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Abstract

We provide a complete characterization of the achievable distortion region for the problem of sending a bivariate

Gaussian source over bandwidth-matched Gaussian broadcast channels, where each receiver is interested in only one

component of the source. This setting naturally generalizes the simple single Gaussian source bandwidth-matched

broadcast problem for which the uncoded scheme is known to beoptimal. We show that a hybrid scheme can

achieve the optimum for the bivariate case, but neither an uncoded scheme alone nor a separation-based scheme

alone is sufficient. We further show that in this joint sourcechannel coding setting, the Gaussian setting is the

worst scenario among the sources and channel noises with thesame covariances.

Index Terms

Gaussian source, joint source-channel coding, squared error distortion measure.

I. INTRODUCTION

It is well known that Shannon’s source-channel separation result for point-to-point communication [1]

does not hold for in general for multi-terminal systems, andthus joint source-channel coding may be

required to achieve the optimum. One simple yet intriguing scenario where source-channel separation is

known to be suboptimal is broadcasting Gaussian sources on Gaussian channels.

When a single Gaussian source is at the encoder, the achievable distortion region is known when

the source bandwidth and the channel bandwidth are matched [2], for which a simple analog scheme

is optimal. However when the source and channel bandwidths are not matched, exact characterization

of the achievable distortion region is not known. The best known coding schemes are based on joint

source-channel using hybrid signaling [3], [4], and approximate characterizations were given in [5]; see

references therein for related works. As a simple extensionto this problem of single Gaussian source

broadcasting, when the source is a bandwidth-matched bivariate Gaussian and each decoder is interested

in one source component, only partial characterization is known when uncoded scheme is shown to be

optimal under certain signal-to-noise ratio conditions [6].

In this work, we provide a complete characterization of the achievable distortion region for broadcasting

bivariate Gaussian sources over Gaussian channels when each receiver is interested in only one component,

where the source bandwidth and the channel bandwidth are matched. We further show that in this joint

source channel coding setting, the Gaussian problem is the worst scenario among the sources and channel

noises with the same covariances, in the sense that any distortion pair that is achievable in the Gaussian

setting is also achievable for other sources and channel noises. Our work is built on the outer bounds

given in [6] and we show that a hybrid coding scheme (different from the one given in [7] proposed for

http://arxiv.org/abs/1006.0644v1
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Fig. 1. Broadcasting bivariate Gaussian sources.

the same problem) can achieve the outer bounds. Our main contribution in this work is this new coding

scheme and a detailed and systematic analysis of the inner and outer bounds, which result in a complete

solution. To the best of our knowledge, this is the first case in the literature that a hybrid scheme is

shown to be optimal for a joint source-channel problem, whereas neither an uncoded scheme alone nor a

separation-based scheme alone is optimal.

II. PROBLEM DEFINITION

Let {S1(i), S2(i)} be a memoryless and stationary bivariate Gaussian source with zero mean and

covariance matrix
(

σ2 ρσ2

ρσ2 σ2

)

(1)

where without loss of generality, we can assumeρ ≥ 0. The vector(Sk(1), Sk(2), ..., Sk(n)) will be written

asSn
k for k = 1, 2. We useR to denote the domain of reals. The Gaussian memoryless broadcast channel

is given by the model

Yk = X + Zk, k = 1, 2, (2)

where Yk is the channel output observed by thek-th receiver, andZk is the zero-mean independent

additive Gaussian noise in the channel. Thus the channel is memoryless in the sense that(Z1(i), Z2(i)) is

a memoryless and stationary process. The variance ofZk is denoted asNk, and without loss of generality,

we shall assumeN1 ≤ N2. Throughout the paper, we use natural logarithm.

The mean squared error distortion measure is used, which is given byd(snk , ŝ
n
k) =

1
n

∑n

i=1(sk(i)−ŝk(i))
2

for k = 1, 2. The encoder maps a source sample block(Sn
1 , S

n
2 ) into a channel input blockXn; the decoder

observing channel output blockY n
k reconstruct the sourceSn

k within certain distortion; see Fig. 1. The

channel inputX is subject to an average power constraint. More formally, the problem is defined as

follows.

