arxiv:1001.2781v2 [cs.IT] 1 Jun 2010

Interaction Strictly Improves the Wyner-Ziv
Rate-distortion Function

Nan Ma Prakash Ishwar
ECE Dept, Boston University ECE Dept, Boston University
Boston, MA 02215 Boston, MA 02215
nanma@bu. edu pi@bu.edu

Abstract—In 1985 Kaspi provided a single-letter characteriza- goal is to reproduce both sourcksslesslyat each terminal
tIOf‘I.Of the sum-rgte-dlstortlon functlion foratwo-way lossy source (zero distortion) then there is no advantage in using mieltip
coding problem in which two terminals send multiple message messages; two messages argisient and the minimum sum-

back and forth with the goal of reproducing each other’s souces. ¢ tb d db . than t %
Yet, the question remained whether more messages can stiiigt rate cannot be reduced by using more than two messages.

improve the sum-rate-distortion function. Viewing the sumrate however, the goal is changed to losslessiynpute functionef
as a functional of the distortions and the joint source distibution ~ sources at each terminal, then multiple messages can decrea
and leveraging its convex-geometric properties, we consict an  the minimum sum-rate by an arbitrarily large factor [3],
example which shows that two messages can strictly improvéé []. Therefore, the key unresolved question pertainotsy
one-message (Wyner-Ziv) rate-distortion function. The eample . . -
also shows that the ratio of the one-message rate to the two-SOU'C€ reproductloncan multlp_le Messages str!ctly Qecreas_e
message sum-rate can be arbitrarily large and simultaneowg the minimum sum-rate for a given (nonzero) distortion? This
the ratio of the backward rate to the forward rate in the two- question is unresolved even when only one source needs to be
message sum-rate can be arbitrarily small. reproduced with nonzero distortion.
In this paper, we construct the first example which shows
that two messages can strictly improve the one-message
Consider the following two-way lossy source coding probanyner-Ziv) rate-distortion function. The example alsmwsis
lem studied in[[1]. Let X(1),Y(1)),....(X(n), Y(n)) be niid  that the ratio of the one-message rate to the two-message sum
samples of a two-component discrete memoryless stationggye can be arbitrarily large and simultaneously the ratihe
source with joint pmfpxy(x,y), (X.y) € X x Y, |[X X Y| < 0. packward rate to the forward rate in the two-message sum-
Terminal A observesK := (X(1),...,X(n)) and terminal B rate can be arbitrarily small. The key idea which enables the
observesY := (Y(1),...,Y(n)). Terminal B is required to construction of this example is that the sum-ratefisractional

produceX := (X(1),..., X(n) € X", whereX is a reproduction of the distortion and the joint source distribution whichsha
alphabet with|X| < oo, such that the expected distortiorcertain convex-geometric properties.

E[d™(X, X)] does not exceed a desired level, where

|. INTRODUCTION

n Il. PROBLEM SETUP AND RELATED PRIOR RESULTS
d™(x, %) := :—LZ d(x(i), X(i)), A. One-message Wyner-Ziv rate-distortion function

= Definition 1: A one-message distributed source code with
andd : X x X — R*Ulew} is a per-sample (single- Parametersr(|M)) is the tuple €m, g) consisting of an
letter) distortion function. Terminal A is likewise reqe@d €ncoding functiore™ : X" — M and a decoding function
to reproduce the source observed at terminal B within sorf® @ ¥" x M — X". The output ofg®, denoted byX, is
distortion level with respect to another (possiblyffeiient) called the reproduction and fd) log, |M| is called the block-
distortion function. To achieve this objective, the teraign c0ding rate (in bits per sample).
are allowed to send a certain number of messages back anBe€finition 2: A tuple (R, D) is admissible for one-message
forth where each message sent from a terminal at any time ofligtributed source coding ifye > 0, 3 n(e) such that
depends on the information available at the terminal up b th/n > N(e), there exists a one-message distributed source code
time. In [1], Kaspi provided a single-letter characterigat With parametersr(|M)) satisfying ;log, M| < R+ €, and
of the sum-rate-distortion function for any finite number oB[d®(X,X)] < D +e.
messages. Yet, whether more messages can strictly improvéhe set of all admissibleR D) tuples in Definitior(2 is a
the sum-rate-distortion function was left unresolved. He t closed subset ak®. For anyD € R, the minimum value oR

