Avoiding Interruptions - QoE Trade-offs in
Block-coded Streaming Media Applications

Ali ParandehGheibi, Muriel Médard, Srinivas Shakkottai, Asu Ozdaglar

parandeh @mit.edu, medard @mit.edu, sshakkot@tamu.edu, asuman@mit.edu

Abstract—We take an analytical approach to study Quality of
user Experience (QoE) for video streaming applications. First,
we show that random linear network coding applied to blocks of
video frames can significantly simplify the packet requests at the
network layer and save resources by avoiding duplicate packet
reception. Network coding allows us to model the receiver’s buffer
as a queue with Poisson arrivals and deterministic departures.
We consider the probability of interruption in video playback as
well as the number of initially buffered packets (initial waiting
time) as the QoE metrics. We characterize the optimal trade-off
between these metrics by providing upper and lower bounds on
the minimum initial buffer size, required to achieve certain level
of interruption probability for different regimes of the system
parameters. Our bounds are asymptotically tight as the file size
goes to infinity.

I. INTRODUCTION

Peer-to-peer networks (P2P) are a fast-growing means of
video delivery. It has been estimated that between 35-90%
of Internet bandwidth is consumed by P2P applications [1],
[2]. Today, P2P file-sharing networks are seeing a drop in
popularity [3], but the original file sharing ideas are being
used for video streaming in networks such as PPLive [4]
and QQLive [5]. As smart phones become the medium of
choice for Internet media access, P2P video distribution over
the wireless medium is likely to gain significance.

P2P video streaming is accomplished by dividing the video
file into blocks, which are then further divided into packets for
transmission. After each block is received, it can be played out
by the receiver. In order to ensure smooth sequential playout, a
fresh block must be received before the current block has been
played. If such a fresh block is not available the frame freezes,
causing a negative user experience. Blocks may be buffered in
advance of playing out in order to provide a level of protection
against a frame freeze, with more initial buffering providing
a lower likelihood of frame freeze.

There are two main approaches to P2P video streaming,
namely, (i) using push-based multicast trees, and (ii) using
pull-based mesh P2P networks. Push-based multicast trees re-
quire that each entering user should join one or more multicast
trees [6], [7], [8]. Each block is pushed along a multicast
tree to ensure that each user obtains blocks sequentially and
with an acceptable delay. However, such an approach often
involves excessive infrastructural overheads, and peer churn
causes inefficiencies [9]. Pull-based mesh P2P has recently
seen significant usage as a means of video delivery. Here peers
maintain a playout buffer and pull blocks from each other. The
approach is similar to the popular BitTorrent protocol [10],
which makes use of a full mesh with a subset of peers being

exposed to each peer. This approach has been used in many
systems such as CoolStreaming [11], PPLive [4], QQLive [5]
and TVAnts [12]. A more recent modification is to use random
linear network coding techniques [13] to make block selection
simpler [14], [15], [16] in the wired and wireless context.

In this paper, our main objective is to characterize the
amount of buffering needed for a target probability of frame
freezing over the duration of the video. We consider a simple
model in which network coding is used across the packets
of a block. A wireless user can obtain coded packets from
multiple sources (other users and servers). However, since
the wireless channel is unreliable, packets cannot be obtained
deterministically. Thus, our question is how much should we
buffer prior to playout in order to account for wireless channel
variations?

There is significant work in the space of P2P content
distribution, and we discuss a subset of this work below.
Lower-bounds and achievable limits on the delay experienced
in P2P file distribution are considered in [17], [18], [19],
[20], [21], [22]. The objective here is to quantify the time
needed for all users interested in a file to obtain it. In the
streaming context, [23] develops upper bounds on performance
using meshes and trees, while [9] contains simulation studies.
Closer to our work, [24], [25], [26], [27] develop analytical
models on the tradeoff between the steady state probability of
missing a block, and buffer size under different block selection
policies for live streaming in a full mesh P2P network with
deterministic channels. In comparison to these pieces of work,
we focus on a very different scenario of streaming of pre-
prepared content over unreliable wireless channels. Further,
our whole analysis is on transient effects—we are interested
in the first time that a frame freezes as a function of the initial
amount of buffering.