Definition 1: An (n, P, d1, d2) bivariate Gaussian source-channel broadcast code is givenby an

encoding function

f : Rn × R

n → R

n, (3)
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such that

1

n

n
∑

i=1

E(X(i))2 ≤ P, (4)

and two decoding functions

gk : R
n → R

n, k = 1, 2, (5)

and their induced distortions

dk = Ed(Sn
k , gk(f(S

n
1 , S

n
2 ) + Zn

k )), k = 1, 2. (6)

whereE(·) is the expectation operation.

In the definition,+ in the expressionf(Sn
1 , S

n
2 )+Zn

k is understood as the length-n vector addition. It is

clear that the performance of any Gaussian joint source-channel code depends only on the marginal

distribution of (Sn
1 , S

n
2 , X

n, Y n
k ), but not the joint distribution(Sn

1 , S
n
2 , X

n, Y n
1 , Y

n
2 ). Note that this

implies that physical degradedness does not differ from statistical degradedness in terms of the system

performance. Since the Gaussian broadcast channel is always statistically degraded, we can assume

physical degradedness without loss of generality.

Definition 2: A distortion pair(D1, D2) ∈ R+ ×R+ is achievable under power constraintP , if for any

ǫ > 0 and sufficiently largen there exists an(n, P, d1, d2) bivariate Gaussian source-channel broadcast

code such that

Di + ǫ ≥ di, i = 1, 2. (7)

The collection of all the achievable distortion pairs underpower constraintP for a given bivariate

source is denoted byD(P, σ2, ρ, N1, N2), and this is the region we shall characterize in this work. In

fact, we shall determine the following function which clearly provides a characterization of the achievable

distortion region.

D2(P, σ
2, ρ, N1, N2, D1) = min

(D1,d2)∈D(P,σ2,ρ,N1,N2)
d2. (8)

Note thatD(P, σ2, ρ, N1, N2) is a closed set, and thus the minimization above is meaningful. Since the

minimumD1 that is achievable is given by

Dmin
1 ,

N1σ
2

P +N1
, (9)

when the second receiver is completely ignored, the function D2(P, σ
2, ρ, N1, N2, D1) is thus only

meaningfully defined on the domain[Dmin
1 ,∞].

When the source is not Gaussian but with the same covariance structure, and the channel noises

are not Gaussian, but has the same variances, we shall denotethe achievable distortion region as

D∗(P, σ2, ρ, N1, N2). We shall show that the Gaussian setting has the worst case property, and thus the

Gaussian scheme is a “robust” scheme.
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III. M AIN RESULT

The main result of this paper is summarized in the following theorem.

Theorem1: If D1 > Dmax
1 , whereDmax

1 , σ2 (1−ρ2)P+N1

P+N1

, then

D2(P, σ
2, ρ, N1, N2, D1) = σ2 N2

P +N2

. (10)

If P ≤ 2ρN1

1−ρ
, then in the rangeD1 ∈ [Dmin

1 , Dmax
1 ],

D2(P, σ
2, ρ, N1, N2, D1) = Du

2 (P, σ
2, ρ, N1, N2, D1), (11)

where

Du
2 (P, σ

2, ρ, N1, N2, D1)

, σ2

[

(

√

1−
D1(P +N1)

Pσ2
+

N1

P
−

√

ρ2

1− ρ2
(
(P +N1)D1

Pσ2
−

N1

P
)

)2
(1− ρ2)P

P +N2

+
N2

P +N2

]

.

(12)

On the other hand ifP > 2ρN1

1−ρ
, then

D2(P, σ
2, ρ, N1, N2, D1) =

{

Du
2 (P, σ

2, ρ, N1, N2, D1) D1 ∈ [Dmin
1 , D−

1 ) ∪ (D+
1 , D

max
1 ]

Dh
2 (P, σ

2, ρ, N1, N2, D1) D1 ∈ [D−
1 , D

+
1 ]

(13)

where

Dh
2 (P, σ

2, ρ, N1, N2, D1) ,
σ2

P +N2

[

N1(1− ρ2)σ2

D1

+N2 −N1

]

(14)

and

D−
1 = σ2 (P + 2N1)(1− ρ2)−

√

(P 2 − (P + 2N1)2ρ2)(1− ρ2)