1This material is based upon work supported by the US NatiGuince 2If only one of the sources is required to be losslessly repred at the
Foundation (NSF) under award (CAREER) CCF-0546598 and O2F5389. other terminal then one message idfisient and the minimum sum-rate
Any opinions, findings, and conclusions or recommendat®quessed in this cannot be improved by using more than one message. Howévir,and
material are those of the authors and do not necessarilictréfie views of Y are nonergodic, two-way interactive coding can be stribti§ter than one-
the NSF. way non-interactive codind [2].
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such that R, D) is admissible is the one-message Wyner-Ziv In [6], [7], for a generat € Z*, we established a connection
rate-distortion function [5] and will be denoted IR¢m1(D). between thet-message sum-rate-distortion function and the
The following single-letter characterization 8,m1(D) was (t — 1)-message sum-rate-distortion function using the rate

established in[]5]: reduction functional defined in the next subsection. This
R D) = . L(X: U 21 connection and the properties of the rate reduction funatio
sum1(D) = box.g EIO(UY)I<D (X UIY), (2-1) " allows one to comparBsumz(D) andRsumi (D) without having

. - . to explicitly solve the optimization problem i (2.3).
whereU € U is an auxiliary random variable such that— PHCTY P P )

X-Y is a Markov chain an¢i/| < |X|+1, andg: UxY — X C. Key tool: rate reduction functionals

is a deterministic single-letter decoding function. Generally speaking, fori = 1,2, Raum depends on
(pxv.d,D). As in [6], [7], we fix d and view Rym as a

- ) . _functional of (pxy, D). The sum-rate needed to reproduce only
Definition 3: A two-message distributed source code W'“Ebrminal As source at terminal B with nonzero distortion

parametersr( | My, M) is the tuple €. . g) consisting can only be smaller than the sum-rate needed to losslessly
of encoding functiong” : Y — My, & : X" x Mi— Mz reproduce both sources at both terminals which is equal to
and a decoding functiog® : Y" x My x Mz — X". The H(x|Y) + H(Y|X). The reduction in the rate for lossy source
output of g, denoted byX, is called the reproduction andreproduction in comparison to lossless source reproducto
fori=1,2, (1/n)log, IMil is called thei-th block-coding rate. hoth sources at both terminals is the rate-reduction fanati

Definition 4: A tuple (Ri,Re,D) is admissible for two- gSpecifically, the rate reduction functionals [7] are defired
message distributed source coding¥ié > 0, 3 n(e) such that follows. Fori = 1, 2,

¥n > n(e), there exists a two-message distributed source code
with parametersr( |Mul, M) satisfying log, [Mi| < R +e, pi(Pxy, D) := H(XY) + H(YIX) = Rsumi(pxy, D). (2.4)

for i = 1,2, andE[d™(X,X)] < D +e. Since Rymi > Rsmz and p1 < po always hold,
The rate-distortion region, denoted 8, is defined as the Rsum1(Pxvs D) > Rsumz(Pxy. D) if, and only if, p1(pxy. D) <
set of all admissibleRy, Ry, D) tuples and is a closed subsebz(pxy, D), i.e., if, and only if,p1(pxy, D) # p2(Pxy, D). The
of R®. For anyD € R, the minimum value of Ry + Ry) such following key lemma provides a means for testing whether or
that Ry, Ry, D) € RO is the two-message sum-rate-distortiofot p, = p, without ever having to evaluate or work with,
function and will be denoted bfRsum2(D). The following je. without explicitly constructing auxiliary variatse/y, Vo
single-letter characterization &0 was established in[1]:  and the decoding functiog in Z3).
_ Lemma 1:The following two conditions are equivalent: (1)
RD= { (RuReD) 13 P Puaxys, 6, St For all pxy and D, pa(pxv. D) = pa(pxv, D). (2) For al pyy,