II. SYSTEM OVERVIEW

Consider a single user playing a media file in a streaming
manner. Generally, media files are divided into blocks of
frames, and the media player applications are such that they
require a complete block to be able to play any of the frames
of the block. At the application layer, the user requests blocks
from the server (or other peers). The application layer at the
server feeds the requested block to the network layer at which
the block is divided to multiple packets and sent to the user.
Figure 1 illustrates this process.

In a P2P streaming system, the packets in each block can
be received from different peers. Traditional mesh-based pull

Server Client
Request block i

Application
Layer

Application
Layer

Media
player

Block i Block i

Network
Layer

Network
Layer

I
P

Fig. 1. The media player (application layer) requires complete blocks. At
the network layer each block is divided into packets and delivered.

streaming strategies involve each peer storing a bitmap of the
available packets in each block, and requesting the missing
packets. This approach can result in receiving duplicate pack-
ets from different peers or wasting resources communicating
with those without any packets useful to the receiver. In the
following, we intuitively demonstrate how to use network
coding to alleviate these problems.

A. Network Coding for Streaming

Instead of requesting individual packets of each block ¢ from
different servers (peers), the receiver only requests a degree
of freedom of block i from different servers. In this scheme,
when a server is requested a degree of freedom of block <, it
forms a coded packet as a linear combination of all the packets
it has in block 7. The coefficients of each linear combination
are chosen uniformly at random from a Galois field of size g.
The coded packets delivered to the receiver can be thought of
linear equations, where the unknowns are the original packets
in block 7. The original packets in block 7 can be recovered by
solving a system of linear equations if it is full rank. It can be
shown that if the field size g is large enough, the received linear
equations are linearly independent with very high probability
[13]. Therefore, for recovering a block of W packets, it is
sufficient to receive W coded packets from different servers.

Using network coding eliminates the need for keeping track
of the exact map of the available packets in each block
and asking only for the missing packets. Moreover, since
each received coded packet is linearly independent from the
previous ones with high probability, it is very unlikely to
receive duplicate (redundant) packets. Further, in a system with
limited storage at the servers, it may not be possible to store
all packets corresponding to each block. However, by storing
random linear combination of the packets at the servers, we
can deliver a new degree of freedom to the receiver upon
request (see [?] for several other practical benefits of network
coding for P2P streaming).

Finally, note that network coding does not introduce ad-
ditional decoding delay for each block of the media file.
This is so since the media player application cannot play
an uncomplete block, and for each block of W packets, W
degrees of freedom are required. These degrees of freedom
can be of the form of coded or distinct uncoded packets.

Next, we describe an abstraction of a streaming system with
network coding, which allows us to present a simple dynamics

for the receiver’s buffer.

III. SYSTEM MODEL AND QOE METRICS

Consider a single user receiving a media file from various
peers it is connected to. Each peer could be a wireless access
point or another wireless user operating as a server. We assume
that the video file consists of T' packets that are divided
into blocks of length W. Each server sends random linear
combinations of the packets within the current block to the
receiver. As we discussed in the preceding section, if the linear
combination coefficients are selected from a Galois field of
size q, for large enough ¢ no redundant packet will be delivered
to the receiver with very high probability. Here we assume the
block size W is small compared to the total length of the file,
but large enough to ignore the boundary effects of moving
from one block to the next. Assume that time is continuous
and the arrival process from each peer is an Poisson process
independent of other arrival processes. Since no redundant
packet is delivered from different peers, we can combine the
arrival processes into one Poisson process of rate R, where we
normalize the play rate to one, i.e., it takes one unit of time
to play a single packet. Therefore, the system boils down to
a single server-single receiver system. It is worth mentioning
that we owe the simplicity of this model to network coding that
eliminates the need for coordination and packet reordering. We
assume that the parameter R is known at the receiver. In our
model, the receiver first buffers D packets from the beginning
of the file, and then starts the playback.