2(P +N1)
(15)

D+
1 = σ2 (P + 2N1)(1− ρ2) +

√

(P 2 − (P + 2N1)2ρ2)(1− ρ2)

2(P +N1)
. (16)

Remark: Depending on the power constraint, the achievable distortion region may have two operating

regimes. In the regime whereD2(P, σ
2, ρ, N1, N2, D1) = Du

2 (P, σ
2, ρ, N1, N2, D1), the uncoded scheme

given in [6] is optimal, whereas in the regimeD2(P, σ
2, ρ, N1, N2, D1) = Dh

2 (P, σ
2, ρ, N1, N2, D1), a

hybrid scheme given in the next section is optimal, but the uncoded scheme is not. Typical achievable

distortion regions for these two cases will be illustrated in the next section after the hybrid coding scheme

is given, where more observations regarding these schemes can be discussed.

Consider a source pair(S∗
1 , S

∗
2) whose covariance is given by (1), and channel noise pair(Z∗

1 , Z
∗
2)

whose variances are given by(N1, N2). We have the following theorem.

Theorem2: If (D1, D2) ∈ D(P, σ2, ρ, N1, N2), then(D1, D2) ∈ D∗(P, σ2, ρ, N1, N2).

This theorem essentially says the Gaussian setting has the worst sources and channels among those

having the same covariance structure, a result similar to the well-known ones that the Gaussian source is
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the worst source [9] (Ex. 13.8) and the Gaussian channel is the worst channel [9] (Ex. 10.1).

The proofs of Theorem 1 and Theorem 2 are given in the next section.

IV. PROOF OF THEMAIN RESULT

In this section, we shall first review some previous results which provide partial characterization of the

achievable distortion region, then give a new hybrid codingscheme, which provides the missing portion

of the characterization. Finally, we provide a proof for theworst-case property of the Gaussian setting.

A. Preliminaries and Previous Results

It is straightforward to show that a simple analog scheme by sendingS2 directly (after certain scaling)

achieves the distortion pair (see also [6])

D1 = σ2 (1− ρ2)P +N1

P +N1

= Dmax
1 , and D2 = σ2 N2

P +N2

, (17)

for which D2 cannot be reduced even when the first receiver is not present.Thus we trivially have

D2(P, σ
2, ρ, N1, N2, D1) = σ2 N2

P +N2
, if D1 ≥ σ2 (1− ρ2)P +N1

P +N1
. (18)

Thus we only need to characterize the functionD2(P, σ
2, ρ, N1, N2, D1) whenD1 ∈ [Dmin

1 , Dmax
1 ].

The uncoded scheme was investigated thoroughly in [6], which was shown to be optimal under certain

conditions. More precisely, the uncoded scheme uses the single letter mapping

X(i) =

√

P

σ2(α2 + 2αβρ+ β2)

(

αS1(i) + βS2(i)

)

, (19)

whereα ∈ [0, 1] andβ = 1 − α. The reconstruction in this uncoded scheme is thus naturally the single

letter mapping given byE[Sk(i)|Yk(i)] for k = 1, 2. The distortion pair is thus given by

D̂1(α, β) = σ2

[

Pβ2(1− ρ2)

(P +N1)(α2 + 2αβρ+ β2)
+

N1

P +N1

]

(20)

D̂2(α, β) = σ2

[

Pα2(1− ρ2)

(P +N2)(α2 + 2αβρ+ β2)
+

N2

P +N2

]

. (21)

The main result of [6] is the following theorem.

Theorem3 (Theorem 1, [6]): For any(D1, D2) ∈ D(P, σ2, ρ, N1, N2), and

P

N1

≤ Γ(D1, σ
2, ρ), (22)

there existα∗, β∗ ≥ 0 such that

D̂1(α
∗, β∗) ≤ D1, and D̂2(α

∗, β∗) ≤ D2, (23)

where the thresholdΓ is given by

Γ(D1, σ
2, ρ) =

{

σ4(1−ρ2)−2D1σ
2(1−ρ2)+D2

1

D1(σ2(1−ρ2)−D1)
0 < D1 < σ2(1− ρ2),

+∞ otherwise.
(24)
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Fig. 2. Broadcasting bivariate Gaussian sources with a genie helper.