B. Two-message sum-rate-distortion function

Ry > 1(Y; ValX), p1(pxyv Py, D) is concave with respect tqy, D).
R > 1(X; V2lY, Vy), In simple terms,p; = p» if, and only if, p; is concave
E[d(X, g(V1, V2, Y))] < D }, (2.2) underY-marginal and distortion perturbations. The proof of

Lemmal[l is along the lines of the proof of part (i) of

whereVy € V1 andV; € 7V, are auxiliary random variables Theorem 2 in[[7] and is omitted. In fact, it can be proved that
with bounded alphabeffssuch that the Markov chaing: — it for some't e Z*, the t-message rate-reduction functional

Y —XandV; - (X, V1) =Y hold, andg : V1 x V2 xY — X s identically equal to thet(+ 1)-message rate reduction
is a deterministic single-letter decoding function. Fr@®, functional, i.e.,or = pr1, thenpr = pw, the infinite-message

it follows that rate-reduction functional. As discussed in [7, Remark 6],
Reum2(D) = min - {1(Y;VaX) + 10 ValY, Va)). Lemmad_l does not hold if aI_I the _rate redu_ctlon functionaés ar
PV Y- Pygixvy -8 replaced by the sum-rate-distortion functionals. Theetbe

FACv V2 <D (2.3) rate reduction functional is the key to the connection betwe

Since a one-message code is a special case of a two-mes§agBe-message distributed source coding scheme and a two-
code with |My| = 1, the inequalityRsum2(D) < Rsumi(D) MeESsage distributed source coding scheme.
holds for allD € R. Even though the single-letter character- The remainder of this paper is organized as follows. In The-
izations 0f Reum1(D) and Reumz(D) are known, it has proved OremLl, we will use Lemmal 1 to show that there exigt, d,
difficult to demonstrate the existence jpfy, d, andD such andD for which Rsumi(pxy, D) > Rsumz(pxv, D). We will do
that Reumz(D) < Reum1(D). In the distributed source codingthis by (i) choosingpxy so thatX andY are symmetrically
literature, to the best of our knowledge, there is neither &rrelated binary random variables Wity # X) = p, (i)
explicit example which shows th&®sum2(D) < Reymi(D) nor taklng_d(x, X) to be the blnary.erasure _d|stort|on function, (i)
an implicit proof that such an example must exist nor a prog¢lecting a value foD, and (iv) showing thap:(pxypy, D)
that there is no such example. In this paper we will construét not concave with respect toy. By Lemmall, this would

an explicit example for whictRsumz2(D) < Rsuma(D). imply that pa(pxv, D) # pa(pxy, D) which, in turn, would
|mp|y that Rsuml(pXY, D) > RsumZ(pXY, D). In Theoren 2 we

3Bounds for the cardinalities o¥; andV> can be found in[]1]. will show that for certain values of parametgrsand D, the



two-message sum-rate can be split in such a way that tmex,,, (H(X|Y, U) + H(Y|X)), where = {0,e, 1} and
ratio Ry/R; is arbitrarily small and simultaneously the ratio

Rsum1/(R1 + Rp) is arbitrarily large. This will be proved by e, !; X: O,u : ©
explicitly constructing auxiliary variableg;, V, and decoding 1= ace, hx= 0O,u=0,
function g in @3). While the explicit construction o1, Vs Puix(ul) = Zle’ '; Xi i u B i’ (3.7)
andg in the proof of Theorerhl2 may make the implicit proof O_ @ler Iot:e_rwi,slé_ ’

of Theoren{ll seem redundant, it is unclear how the explicit
construction can be generalized to other families of souredere age, a1e € [0,1] satisfy E[d(X,U)] = px(0)age +
distributions and distortion functions. The approachdakd px(1)aie < D.

