D2(P707P7N17N27D1) DlE[Dl,Dl]
where
o | Ni(1—p?)o?
Dg(Pa 0%, p, N1, Na, D) £ PN, ! D, + Ny — Ny (14)
and
__ p(P2N)(1 = ) = P = (P 2N (L ) s
! 2(P+ Ny)
5 (P 2Ny) (P2 — (P + 2N 1 — p?
2(P + Ny)

Remark: Depending on the power constraint, the achievable distontegion may have two operating
regimes. In the regime wherB, (P, o2, p, Ny, Ny, D1) = DY(P, 0%, p, Ny, No, Dy), the uncoded scheme
given in [6] is optimal, whereas in the regime,(P, o2, p, N1, Ny, Dy) = D(P,0? p, N1, Ny, Dy), @
hybrid scheme given in the next section is optimal, but theoded scheme is not. Typical achievable
distortion regions for these two cases will be illustratedhe next section after the hybrid coding scheme
is given, where more observations regarding these scheamebecdiscussed.

Consider a source paiiSy, S5) whose covariance is given byl (1), and channel noise @&t Z3)
whose variances are given loy;, ;). We have the following theorem.

Theorem2: If (Dy, Dy) € D(P, 02, p, N1, Ny), then(Dy, D) € D*(P, 02, p, Ny, No).

This theorem essentially says the Gaussian setting has @& sources and channels among those
having the same covariance structure, a result similardgontbll-known ones that the Gaussian source is



the worst source [9] (Ex. 13.8) and the Gaussian channekisvibrst channel |9] (Ex. 10.1).
The proofs of Theorer] 1 and Theoréi 2 are given in the nexiosect

IV. PROOF OF THEMAIN RESULT

In this section, we shall first review some previous resuléctv provide partial characterization of the
achievable distortion region, then give a new hybrid codngeme, which provides the missing portion
of the characterization. Finally, we provide a proof for therst-case property of the Gaussian setting.

A. Preliminaries and Previous Results
It is straightforward to show that a simple analog schemedndigS, directly (after certain scaling)
achieves the distortion pair (see als0 [6])
P+ N, P+ Ny’
for which D, cannot be reduced even when the first receiver is not prefbas we trivially have
Ny i 2(1=p )P+ N
—_ if D, :
P+ N, P+ N

Thus we only need to characterize the function P, o2, p, N1, No, D1) when D; € [D{, Dipax],
The uncoded scheme was investigated thoroughly!in [6], lvhias shown to be optimal under certain
conditions. More precisely, the uncoded scheme uses tiggedtter mapping

Dl =0 (17)

= D™, and D,

DZ(Pv Uzvpv N17N27D1) = 02

vV
Q

(18)

. P . .
X(i) = \/Ug(az 208 + ) <a51(2) + 552(1))7 (19)

wherea € [0,1] and 8 = 1 — «. The reconstruction in this uncoded scheme is thus nayuttadl single
letter mapping given b¥e[Sk(4)|Yx(¢)] for k = 1,2. The distortion pair is thus given by

; Pp*(1 - p?) Ny }
Di(a,B) = o? + 20
(0,8 =0 [(P+Nl)(a2+2aﬁp+52) L (20)
- Pa?(1 — p?) N, }
Dy(a, B) = o + : 21
Sfa,8) = o LHN?)(QQHQBHBQ) . (21)
The main result of [6] is the following theorem.
Theorem3 (Theorem 1, [6]): For any (D1, Dy) € D(P, o2, p, N1, N»), and
P
Fl S F<D17U27p>7 (22)
there existo*, 5* > 0 such that
Di(a*,8) <Dy, and  Do(a*,8%) < D, (23)
where the threshold is given by
o4 (1—p2)—2D102(1—p2)+D? 2 2
[(D1,0% p) = Doy 0 < Di<a(l=p7), (24)
+00 otherwise
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Fig. 2. Broadcasting bivariate Gaussian sources with aegleelper.

This result partially characterizes the achievable digtorregionD(P, 0%, p, N1, N»), or equivalently
the function Dy (P, o2, p, N1, Ny, D;). Later we shall translate it into a more convenient form hsthat
by combining all the portions, the functiab, (P, o2, p, N1, N, D) can be characterized completely.