This result partially characterizes the achievable distortion regionD(P, σ2, ρ, N1, N2), or equivalently

the functionD2(P, σ
2, ρ, N1, N2, D1). Later we shall translate it into a more convenient form, such that

by combining all the portions, the functionD2(P, σ
2, ρ, N1, N2, D1) can be characterized completely.

Also inherent in the proof of [6] is a genie-aided outer bound, where the sourceS2 is given directly

to the decoder observingY1; see Fig. 2. This outer bound, which is a special case of the more general

outer bound given in [6], was rederived in a simpler manner in[7]; the general outer bound in [6] is more

involved, and it usually requires optimization over several parameters. Let us follow the notation in [7]

and denote the achievable distortion(D1, D2) in the genie-aided setting as(D1|2, D2), and the simplified

characterization of the achievable distortion region in [7] is as follows.

Theorem4: The achievable(D1|2, D2) whenS2 is present at the first receiver is all the pairs

D1|2 ≥
σ2(1− ρ2)

1 + αP
N1

, and D2 ≥
σ2

1 + (1−α)P
αP+N2

, (25)

for someα ∈ [0, 1].

As we shall show in the next subsection, this genie-aided outer bound is in fact tight for a certain

regime. Intuitively speaking, since the first receiver is stronger than the second receiver, andS2 is not

required at the first receiver, the informationS2 is redundant at the first receiver in a certain sense, and

thus we can expect the genie-aided outer bound to be reasonably good.

B. A Hybrid Coding Scheme

The coding scheme we propose is a hybrid one, where the channel input is given by

Xn = α̃Sn
1 + β̃Sn

2 +Xn
d , (26)

whereXn
d is (roughly) the quantized version of source sequenceSn

2 after some proper scaling;Xn
d is the

digital portion of the channel input, and̃α, β̃ ≥ 0 are two scaling parameters to be specified later.

More precisely, consider the single-letter distribution

Xd = γ̃(S2 + U), (27)

whereU is a zero mean Gaussian random variable independent of everything else with varianceQ, and
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γ̃ ≥ 0 is again a scaling parameter to be specified later. SinceXd ↔ S2 ↔ (S1, S2) is a Markov string,

the joint distribution of(S1, S2, Xd, X, Y1, Y2) is uniquely determined, and they are jointly Gaussian. We

also need to define the coefficientsak and bk

E[Sk|Xd, α̃S1 + β̃S2 + Zk] = akXd + bk(α̃S1 + β̃S2 + Zk), k = 1, 2. (28)

This proposed hybrid scheme in this work is somewhat similarto the scheme given in [8] for joint

source channel coding on the multiple access channel. In what follows, we only outline the coding scheme

and some important analysis steps, but omit the rather technical detailed proof (a rigorous proof can be

straightforwardly adapted from that given in [8]).

• Codebook generation: generateexp(nR) codewords single-letter wise according to the marginal

distribution ofXd; this codebook is revealed to both the encoder and decoders.

• Encoding: find a sequenceXn
d in the codebook that is jointly typical with the source sequenceSn

2 ;

if successful, the transmitter sendsXn = α̃Sn
1 + β̃Sn

2 +Xn
d .

• Digital decoding: thek-th decoder tries to find a uniqueXn
d codeword in the codebook that is jointly

typical with Y n
k ; the decoder also recovers the sequenceα̃Sn

1 + β̃Sn
2 +Zn

k after removing the digital

codeword.

• Estimation: if the digital decoding succeeds, then the decoder reconstructs the respective source

sequence aŝSk(i) = akXd(i) + bk(α̃S1(i) + β̃S2(i) + Zk(i)).