For every block of W packets, we need to receive W
coded packets from the server. Each block cannot be decoded
and played until all W packets of that block have arrived.
Therefore, having received coded packets does not immedi-
ately yield interruption-free playback. However, we can treat
the coded packets as if they are immediately decodable by
the following argument. Assume that whenever a block of W
coded packets is decoded, the decoded packets replace the
coded ones in the buffer. If at any instance there are at least
W packets in the buffer, then there is at least one decoded
packet in the buffer. This is so since either the first W packets
in the buffer belong to the same block, or they belong to two
different blocks. In the former case, the packets of the block
can be decoded, and in the latter case, the first block of the
two must be already decoded; otherwise, the next block would
not be sent from the server. Therefore, the dynamics of the
receiver’s buffer can be described as follows

Q(t) = max{D + A(t) —t,0}, (1)

where D is the initial buffer size and A(t) is a Poisson process
of rate R. In this work, we ignore the integrality constraint
of the buffer size for simplicity of notation. We declare an
interruption in playback when the buffer size reaches the
threshold W. Again for simplicity of notation, we assume that
an extra block of W packets is initially buffered (not taken
into account in D). Hence, we can declare an interruption in
streaming when the buffer size reaches zero before reaching

the end of the file. More precisely, let

inf{t : Q(¢) <0},
7 = inf{t: Q) >T —t}. (2)

Te =

The video streaming is interrupted if and only if 7. < 7.

In this work we consider the following metrics to quantify
Quality of User Experience (QoE) of the video streaming. The
first metric is the initial waiting time before the playback starts.
This is directly captured by the initial buffer size D. Another
metric that affects QoE is the probability of experiencing an
interruption during the playback, which is denoted by

p(D) =Pr{r. <7}, 3)

where 7, and 7; are defined in (2). In our model, user expects
to have an interruption-free experience with probability higher
than a desired level 1 — e. Note that there is a fundamental
trade-off between the interruption probability and the initial
buffer size. For example, owing to the randomness of the
arrival process, in order to have zero probability of interruption
it is necessary to fully download the file, ie., D = T.
Nevertheless, we need to buffer only a small fraction of the file
if user tolerates a positive probability of interruption. These
trade-offs and their relation to system parameters R and 1" are
addressed in the following section.

IV. OPTIMAL QOE TRADE-OFFS

In this section, we obtain bounds on the optimal trade-off
curve of the QoE metrics introduced in the preceding section
as a function of the system parameters. In other words, we
would like to obtain the smallest initial buffer size so that the
interruption probability is below a desired level e, which is
denoted by

D*(e) = min{D >0:p(D) <¢}, 4)
where p(D) is the interruption probability defined in (3). Note
that in general p(D) and hence D*(¢) depend on the arrival
rate R and the file size 7" which are assumed to to be known
and constant. In the following we characterize the optimal
trade-off between the initial buffer size and the interruption
probability by providing bounds on D*(e). An upper bound
(achievability) on D*(e) is particularly useful, since it provides
a sufficient condition for desirable user experience. A lower
bound (converse) of D*(€) provides a necessary condition on
the initial buffer size for a desirable level e of interruption
probability. Let us first introduce some useful lemmas.

Lemma 1. Ler X (t) = e "W, where Q(t) is given by (1).
Then for every r > 0 such that v(r) =r + R(e™" —1) > 0,
X(t) is a sub-martingale with respect to the canonical filtra-
tion Fy = 0(X(s),0 < s <t).

Proof: For every t, | X (t)| < 1. Hence, X (¢) is uniformly
integrable. It remains to show that for every ¢ > 0 and h > 0,

E[X(t+h)|[F] > X(t) as. (5)

The left-hand side of (5) can be expressed as
EIX(t+h)F] = Ble@un-Cm|x]x()

E [e—r(A(t-i-h)—A(t)) ‘]_-t} eThX(t)

Ol

a

= R [efrA(h)] eth(t)
0 eh(rJrR(e*Tfl))X(t) _ eh'y(r)X(t)’

—~
= =

where (a) follows from independent increment property of the
Poisson process, and (b) follows from the fact that A(t) is a
Poisson random variable. Now, it is immediate to verify (5)
for any r with v(r) > 0. [|

Next, we use Doob’s maximal inequality to bound the
interruption probability.