Also inherent in the proof of [6] is a genie-aided outer bouwtiere the sourcé, is given directly
to the decoder observing;; see Fig[ 2. This outer bound, which is a special case of the rgeneral
outer bound given in_[6], was rederived in a simpler manndijnthe general outer bound inl[6] is more
involved, and it usually requires optimization over selVgarameters. Let us follow the notation inl [7]
and denote the achievable distortiol,, D) in the genie-aided setting &%),,, D,), and the simplified
characterization of the achievable distortion region_ihi§7as follows.

Theorem4: The achievabl€D,,, D,) when S, is present at the first receiver is all the pairs

2(1 — 2 2
D>t g DT (25)
| 1+ ab 1+ (1—a)P
Ny aP+N»

for somea € [0, 1].

As we shall show in the next subsection, this genie-aide@rooibund is in fact tight for a certain
regime. Intuitively speaking, since the first receiver i©sger than the second receiver, asidis not
required at the first receiver, the informatiéh is redundant at the first receiver in a certain sense, and
thus we can expect the genie-aided outer bound to be redgayaid.

B. A Hybrid Coding Scheme

The coding scheme we propose is a hybrid one, where the chisupog is given by
X" =asy + Sy + X7, (26)

where X} is (roughly) the quantized version of source sequesitafter some proper scalings; is the
digital portion of the channel input, and 3 > 0 are two scaling parameters to be specified later.
More precisely, consider the single-letter distribution

Xa=7(52+U), (27)

whereU is a zero mean Gaussian random variable independent oftbiwreg\else with variancé), and



4 > 0 is again a scaling parameter to be specified later. Skge+ S, <> (51, 52) is a Markov string,
the joint distribution of(Sy, Ss, X4, X, Y3, Ys) is uniquely determined, and they are jointly Gaussian. We
also need to define the coefficients and b,

E[Sk| Xa, @Sy + BSs + Zi] = arXq + bp(aS) + BSo + Zp),  k=1,2. (28)

This proposed hybrid scheme in this work is somewhat sintdathe scheme given in [8] for joint
source channel coding on the multiple access channel. It fathaws, we only outline the coding scheme
and some important analysis steps, but omit the rather ieahdetailed proof (a rigorous proof can be
straightforwardly adapted from that given in [8]).

. Codebook generation: generatep(nR) codewords single-letter wise according to the marginal
distribution of X;; this codebook is revealed to both the encoder and decoders.

« Encoding: find a sequencg} in the codebook that is jointly typical with the source saueeS?;
if successful, the transmitter send®' = 4.5 + 557 + X.

. Digital decoding: thek-th decoder tries to find a uniqu€}; codeword in the codebook that is jointly
typical with Y;*; the decoder also recovers the sequenég + BSQ + 7} after removing the digital
codeword.

. Estimation: if the digital decoding succeeds, then the decaeconstructs the respective source
sequence as (i) = apX4(i) + br(aSy (i) + BSy (i) + Zi(1)).

An error occurs in the above scheme if the encoder fails todimddeword that is jointly typical with
Sy, or one of the decoders fails to find the correct digital cootelvNote that due to the Markov string
Xq > S2 > (S1,5:), we indeed have that the choséfj is jointly typical with (S}, S5, X™, Y{", Y3")
with high probability in the above scheme. Because the skceceiver is a degraded version of the first
receiver, the error probability can be made arbitrarily kimhéhe following condition holds (after ignoring
the §’s often seen in the typicality argument)

I(S2; Xy) < R < I(X4;Y2). (29)
Furthermore, to ensure the power constraint is not violatexineed

o2(a% + B2 + 2paf) + 73 (0* + Q) + 2702 (ap + B) < P. (30)

It is evident that as long as
o*(a® + 3% +2paf) < P, (31)

we can findy = 4* such that[(30) holds with equality, because the left hand sfd30) is monotonically
increasing iny in the rangel0, oo], and we shall choose precisely this value in the scheme.



With this choice ofy, (29) can be simplified. Note that

I(X4;Y2) = h(Y2) — h(Y2| Xa)
= h(Ys) — h(aSy + BSs + Xy + Z2| X4) (32)
= h(Y2) — h(aS1 + BS2 + Za| X4) (33)
1 .
= 5 IOg 27T6(1D + Ng) - h(&Sl + BSQ + ZQ‘Xd) (34)
1 .
= —log2me(P + Ny) — h(aSt + 8S2 + Z5|Ss + U). (35)

[\)

Moreover, we have also

o+ Q
o

Putting [3%) and[(36) togethef, (29) finally reduces to théo¥ang expression through some algebraic
calculation

1
1(S2; Xq) = 1(52; 92 + U) = B log (36)

N\ ~2 2
O el e\ PR Y 37)
P — (a2 + B% + 2apBp)o?
We shall thus choos@® = @Q* in the scheme (again ignoring some asymptotically sihadrms).
By the joint typicality of the sequences when digital deogdsucceeds, the distortions can be computed,
which is summarized in the following theorem.