An error occurs in the above scheme if the encoder fails to finda codeword that is jointly typical with

Sn
2 , or one of the decoders fails to find the correct digital codeword. Note that due to the Markov string

Xd ↔ S2 ↔ (S1, S2), we indeed have that the chosenXn
d is jointly typical with (Sn

1 , S
n
2 , X

n, Y n
1 , Y

n
2 )

with high probability in the above scheme. Because the second receiver is a degraded version of the first

receiver, the error probability can be made arbitrarily small if the following condition holds (after ignoring

the δ’s often seen in the typicality argument)

I(S2;Xd) ≤ R ≤ I(Xd; Y2). (29)

Furthermore, to ensure the power constraint is not violated, we need

σ2(α̃2 + β̃2 + 2ρα̃β̃) + γ̃2(σ2 +Q) + 2γ̃σ2(α̃ρ+ β̃) ≤ P. (30)

It is evident that as long as

σ2(α̃2 + β̃2 + 2ρα̃β̃) ≤ P, (31)

we can findγ̃ = γ̃∗ such that (30) holds with equality, because the left hand side of (30) is monotonically

increasing inγ̃ in the range[0,∞], and we shall choose precisely this value in the scheme.
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With this choice ofγ̃, (29) can be simplified. Note that

I(Xd; Y2) = h(Y2)− h(Y2|Xd)

= h(Y2)− h(α̃S1 + β̃S2 +Xd + Z2|Xd) (32)

= h(Y2)− h(α̃S1 + β̃S2 + Z2|Xd) (33)

=
1

2
log 2πe(P +N2)− h(α̃S1 + β̃S2 + Z2|Xd) (34)

=
1

2
log 2πe(P +N2)− h(α̃S1 + β̃S2 + Z2|S2 + U). (35)

Moreover, we have also

I(S2;Xd) = I(S2;S2 + U) =
1

2
log

σ2 +Q

Q
. (36)

Putting (35) and (36) together, (29) finally reduces to the following expression through some algebraic

calculation

Q ≥ σ2 (1− ρ2)α̃2σ2 +N2

P − (α̃2 + β̃2 + 2α̃β̃ρ)σ2
, Q∗. (37)

We shall thus chooseQ = Q∗ in the scheme (again ignoring some asymptotically smallδ terms).

By the joint typicality of the sequences when digital decoding succeeds, the distortions can be computed,

which is summarized in the following theorem.

Theorem5: For α̃, β̃ ≥ 0 such that

σ2(α̃2 + β̃2 + 2ρα̃β̃) ≤ P, (38)

the proposed hybrid scheme can achieve the distortion pair(Dh
1 , D

h
2 )

D̃h
1 = σ2 (1− ρ2)[N1P − (β̃2 + 2α̃β̃ρ)N1σ

2 + β̃2N2σ
2 + (1− ρ2)α̃2β̃2σ4] +N1N2

(1− ρ2)α̃2(P +N1)σ2 + PN1 +N1N2 + (α̃2 + β̃2 + 2α̃β̃ρ)(N2 −N1)σ2
,

D̃h
2 = σ2 α̃

2(1− ρ2)σ2 +N2

P +N2
. (39)

It is not clear a priori why in the analog part, the sourceS2 needs to be included. However, this is

rather critical, as we shall discuss shortly in the next section.

C. Matching the Inner and Outer Bounds

The proof of the main result is now organized into three propositions. We start by rewriting Theorem

3 in the following form.

Proposition6: We have

• If P ≤ 2ρN1

1−ρ
, then the uncoded scheme is optimal in the rangeD1 ∈ [Dmin

1 , Dmax
1 ] and

D2(P, σ
2, ρ, N1, N2, D1) = Du

2 (P, σ
2, ρ, N1, N2, D1);

• If P > 2ρN1

1−ρ
, then the uncoded scheme is optimal over the rangeD1 ∈ [Dmin

1 , D−
1 ]∪ [D+

1 , D
max
1 ], and

in this rangeD2(P, σ
2, ρ, N1, N2, D1) = Du

2 (P, σ
2, ρ, N1, N2, D1).
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Proof: This proposition is a direct consequence of Theorem 3. It is straightforward to show that

whenP ≤ 2ρN1

1−ρ
, the condition in (22) holds for any choice ofD1 by analyzing the quadratic inequality

(see [6] Corollary 1); on the other hand, whenP > 2ρN1

1−ρ
, (22) only holds in the given range.