Lemma 2. Let p(D) be the interruption probability given the
initial buffer size D. Then, for any v > 0 with y(r) = r +
R(e"—1)>0

p(D) < e mPHI),

forall D,T,R>0. (6)
Proof: By definition of p(D) in (3), we have

p(D) =
< Pr{r.<T}= Pr{

Pr{r. <7t}
inf_ Q(t) < o}

0<t<T
= Pr{ sup e "M 21}
0<t<T

(a)
<

E[G_T'Q(T)] _ E[e—r(D+A(T)—T)]

efr(DfT)eRT(e_Tfl) 67TD+T'y(r)

)

where (a) holds by applying Doob’s maximal inequality to the
non-negative sub-martingale X (t) = e~"2®). Note that X (t)
is a sub-martingale for all r with y(r) > 0 by Lemma 5. ®|

Lemma 3. Define 7(R) as the largest root of v(r) = r +

R(e™" — 1), ie.,
7(R) = sup{r : y(r) = 0}. (7)
We have
7(R) = 0, if 0<R<1,(8)
D cxmy<ar-1), iy 1<R<20
R—-1<#(R)<R<2R-1), if R>2. (10)
Proof: See Appendix. n

Next, we provide sufficient conditions on the initial buffer
size to avoid interruptions with high probability for different
regimes of the arrival rate.

Theorem 1. [Achievability] Ler D*(¢) be defined as in (4),
and 7(R) be the largest root of ~(r) defined in (7). Then
(a) For all R > 1,
1
log()

€

D*(e) <

(R (D

N=

) Foral0<R<1+ (&log(L)",

D*(e) < min{F(z)log(%),

T(1-R) + (2TR1og (%)) ’ } (12)

Proof: First, note that for any upper bound p(D) of
the interruption probability p(D), any feasible solution of the
problem

D(e) =min{D > 0: p(D) < ¢} (13)
provides an upper bound on D*(e). This is so since the optimal
solution of the above problem is feasible in the minimization
problem (4). If the problem in (13) is infeasible, we use the
convention D(e) = oo, which is a trivial bound on D*(¢). The
rest of the proof involves finding the tightest bounds on p(D)
and solving (13).

Part (a): By Lemma 2, for r = 7(R), we can write

p(D) < pa(D) = e TRD

for all D, T, R > 0.
Solving 5, (D) = e for D gives the result of part (a). Since
7(R) = 0 for R <1 (cf. Lemma 3), this bound is not useful
in that range.
Part (b): First, we claim that for all D > T (1 — R+7(R)),

p(D) < (D) = e~ 371,

(
where 2 =1 — (1) We use Lemma 2 with r = r* =
—log (£(1 — DR)) to prove the claim. Note that r* > 0,
because D > T(1 — R). In order to verify the second
hypothesis of Lemma 2, consider the following

*

R —) = #(R > <

T(1— R+ 7#(R)) - D} <0,

where the inequality follows from the hypothesis of the claim.
Thus, »* > 7(R), and by definition of 7#(R) in (7), we
conclude that v(r*) > 0. Now, we can apply Lemma 2 to
get

p(D) < e PATA0T)
@ TA(hO-f)r 1)
® TR(-(1-2)log(1-2)-2)

—1TR2?
e 2 ,

where (a) and (b) follow from the definition of ~(r) and z.
Further, (c) holds by Lemma 4 of the Appendix. Therefore,
the claim holds. .

Now, let D =T(1 - R) + (2TR log (%)) * It is straight-
forward to check that p(D) < pyp(D) = ¢, if D > T(1 —
R + 7(R)). This result follows from Lemma 2 and noting

that for R < 1, #(R)
1< R<1+ (Flog

0 (cf. Lemma 3). Then for all

Nl

(%)) , we have

1
D-T(1—-R) = <2TRlog (%))2
1. 1n\%
> 2T<ﬁ log (E))
(@) ©
> 9T(R—1) = TF(R),

where inequality (d) follows from the hypothesis of Part (b),
and inequality (e) is true by Lerlnma 3. Therefore, D*(¢) < D

forall R <1+ log() *. Note that, the upper bound
that we obtained in Part (a) is also valid for all R. Hence, the
minimum of the two gives the tightest bound. []

When the arrival rate R is smaller than the playback rate,
the upper bound in Theorem 1 consists of two components.
The first term, T'(1 — R), compensates the expected number
of packets that are required by the enfl of [0,7T] period.