Theorem5: For &, 3 > 0 such that

0’6 + B° + 2paB) < P, (38)
the proposed hybrid scheme can achieve the distortion(pdir D%)
P 02(1 — P[NP — (B% + 2aBp)Nio? + 2Ny + (1 — p?)a* 20" + Ni N,
! (1= p2)a2(P + Np)o2 4+ PNy + Ny No + (62 + 32 + 2a8p)(Ny — Ny)o?2
25(2(1 — p2)0'2 + N2
P+ N, '

It is not clear a priori why in the analog part, the soureneeds to be included. However, this is
rather critical, as we shall discuss shortly in the nextieact

Dh=¢ (39)

C. Matching the Inner and Outer Bounds

The proof of the main result is now organized into three psijpmns. We start by rewriting Theorem
in the following form.

Proposition6: We have

o If P < %%, then the uncoded scheme is optimal in the range € [Df", Di"™] and
Do(P, 02, p, N1, Ny, D1) = DY(P, 02, p, Ny, No, Dy);

o If P> 21ij;, then the uncoded scheme is optimal over the rabige [D™, D] U[D;y, D], and
in this rangeDy (P, 02, p, N1, Ny, D) = DY(P, 0%, p, N1, Ny, D1).




Proof: This proposition is a direct consequence of Theotém 3. Itraightforward to show that
when P < %, the condition in[(2R) holds for any choice &f, by analyzing the quadratic inequality
(see [6] Corollary 1); on the other hand, whén> %, (22) only holds in the given range. [ |

Given this alternative form, we only need to focus on the ¢haeP > Qﬂj , and moreover, in the range
Dy € [Dy, Df]. It is worth noting that it is always true thd@® < Dy < Df < (1 — p?)o? < Dpax,

Next we use Theoreml 4 to write an lower bound for the functioyi P, o2, p, Ny, No, Dy).

Proposition7: For any D, € [D®®, D] Dy (P, 02, p, N1, Ny, D1) > D3(P, 02, p, N1, Ny, D).

This proposition is a direct consequence of the fact that abeievable(D,,, D;) region given
in Theorem[# is an outer bound fdP(P, o2, p, N1, N,); the proof is obtained by simple algebraic
manipulation to eliminate the parameterin Theoreni 4, and we thus omitted the details.

The following proposition is the final piece for the proof dietmain result.

Proposition8: The proposed hybrid scheme achieves

D2(P7U27/)7N17N27D1) = DS(P>U27/)7N17N27D1)7 (40)

when D, € [Dy, D] by choosing

A== (41)
(42)

Proof: In order to prove this proposition, we need to show firstlyt the given choice ofa, 3) does
not violate the power constraint, i.e., the conditibnl (3 atisfied; secondly, the given choice(af 3)
reduces the distortion pairs in_(39) to those giver(id (40).
Notice thata and 3 given in [41) and[(42) are well-defined and non-negative where [D7, Df],
since D; < (1 — p?)o? in this range. For[{31) to hold, we need to have

2 N2 2
&*+ 3% +2app = a* + dQ(lp_]Zg)204 (12f ;ZV;UQ < ;. (43)
Solving the inequality gives that the necessary and sufficendition that
(1= p*)P —2p° Ny — /(P> — (P +2N1)?p?) (1 — p?)
2(1 — p?)o?
c g < L=PIP 2N+ (PP (PN A1) )

2(1 — p?)o?
Substituting [(411) into[(44) and after certain algebra, wévarat the conditions under which(44) is true,
which is exactlyD, € [D;, D{].
In order to show that the lower bound as stated in Propodilican be achieved, we first simplify the
expression ofD! given in [39) in terms ofy, which (after quite some algebra) eventually gives
(1—p*)N,

D =o? .
1 o (1 _p2)d202+N1

(45)




Substituting our choice oft given in (41) into [45) leads t®! = D;; again substituting{41) into the
expression ofD! in (39) gives the expression stated in the proposition, Wwitismpletes the proof.