Given this alternative form, we only need to focus on the casethatP > 2ρN1

1−ρ
, and moreover, in the range

D1 ∈ [D−
1 , D

+
1 ]. It is worth noting that it is always true thatDmin

1 ≤ D−
1 ≤ D+

1 ≤ (1− ρ2)σ2 ≤ Dmax
1 .

Next we use Theorem 4 to write an lower bound for the functionD2(P, σ
2, ρ, N1, N2, D1).

Proposition7: For anyD1 ∈ [Dmin
1 , Dmax

1 ], D2(P, σ
2, ρ, N1, N2, D1) ≥ Dh

2 (P, σ
2, ρ, N1, N2, D1).

This proposition is a direct consequence of the fact that theachievable(D1|2, D2) region given

in Theorem 4 is an outer bound forD(P, σ2, ρ, N1, N2); the proof is obtained by simple algebraic

manipulation to eliminate the parameterα in Theorem 4, and we thus omitted the details.

The following proposition is the final piece for the proof of the main result.

Proposition8: The proposed hybrid scheme achieves

D2(P, σ
2, ρ, N1, N2, D1) = Dh

2 (P, σ
2, ρ, N1, N2, D1), (40)

whenD1 ∈ [D−
1 , D

+
1 ] by choosing

α̃ =

√

N1

D1
−

N1

σ2(1− ρ2)
(41)

β̃ =
N1ρ

α̃(1− ρ2)σ2
. (42)

Proof: In order to prove this proposition, we need to show firstly that the given choice of(α̃, β̃) does

not violate the power constraint, i.e., the condition (31) is satisfied; secondly, the given choice of(α̃, β̃)

reduces the distortion pairs in (39) to those given in (40).

Notice thatα̃ and β̃ given in (41) and (42) are well-defined and non-negative whenD1 ∈ [D−
1 , D

+
1 ],

sinceD1 ≤ (1− ρ2)σ2 in this range. For (31) to hold, we need to have

α̃2 + β̃2 + 2α̃β̃ρ = α̃2 +
ρ2N2

1

α̃2(1− ρ2)2σ4
+

2ρ2N1

(1− ρ2)σ2
≤

P

σ2
. (43)

Solving the inequality gives that the necessary and sufficient condition that

(1− ρ2)P − 2ρ2N1 −
√

(P 2 − (P + 2N1)2ρ2)(1− ρ2)

2(1− ρ2)σ2

≤ α̃2 ≤
(1− ρ2)P − 2ρ2N1 +

√

(P 2 − (P + 2N1)2ρ2)(1− ρ2)

2(1− ρ2)σ2
. (44)

Substituting (41) into (44) and after certain algebra, we arrive at the conditions under which (44) is true,

which is exactlyD1 ∈ [D−
1 , D

+
1 ].

In order to show that the lower bound as stated in Proposition7 can be achieved, we first simplify the

expression ofD̃h
1 given in (39) in terms of̃α, which (after quite some algebra) eventually gives

D̃h
1 = σ2 (1− ρ2)N1

(1− ρ2)α̃2σ2 +N1
. (45)
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Substituting our choice of̃α given in (41) into (45) leads tõDh
1 = D1; again substituting (41) into the

expression ofD̃h
2 in (39) gives the expression stated in the proposition, which completes the proof.

Readers may wonder how the magic value ofβ̃ was found, which optimizes̃Dh
1 in the hybrid scheme.

Indeed, directly optimizing the distortioñDh
1 is extremely cumbersome1. To circumvent this difficulty, we

instead solve for̃β such that the inner bound matches the outer bound, which gives the given expression.

This approach is less intuitive, since it is possible that neither the genie-aided outer bound nor the hybrid

scheme inner bound is tight, however extensive numerical comparison indeed suggested that these bounds

match, which motivated us to take such an approach.