2T Rlog (%)) : , compensates the
randomness of the arrivals to avoid interruptions with high
probability. Note that this term increases by decreasing the
maximum allowed interruption probability, and it would be
zero for a deterministic arrival process. For the case when
the arrival rate is larger than the playback rate, the minimum
required buffer size does not grow with the file size. By
continuity of the probability measure, we can show that the
upper bound in Theorem 1 remains bounded for infinite file
sizes. This is so since the buffer size in (1) has a positive
drift. Hence, if there is no interruption at the beginning of the
playback period, it becomes more unlikely to happen later.

In the following, we show that the upper bounds presented
in Theorem 1 are asymptotically tight, by providing lower
bounds on the minimum required buffer size D*(e), for
different regimes of the arrival rate R. Let us first define the
notion of a tight bound.

The second component,

Definition 1. Let D be a lower or upper bound of the

minimum buffer size D*(¢) that depends on the file size 7.
|D—D*(e)]|

The bound D is an asymptotically tight bound if 25—

vanishes as 1" goes to infinity.
Theorem 2. [Converse] Let D*(¢) be defined as in (4), and
7(R) be the largest root of y(r) defined in (7). Then

(@) Forall R>1,

1 _(r-12 4
o) > s 1),
D*(€) 2~ log (e+2e72mD 7). (14
(b) Foreach0< R<1ande< i, if T > Clog (1)
then
1 1.\ 3
D*(e) > T(1-R)+ §(zTRlog (E)) . (15)

where C' is a constant that only depends on R.

Proof: We do not present the proof due to space limita-
tion. See [?] for a complete proof []
Note that the assumption € < 1 in part (b) of Theorem 2 is
necessary for the result to hold; 0therw1se, we can show that

D(e)

, , , , . \
o 100 200 300 400 500 600 700 800 900 1000
Ve

Fig. 2. The minimum buffer size D*(€) as a function of the interruption
probability.

D*(e) < T(1 — R) for a large interruption probability e. In
the limit € = 1, it is clear that D*(e) = 0. Nevertheless, since
we are interested in avoiding interruptions, we do not study
this regime of the interruption probabilities. Comparing the
lower bounds obtained in Theorem 2 with the upper bounds
obtained in Theorem 1, we observe that they demonstrate a
similar behavior as the system parameters 7' and R change.
Now, we can show that the obtained bounds are asymptotically
tight.

Corollary 1. The upper bounds and lower bounds of D*(e)
given by Theorems 1 and 2 are asymptotically tight, if R > 1,
0rR<1ande§1—16.

Proof: Let D; and D, be lower and upper bounds of
D*(¢), respectively. By Definition 1, for D; or D, to be
asymptotically tight, it is sufficient to show 2 o DL goes to
zero as T grows. It is straightforward to verify this claim,
using the upper and lower bounds presented in Theorem 1
and Theorem 2, and taking the limit as 7" goes to infinity. M

Next, we numerically obtain the optimal trade-off curve
between the interruption probability and initial buffer size, and
compare the results with the bounds derived earlier.

V. NUMERICAL RESULTS

We use MATLAB simulations to compute the minimum
initial buffer size D*(¢) for a given interruption probability
€ in various scenarios. Towards this goal, we start from a
small initial buffer size D, and for each D we compute
the interruption probability p(D) via Monte-Carlo method.

Fig. 3. The minimum buffer size D*(¢) as a function of the arrival rate R.

We increase D until the constraint p(D) < € is satisfied.
Since p(D) is monotonically decreasing in D, this gives the
minimum required buffer size. Here, we restrict D to take
only integer values, and round each upper bound value up to
the nearest integer, and each lower bound value down to the
nearest integer.

Figure 2 shows the minimum required buffer size D*(e)
as well as the upper and lower bounds given by Theorems
1 and 2 as a function of %, where the arrival rate is fixed
to R = 1.2 and the file size 7' = 500. We observe that
the numerically computed trade-off curve closely matches our
analytical results.