Readers may wonder how the magic value3ofias found, which optlmlzeph in the hybrid scheme.
Indeed, directly optimizing the distortioR” is extremely cumbersorBeTo circumvent this difficulty, we
instead solve foB such that the inner bound matches the outer bound, whicls ¢ixegiven expression.
This approach is less intuitive, since it is possible thathee the genie-aided outer bound nor the hybrid
scheme inner bound is tight, however extensive humerigapewison indeed suggested that these bounds
match, which motivated us to take such an approach.

In Fig. 3 and Fig[ 4 we give two typical achievable distortimgions, where for comparison we
also include the performance of a simple separation-baseehse where the digital broadcast messages
encodingS, and S; (conditioned on the reconstructétl), respectively. In both figures, each horizontal
red line is the performance of the hybrid scheme by var)ﬁ?ng/hile keepinga fixed. Note that the
hybrid scheme includes the uncoded scheme as a special tesethe digital portion is allocated no
power. Fig.[B is plotted with the choice of source and chama¢isfying the condition? < 2le , and
thus the uncoded scheme is always optimal. For this casénadiital code in the hybrid scheme is
always inferior. In contrast, Figl 4 is plotted under the dtod P > 2”N1 , and thus uncoded scheme is
only optimal at high and lowD, regimes. In the regime that uncoded scheme is not optimegntbe
seen that even when analog portion does not incltidethe hybrid scheme can sometimes outperform
the uncoded scheme, however, by optimiz#igin the analog portion, the inner and outer bounds indeed
match. Moreover, observe that the distortioniof achieved by the hybrid scheme is not monotonic in
3 whena is fixed (each red line), where the two extreme valueg afive the uncoded scheme and the
hybrid scheme without analo§,, respectively.

D. The Worst Case Property

Next we prove Theoreml 2, i.e., the worst case property of thesGian setting.

Proof of Theorem[Z We have shown an optimal scheme in the Gaussian setting iprtdmsed
hybrid scheme, and thus we can limit ourselves to the distogiairs achievable by this scheme. In fact
we shall continue to use this scheme and the associated g@@amvhen the sources and channel noises
are not Gaussian. More precisely, we shall now tSeinstead of X, to construct the digital source
codewords

=75 +U), (46)

where U is still a Gaussian random variable with variance(@f, independent of everything else. The
overall covariance structure of the scheme remains intadhahe Gaussian case, and thus the same
(MSE) distortion pairs can be achieved, as long as the tigi@dewords can be correctly decoded at both
the decoders, i.e.,

1(53: X)) < I(Xg:;Y7),  i=12, (47)

!In fact we were not able to find the optimal solution férthis way.
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Fig. 3. A typical achievable distortion region whéh< % HereP =1, Ny =0.3, No=1andp =0.8.

with our choices of the parameters, whére is the channel output in this non-Gaussian setting. Note
that unlike in the Gaussian case, here the broadcast chasnmed necessarily degraded, and thus we also
need to make sure that the codeword can be correctly decadbd &irst decoder.

To show the second decoder can succeed (with high prolydbiie only need to observe that

1(55; Xg) — I(Xg; Yy) = h(Xg[Y5) — h(X5]53)

= h(XglYy) = h(3U)

< h(Xg — B(Xg[Y5)) — h(3U)
< h(Xq — E(X4|Y2)) — h(FU)
hXalY2) = h(7U)

I

So; Xa) — I(Xa;Ya) =0, (48)

where in the second inequality we substitufg of the Gaussian version of the problem, because the
terms have the same covariance structure, and Gaussiaibudisn maximizes the differential entropy;

in the last but one equality, we add and subtract the same/éip), and the last equality is due to our
specific choice of the parameters in the Gaussian problem.
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Similarly, we can write
1(83: Xg) = I(Xg; Y1) < 1(S2; Xa) — I(Xa; Y1) < (823 Xa) — I(Xg; Y2) <0, (49)

where the second inequality is guaranteed by the relatidineriaussian case, which is indeed a degraded
broadcast channel. This completes the proof. [ |

V. CONCLUDING REMARKS

We provide a complete solution for the joint source-chantmding problem of sending bivariate
Gaussian sources over Gaussian broadcast channels wheauttte bandwidth and channel bandwidth
are matched. Thus this problem joins a limited list of joinuce-channel coding problems for which
complete solutions are known. Possible extension of thikwludes the case with more than two users
or more than two sources, and approximate characteriz&iobhandwidth mismatched case, which are
part of our on-going work.
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