In Fig. 3 and Fig. 4 we give two typical achievable distortionregions, where for comparison we

also include the performance of a simple separation-based scheme where the digital broadcast messages

encodingS2 andS1 (conditioned on the reconstructedS2), respectively. In both figures, each horizontal

red line is the performance of the hybrid scheme by varyingβ̃ while keepingα̃ fixed. Note that the

hybrid scheme includes the uncoded scheme as a special case when the digital portion is allocated no

power. Fig. 3 is plotted with the choice of source and channelsatisfying the conditionP ≤ 2ρN1

1−ρ
, and

thus the uncoded scheme is always optimal. For this case, adding digital code in the hybrid scheme is

always inferior. In contrast, Fig 4 is plotted under the condition P > 2ρN1

1−ρ
, and thus uncoded scheme is

only optimal at high and lowD1 regimes. In the regime that uncoded scheme is not optimal, itcan be

seen that even when analog portion does not includeS2, the hybrid scheme can sometimes outperform

the uncoded scheme, however, by optimizingS2 in the analog portion, the inner and outer bounds indeed

match. Moreover, observe that the distortion ofD̃h
1 achieved by the hybrid scheme is not monotonic in

β̃ when α̃ is fixed (each red line), where the two extreme values ofβ̃ give the uncoded scheme and the

hybrid scheme without analogS2, respectively.

D. The Worst Case Property

Next we prove Theorem 2, i.e., the worst case property of the Gaussian setting.

Proof of Theorem 2: We have shown an optimal scheme in the Gaussian setting is theproposed

hybrid scheme, and thus we can limit ourselves to the distortion pairs achievable by this scheme. In fact

we shall continue to use this scheme and the associated parameters when the sources and channel noises

are not Gaussian. More precisely, we shall now useX∗
d instead ofXd to construct the digital source

codewords

X∗
d = γ̃(S∗

2 + U), (46)

whereU is still a Gaussian random variable with variance ofQ∗, independent of everything else. The

overall covariance structure of the scheme remains intact as in the Gaussian case, and thus the same

(MSE) distortion pairs can be achieved, as long as the digital codewords can be correctly decoded at both

the decoders, i.e.,

I(S∗
2 ;X

∗
d) ≤ I(X∗

d ; Y
∗
i ), i = 1, 2, (47)

1In fact we were not able to find the optimal solution forβ̃ this way.
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Fig. 3. A typical achievable distortion region whenP ≤
2ρN1

1−ρ
. HereP = 1, N1 = 0.3, N2 = 1 andρ = 0.8.

with our choices of the parameters, whereY ∗
i is the channel output in this non-Gaussian setting. Note

that unlike in the Gaussian case, here the broadcast channelis not necessarily degraded, and thus we also

need to make sure that the codeword can be correctly decoded at the first decoder.

To show the second decoder can succeed (with high probability), we only need to observe that

I(S∗
2 ;X

∗
d)− I(X∗

d ; Y
∗
2 ) = h(X∗

d |Y
∗
2 )− h(X∗

d |S
∗
2)

= h(X∗
d |Y

∗
2 )− h(γ̃U)

≤ h(X∗
d − E(X∗

d |Y
∗
2 ))− h(γ̃U)

≤ h(Xd − E(Xd|Y2))− h(γ̃U)

= h(Xd|Y2)− h(γ̃U)

= I(S2;Xd)− I(Xd; Y2) = 0, (48)

where in the second inequality we substituteXd of the Gaussian version of the problem, because the

terms have the same covariance structure, and Gaussian distribution maximizes the differential entropy;

in the last but one equality, we add and subtract the same termh(Xd), and the last equality is due to our

specific choice of the parameters in the Gaussian problem.
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1−ρ
. HereP = 1, N1 = 0.3, N2 = 1 andρ = 0.4.

Similarly, we can write

I(S∗
2 ;X

∗
d)− I(X∗

d ; Y
∗
1 ) ≤ I(S2;Xd)− I(Xd; Y1) ≤ I(S2;Xd)− I(Xd; Y2) ≤ 0, (49)

where the second inequality is guaranteed by the relation inthe Gaussian case, which is indeed a degraded

broadcast channel. This completes the proof.

V. CONCLUDING REMARKS

We provide a complete solution for the joint source-channelcoding problem of sending bivariate

Gaussian sources over Gaussian broadcast channels when thesource bandwidth and channel bandwidth

are matched. Thus this problem joins a limited list of joint source-channel coding problems for which

complete solutions are known. Possible extension of this work includes the case with more than two users

or more than two sources, and approximate characterizationfor bandwidth mismatched case, which are

part of our on-going work.
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