in the proof of Theoreni]l, on the other hand, provides anThe expression forp; further simplifies to the one in
efficient method tdestwhether the best two-message schenf&opositio R by usingyx given by [37) in [35).

can strictly outperform the best one-message schemm dog Proposition 2: If X = Y = {0, 1}, supppxy) = {0,1}?, d is
general distributed source coding and function computatiothhe binary erasure distortion, ar2ie R, then

problems. The implicit proof naturally points to an exgdlici

construction and was, in fact, the path taken by the auttoors t pu(Pxv. D) = am,meg[)é,u; VP, ce, @e), (3.8)

arrive at the explicit construction. 9(Pxv.0e.016)<D
where
I1l. M AIN RESULTS

. . . . . Y (Pxy, @oe, @1
Theorem 1:There exists a distortion functiod, a joint (P e @1e)

distribution pxy, and a distortion levelD for which = (Poooe + P1oaie)h (pp*(;e)
Rsuml(pXY, D) > RsumZ(pXY, D)- 00ct0e 1001
Proof: In the light of the discussion in Secti¢n1I-C, to +(Po1aoe + pnale)h( Po1coe )
prove Theorenill, it is gficient to show there exigbyy, d, Poicoe + Pr11e
andD for which p1(pxjypy, D) is not concave with respect to Poo P11
py. In particular, it is sHficient to show that there exigiy1 +(Poo + Pou)h Poo + Po1 + (Pt Puo)h P11+ P10/’

and py2 such that B(Pxy, @oe @1e) = Px(0)age + Px(1)aze, and h is the binary

Py1 + Pv2 p1 (PxivPy.1. D) + p1 (PxiyPy2. D) entropy functionh(6) := —6log, 6 — 0log, 0,0 € [0, 1].

Pl(pxw 2 ,D)< 2 : Finally, for a DSBS with parametep and the binary
_ (3.5) erasure distortionp; reduces to the compact expression in

Let X =Y ={0,1}, andX = {0,1,¢}. Let d be the binary Propositior[B.

erasure distortion function, i.ed,: {0, 1} x {0, e, 1} — {0, 1, oo} Proposition 3: If d is the binary erasure distortiom)

and fori = 0,1, d(i,i) = 0, d(i,1 - i) = oo, andd(i,€) = 1. [0, 1], and pxy is the joint pmf of a DSBS with parametex

Let pya(1) = 1 - pya(0) = pv2(0) = 1 - py2(1) = g, i.e., then

pv1 = Bernoullig) and py, = Bernoulli@E Let pxy be o1(pxy, D) = (1 + D)h(p). (3.9

the conditional pmf of the binary symmetric channel with ) . . . .
crossover probabilityp, i.e., pxv(L0) = pxv(Oll) = p. Let ® Right-side of[(315)Solving the rate reduction functionals in

Py = (Py1 + Pv2)/2 which is Bernoulli(12). The joint the right-side of[(315) requirgs ;olvjng the maximizationlp
distribution pxy = pypxv is the joint pmf of a pair of doubly €™M (3.8) for asymmetric distributionsxyypy1 and pxy 2.
symmetric binary sources (DSBS) with paramegice.., if px Exactly solving this problem is cumbersome but it is easy to
denotespxy(x, y), then poo = p11 = p/2 and po1 = pro = p/zy provide a lower bound for the maximum as follows.