Figure 3 plots the minimum required buffer size D*(¢) as
well as the upper and lower bounds given by Theorems 1 and
2 versus the arrival rate R, where ¢ = 10~2 and the file size
is fixed to 7' = 10°. Note that when the arrival rate is almost
equal or less than the play rate, increasing the arrival rate can
significantly improve the initial buffering delay. However, for
larger arrival rates D*(¢) is small enough such that increasing
R does not help anymore. This could provide a guidance for
resource allocation among multiple users with certain QoE
requirements.

VI. CONCLUSIONS

We studied the problem of media streaming with focus on
Quality of user Experience (QoE) metrics and trade-offs. The
QoE metrics that we considered in this work are the probability
of interruption in media playback and initial waiting time
before starting the playback.

In our system, the user can receive parts of the media file
from multiple sources by requesting packets in each block
of the file. We demonstrated that sending a random linear

combinations of the packets within each block of the media file
simplifies the packet selection strategies of the P2P systems,
and solves the duplicate packet reception issue. Moreover,
it allowed us to describe the receiver’s buffer dynamics as
an M/D/1 queue, and characterize the trade-off between the
QoE metrics for different ranges of the system parameters. We
presented tight upper and lower bounds on the minimum initial
buffering required to achieve a desired level of interruption
probability. Finally, our numerical results confirmed that the
optimal trade-off curve demonstrate a similar behavior to the
one predicted by our bounds.

This work is the first step in analytical characterization of
QoE trade-offs in media streaming applications. It is essential
to take into account each user’s preferences on the interruption
probability and initial waiting time, when performing resource
allocation among multiple users. An interesting extension to
this work would be to obtain optimal resource allocation
policies to satisfy certain user preferences. We shall study this
problem in future works.

APPENDIX

Proof of Lemma 3: Case I (0 < R < 1): First note that y(r)
is a continuously differentiable function, and ~(0) = 0. For
each R < 1, we have +/(r) > 0 for all » > 0. Therefore,
~(r) > 0 for all > 0, i.e., 7(R) = 0 for each R < 1.
Case IT (1 < R < 2): By definition of #(R) in (7),
0=7(F(R)) = F(R)+R(-1
(R
< F(R)+<R(—F(R)+—AA%—Z)
Rearranging the terms in the above relation, gives the lower
bound in (9). We show the upper bound in two steps. First,
we show that v(2(R —1)) > 0 for R > 1, then we verify that
~(r) > 0 for all r > 2(R — 1). These two facts imply that
~(r) > 0 for all » > 2(R — 1), ie., 7(R) < 2(R —1). The

first step can be verified by noting that

HAR=1)| e, =0, 5r(2(R=1)) >0,
It is also straightforward to show that
a—'y(r) >0, forall r>log(R), (16)
r

which immediately yields the second step by noting r > 2(R—
1) > log(R).

Case III (R > 2): We use a similar technique as in
the preceding case. The upper bound is immediate by the
following facts:

v(R) = Re™ ' >0,

(r) >0, forallr>R.

g’)’
It is also straightforward to check that yv(R — 1) < 0 for all
R > 2. Moreover, note that y(R) > 0. Therefore, by the mean
value theorem, () has aroot in [R—1, R], i.e., 7(R) > R—1.

Lemma 4. For all 0 < z < 1, the following relation holds:

2

—(1=2)log(l—2)—2z< -z

5 a7)

Proof: Let f(z) = —(1 — 2)log(1 — 2) — 2z + % f(z)
is a continuously differentiable function on [0, 1). Moreover,
f(0) =0, and f’'(2) =log(1 —z) + z < 0. Therefore, f(z) <
f(0) =0, for all z € [0,1). [|

REFERENCES

[1] C. Fraleigh, S. Moon, B. Lyle, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and C. Diot, “Packet-level traffic measurements from the Sprint
IP backbone,” IEEE Network Magazine, vol. 17, no. 6, pp. 6-16, 2003.

[2] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload,” in Proc. SOSP, Oct. 2003.

[3] C. Labovitz, D. McPherson, and S. Iekel-Johnson, ‘2009 Internet
Observatory report,” in NANOG-47, October 2009.