For these cr’mi(':es obxy, Pvi Prz Py, and d, we Wi||. Proposition 4: If d is the binary erasure distortiomy; is
analyze the left and right sides ¢F{B.5) step by step throu&r?mou”i(Q),_DY,z is Bernoulli@@), and pxy is the conditional -
a sequence of definitions and propositions and establish 8! ©f the binary symmetric channel with crossover probabil

strict inequality for a suitable choice @. The proofs of all 'Y P. then the inequality

the propositions are given in Sectipnl IV. P1(Pxy Py, D) + p1(PxjyPv2, D)
o Left-side of [3b)From [Z2.1) and[{Z]4) we have 2 = C(p.G ace, 1) (3.10)
holds forD = , 0, 2oe, 1), Where
PP D)= max H(XY.U)+ H(YPO). (36) 7(P. & ave. 1)
e DA C(p.q, @oe, ¥1e) = Y(PxyPy1, @oe, X1e)s
For the binary erasure distortion and a full support joinirse Qoo - Qoo ).
pmf taking values in binary alphabetg, {3.6) simplifies te th (P G e, 10 _ -¢(pxwpv,1, 0e- 21¢)
expression given in Propositi@h 1. Remark 1:The rate-distortion tupleH(X|Y) + H(YIX) —
Proposition 1:If X = ¥ = {0,1}, supppxy) = {0.1)2, C(P.d:a0e 1).7(p. 0. ace, 1)) is admissible for one-message
d is the binary erasure distortion, arl € R, thenp, = source coding for joint source distributiopxypya: and cor-

responds to choosingyx given by [3.T) witha;e = 1 and the
4For anya € [0,1], a:= 1 - a. For the erasure symbel &:=e. decoding functiorg(u, y) = u. Since this choice opyxx andg



may be suboptimalC(p, g, age, 1) is only a lower bound for the stronger constraints in Propositibh 1 with an objective

the rate reduction functional. function that is not less than the original one as follows.

e Comparing left and right sides of (3.5 he left-side of  Without loss of generality, we assume supp) = U. For

(3.3) and the lower bound of the right-side 6f{3.5) can be= 0,1, let % := {ue U : pxu(ilu) = 1}. Let Ue :={ue U :

compared as follows. pxju (Lu) € (0, 1)}. Then{U1, Uo, U} forms a partition ofif.
Proposition 5: Let d be the binary erasure distortiopy For eachu € Ue, sincepxyu(x,ylu) > 0 for all (x,y) € {0, 1}?,

be Bernoulli(¥2), and pxy be the binary symmetric channelit follows thatg(u,y = 0) = g(u,y = 1) = e must hold, because

with parametep. For allq € (0,1/2) and allag € (0, 1), there otherwiseE(d(X, g(U, Y))) = «. But for everyu € U;, i = 0,1,

exists p € (0,1) such that the strict inequaligy:(pxy, D) < 9(u,y) may equal or e but not (1-i) to get a finite distortion.

C(p, 9, e, 1) holds forD = n(p, 9, @oe, 1). When we replacg by
Since the left-side of(315) is strictly less than a lower hdu T .
) . o . . « i, ifueti=01,
of the right-side of[(315), the strict inequalify (8.5) hs)avhich g'(uy) = e if ue U
completes the proof of Theorenh 1. . . . o
Theorem[® quantifies the multiplicative reduction in th&€ distortion foru € i = 0,1, is reduced to zero, and

sum-rate that is possible with two messages. the distortion foru € U remains unchanged. Therefore we
Theorem 2:If d is the binary erasure distortion anmky h?ve E((X.g'(U.Y))) < E(d(X.9(U,Y)) < ? Nc:te that
the joint pmf of a DSBS with parametg;, then for allL > 0 9'(U.Y) is completely determined by. Let U" := g*(U,Y).

there exists an admissible two-message rate-distortipe tu1hen U = i iff U e Z4,i = {0,1, e}.*The objective
(Rl, RZ, D) such thaRsuml(pXY, D)/(R1+R2) > L ande/Rz < function H(X|Y, U) + H(Y|X) = H(X|Y, U, U ) + H(Y|X) <
1/L. H(XY, U*) + H(Y|X), which completes the proof. |

Proof: We will explicitly constructpy,y, pv,xv,, andg »
in (Z2) which lead to an admissible tupl&(R,, D). Let Froof of PropositioriB: _ _
pv,y be the conditional pmf of the binary symmetric channel For a fixedpxy, H(XY,U) + H(le_) IS concave ‘_N'th respect
with crossover probability. Let the conditional distribution to pxyu and therefore alsguyx. Since puix is linear with

Puxv, (V2% v1) have the form described in Table | and lef®SPect t© doe, @1¢), Y(Pxv @e, 21¢) = H(XIY, U) + H(YIX) is
g(Vi, V2, Y) = Vo. concave with respect tarfe, a1e).

TABLE | The maximum in[(3]8) can be achieved along the axis of
CONDITIONAL DISTRIBUTION Py,/x\; symmetry given bywie = age because (i) and ¢ are both
PV,IXV, V=0 va=€ | \a=1 symmetric with respect tage andaie, i.€., Y (Pxy, @oe, ¥1e) =
x=0v=0] 1-a @ 0 Y(Pxy, @1e, @0e) ANAG(Pxy, @oe, A1) = P(Pxy, A1e, oe), @Nd (ii)
X (1)’ xi 2(1) 8 i 8 w(Pxys e, 1) iS @ concave function ofe, a10). WhenD e
X=Tv, =1 0 p” T-a [0, 1], p1 can be further simplified as follows.
The corresponding rate-distortion tuple can be shown to pi(pxy.D)=  max ]l//(va, e, @1e) = (1 + D)h(p),

@0e=1¢€[0,D

satisfy the following property.

Proposition 6: Let d be the binary erasure distortion an
let pxy be the joint pmf of a DSBS with parametgr For
Pv,vs Pv,xv,, @andg as described above, and klb> 0, there ex-

d/vhich completes the proof. [ |

Proof of Propositiod ¥or the joint pmfpxyy py1 summarized

. . . TABLE II
ist parameterg, g, @ such that the two-message rate-distortion JOINT DISTRIBUTION Py Py
tuple Ry, Rz, D) given byR; = I(Y; V1|X), Rz = 1(X; V2|Y, V1), Py [ Y=0 ] y=1
D = E[d(X, V)] satisfiesRsum1(pxv. D)/(R1 + Rz) > L and x=0 P pq
Ri/Rx < 1/L. x=1 ] Pq
This completes the proof of Theordrh 2. B in Table[dl, functionsy andzn simplify even further to special

The conditional pmfspy,y and py,xv, in the proof of functions of @, q, @ee, @1¢) as follows:
Theoreni2 are related to the conditional ppgfx in the proof
of TheorenTlL as follows. Givel; = 0, the conditional dis- _
tribution pxywv, (X, Y, V2[0) = py1(y) Pxiv(Xly) puix (v2IX), where = q(Page + pale)h(_&)
pux is given by [BY) withage = @ and aze = 1. Given Paoe + Paie

C(p., 0, aves 1) = ¥(PxivPY.1, @0e; A1e)

Vi = 1, the conditional distributionpxywy, (XY, V2l1l) = — Paoe
P2()Prcr (49 Pu (V2. where puy is given by [ZJ) with wapre o 2%
ae = a and age = 1. Conditioning onVy, in effect, _ %)
decomposes the two-message problem into two one-message +(pq + pq)h(m+ pq)
problems that were analyzed in the proof of Theofém 1. A

IV. Proors +(pa+ p@h(ﬁq+ pﬁ) ’ (4.11)
Proof of Propositio IL:.Given a generapyx andg satisfying n(P, d, @oe, @1e) = H(PxvPy.1, @oe, A1e)

the original constraint i (316), we will construdt* satisfying = (pg+ pQ)age + (Pg+ po)aie.