[4] “PPLive,” http://www.pplive.com/, 2009.

[5] “QQLive,” http://www.qqlive.com/, 2009.

[6] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing Streaming Media Content Using Cooperative Networking,”
in Proceedings of The 12th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV ’02),
Miami, FL, May 2002.

[7]1 E. Setton and J. Apostolopoulos, “Towards Quality of Service for Peer-
to-Peer Video Multicast,” in Proc. of IEEE International Conference on
Image Processing (ICIP), San Antonio, TX, September 2007.

[8] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Perfor-
mance bounds for peer-assisted live streaming,” in Proc. ACM SIGMET-
RICS, June 2008.

[9] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A compara-

tive study of live p2p streaming approaches,” in Proc. IEEE INFOCOM,

Anchorage, AK, May 2007.

B. Cohen, “Incentives to build robustness in BitTorrent,” in Workshop

on Economics of Peer-to-Peer Systems, Berkeley, CA, June 2003.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet: A

data-driven overlay network for efficient live media streaming,” in Proc.

IEEE INFOCOM, Miami, FL, March 2005.

“TVAnts,” http://www.tvants.com/, 2009.

T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, “A ran-

dom linear network coding approach to multicast,” IEEE Transactions

on Information Theory, vol. 52, pp. 4413-4430, 2006.

C. Feng and B. Li, “On large-scale peer-to-peer streaming systems

with network coding,” in Proceedings of the 16th ACM international

conference on Multimedia, Vancouver, Canada, October 2008.

D. Lucani, F. Fitzek, M. Médard, and M. Stojanovic, “Network coding

for data dissemination: It is not what you know but what your neighbors

don’t know,” in Proc. RAWNET, Seoul, Korea, June 2009.

M. Wang and B. Li, “R2: Random push with random network coding

in live peer-to-peer streaming,” IEEE JSAC, Special Issue on Advances

in Peer-to-Peer Streaming Systems, vol. 25, pp. 1655-1666, 2007.

D. Qiu and R. Srikant, “Modeling and performance analysis of

BitTorrent-like peer-to-peer networks,” in Proceedings of the ACM

SIGCOMM, Portland, Oregon, USA, August 2004.

S. Deb, M. Médard, and C. Choute, “Algebraic gossip: a network coding

approach to optimal multiple rumor mongering,” IEEE Transactions on

Information Theory, vol. 52, no. 6, pp. 2486-2507, June 2006.

S. Sanghavi, B. Hajek, and L. Massoulie, “Gossiping with multiple

messages,” in Proc. IEEE INFOCOM, Anchorage, AK, May 2007.

M. Vojnovic and L. Massoulie, “Coupon replication systems,”

IEEE/ACM Transactions on Networking, vol. 16, no. 3, pp. 603-616,

June 2008.

S. Shakkottai and R. Johari, “Demand Aware Content Distribution on

the Internet,” IEEE/ACM Transactions on Networking, 2009, to appear.

M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou, “Utility

maximization in peer-to-peer Systems,” in Proc. ACM SIGMETRICS,

June 2008.

R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for P2P

streaming systems,” in Proc. IEEE INFOCOM, Anchorage, AK, May

2007.

Y. P. Zhou, D. M. Chiu, and J. C. S. Lui, “A simple model for analyzing

P2P streaming protocols,” in Proceedings of IEEE ICNP 2007, Beijing,

China, October 2007.

T. Bonald, L. Massouli¢, F. Mathieu, D. Perino, and A. Twigg, “Epi-

demic live streaming: optimal performance trade-offs,” SIGMETRICS

Perform. Eval. Rev., vol. 36, no. 1, pp. 325-336, 2008.

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

B. Q. Zhao, J. C. Lui, and D.-M. Chiu, “Exploring the optimal chunk
selection policy for data-driven P2P streaming systems,” in The 9th
International Conference on Peer-to-Peer Computing, 2009.

L. Ying, R. Srikant, and S. Shakkottai, “The Asymptotic Behavior of
Minimum Buffer Size Requirements in Large P2P Streaming Networks,”
in Proc. of the Information Theory and Applications Workshop (to
appear), San Diego, CA, February 2010.