Observe that C(p, g, ae, 1) C(p, 0, @1e, age), and
n(p, 0, @oe, @1¢) = (P, G, @16, 2ge) hold. Therefore we have

max
oe,¥1€[0,1]:
7(p.0.a0e.1e)<D
max
a0e.1e€[0,1]:
7(P. 0, @'1e,@0e)<D

p1(Pxy Py1, D).

p1(PxivPv2, D) C(p. G, @oe, @1¢)

C(p, qv e, Q'Oe)

It follows that

p1(PxyPy1, D) + p1(PxiyPy.2, D)
2

p1(PxiyPy1, D)
C(p, g, aoe, 1)

\%

holds forD = n(p, 9, e, 1). [ |
Proof of Propositior b:

Since D n(p, g, ace, 1) € [0,1] always holds, we
have p1(pxy, D) (1 + D)h(p) due to [39). We will
show that for any fixedq € (0,1/2) and age € (0,1),
limpoC(p, 0, @oe, 1)/N(p) > limp,o(1 + D) holds, which
implies thatdp € (0, 1) such thatC(p, g, age, 1)/h(p) > (1+D),

which, in turn, implies Propositiofll 5. It is convenient toeusSuch thatRi/R; < 1/L and Rsum1/(Ry + Rp) > L.

the following lemma to analyze the limits.
Lemma 2:Let f(p) be a function dierentiable aroung =
0 such thatf(0) = 0 and f’(0) > 0. Then

h(t(p)
0 ~hep)

- (0)

Proof: Applying the I'Hépital rule several times, we hav

h(f(p)) In(1-f(p) -Inf(p),
pTO h(p) Inl-p)-Inp )
In f(p) £(0)
np

. p ’ 2
lim, @(f )

f'(0),

p~>0

p~>0 |

which completes the proof of Lemnha 2.
Applying Lemma2, we have

- C(p.gaoe,l)
T N

Iimo(l +D) =2-q(1 - ace),
p~>

(4.12)

(4.13)

C(p, g, age, 1)
h(p)

Therefore for anyage € (0,1) andq € (0,1/2), there exists
a small enoughp such thatC(p, g, age, 1) > (1 + D) holds,
which completes the proof. [ |

lim

s D)) ~ (1- 20)(1 aco)
p—0

Proof of Propositior[b:

For the rate-distortion tupleR{, R, D) corresponding to
the choice ofpy,y, pv,xv, andg described in the proof of
TheorenT®2, we have (iR = 1(Y; V1|X) = H(Y|X) — Cx(p, q),

where Cy(p, q) is the sum of the last two terms i _(4111);

ebeneﬁt

(i) Rz = 1(X; V)Y, V1) = 2h(p) — C(p,q, a,1) — Ry; and (iii)
D =n(p,q,a,1). It follows that
Ry

lim — = 0,
p—0 h(p)
. Rz . C(p, g, a, 1) . R]_
Iim — = 2—-Ilim —————— - lim —— =q(1 - a).
BR(E) T 2P h(p)  seh(p AT
Therefore for allg > 0 anda € (0, 1), we have
R
IpanoE2 =0. (4.14)

For the one-message rate-distortion function, we have
Rsum1(Pxy D) = 2h(p) —p1(pxy. D), wherepi(pxy, D) is given
by (3:9). Therefore we have

lim M:Z — lim
p—0 h(p) p—0

which implies that

p1(pxv,D)
h(D) ql-a),
Rsum1(Pxy. D) _ 9_
R+ Ry - q
For anyL > 0, we can always find a small enough- 0 such
thatg/q > L + 1. Due to [4.1¥) and (4.15), there exigis- O
|
Remark 2:The convergence of the limit analyzed in
Lemmal[2 is actually slow, because the logarithm function
increases to infinity slowly. The consequence is that if one
chooses a smalj to get Rsym1/(R1 + Rp) close to the limit
g/q, then p needs to be very small. For example, when

lim

lim) (4.15)

q = 1/10, e = 1/2, q/q = 9, with p = 1072%, we get
Rsum1/R¢ymz ~ 8.16. This, however, does not mean that the

of multiple messages only occurs in extreme cases. In
numerical computations we have observed that for the ezasur
distortion, the gain for certain asymmetric sources can betm
more than that for the DSBS example analyzed in this paper.
The DSBS example was chosen in this paper only because it
is easy to analyze.
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