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Abstract—In 1985 Kaspi provided a single-letter characteriza-
tion of the sum-rate-distortion function for a two-way lossy source
coding problem in which two terminals send multiple messages
back and forth with the goal of reproducing each other’s sources.
Yet, the question remained whether more messages can strictly
improve the sum-rate-distortion function. Viewing the sum-rate
as a functional of the distortions and the joint source distribution
and leveraging its convex-geometric properties, we construct an
example which shows that two messages can strictly improve the
one-message (Wyner-Ziv) rate-distortion function. The example
also shows that the ratio of the one-message rate to the two-
message sum-rate can be arbitrarily large and simultaneously
the ratio of the backward rate to the forward rate in the two-
message sum-rate can be arbitrarily small.

I. Introduction

Consider the following two-way lossy source coding prob-
lem studied in [1]. Let (X(1),Y(1)), . . . , (X(n),Y(n)) be n iid
samples of a two-component discrete memoryless stationary
source with joint pmfpXY(x, y), (x, y) ∈ X × Y, |X × Y| < ∞.
Terminal A observesX := (X(1), . . . ,X(n)) and terminal B
observesY := (Y(1), . . . ,Y(n)). Terminal B is required to
producêX := (X̂(1), . . . , X̂(n)) ∈ X̂n, whereX̂ is a reproduction
alphabet with |X̂| < ∞, such that the expected distortion
E[d(n)(X, X̂)] does not exceed a desired level, where

d(n)(x, x̂) :=
1
n

n∑

i=1

d(x(i), x̂(i)),

and d : X × X̂ → R
+
⋃
{∞} is a per-sample (single-

letter) distortion function. Terminal A is likewise required
to reproduce the source observed at terminal B within some
distortion level with respect to another (possibly different)
distortion function. To achieve this objective, the terminals
are allowed to send a certain number of messages back and
forth where each message sent from a terminal at any time only
depends on the information available at the terminal up to that
time. In [1], Kaspi provided a single-letter characterization
of the sum-rate-distortion function for any finite number of
messages. Yet, whether more messages can strictly improve
the sum-rate-distortion function was left unresolved. If the

1This material is based upon work supported by the US NationalScience
Foundation (NSF) under award (CAREER) CCF–0546598 and CCF–0915389.
Any opinions, findings, and conclusions or recommendationsexpressed in this
material are those of the authors and do not necessarily reflect the views of
the NSF.

goal is to reproduce both sourceslosslesslyat each terminal
(zero distortion) then there is no advantage in using multiple
messages; two messages are sufficient and the minimum sum-
rate cannot be reduced by using more than two messages.2 If,
however, the goal is changed to losslesslycompute functionsof
sources at each terminal, then multiple messages can decrease
the minimum sum-rate by an arbitrarily large factor [3],
[4]. Therefore, the key unresolved question pertains tolossy
source reproduction: can multiple messages strictly decrease
the minimum sum-rate for a given (nonzero) distortion? This
question is unresolved even when only one source needs to be
reproduced with nonzero distortion.

In this paper, we construct the first example which shows
that two messages can strictly improve the one-message
(Wyner-Ziv) rate-distortion function. The example also shows
that the ratio of the one-message rate to the two-message sum-
rate can be arbitrarily large and simultaneously the ratio of the
backward rate to the forward rate in the two-message sum-
rate can be arbitrarily small. The key idea which enables the
construction of this example is that the sum-rate is afunctional
of the distortion and the joint source distribution which has
certain convex-geometric properties.

II. Problem setup and related prior results

A. One-message Wyner-Ziv rate-distortion function

Definition 1: A one-message distributed source code with
parameters (n, |M|) is the tuple (e(n), g(n)) consisting of an
encoding functione(n) : Xn → M and a decoding function
g(n) : Yn × M → X̂n. The output ofg(n), denoted bŷX, is
called the reproduction and (1/n) log2 |M| is called the block-
coding rate (in bits per sample).

Definition 2: A tuple (R,D) is admissible for one-message
distributed source coding if,∀ǫ > 0, ∃ n̄(ǫ) such that
∀n > n̄(ǫ), there exists a one-message distributed source code
with parameters (n, |M|) satisfying 1

n log2 |M| ≤ R + ǫ, and
E[d(n)(X, X̂)] ≤ D + ǫ.

The set of all admissible (R,D) tuples in Definition 2 is a
closed subset ofR2. For anyD ∈ R, the minimum value ofR

2If only one of the sources is required to be losslessly reproduced at the
other terminal then one message is sufficient and the minimum sum-rate
cannot be improved by using more than one message. However, if X and
Y are nonergodic, two-way interactive coding can be strictlybetter than one-
way non-interactive coding [2].
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such that (R,D) is admissible is the one-message Wyner-Ziv
rate-distortion function [5] and will be denoted byRsum,1(D).
The following single-letter characterization ofRsum,1(D) was
established in [5]:

Rsum,1(D) = min
pU|X ,g: E[d(X,g(U,Y))]≤D

I (X; U |Y), (2.1)

whereU ∈ U is an auxiliary random variable such thatU −
X−Y is a Markov chain and|U| ≤ |X|+1, andg : U×Y → X̂
is a deterministic single-letter decoding function.

B. Two-message sum-rate-distortion function

Definition 3: A two-message distributed source code with
parameters (n, |M1|, |M2|) is the tuple (e(n)

1 , e(n)
2 , g(n)) consisting

of encoding functionse(n)
1 : Yn →M1, e(n)

2 : Xn ×M1 →M2

and a decoding functiong(n) : Yn × M1 × M2 → X̂
n. The

output of g(n), denoted bŷX, is called the reproduction and
for i = 1, 2, (1/n) log2 |Mi | is called thei-th block-coding rate.

Definition 4: A tuple (R1,R2,D) is admissible for two-
message distributed source coding if,∀ǫ > 0, ∃ n̄(ǫ) such that
∀n > n̄(ǫ), there exists a two-message distributed source code
with parameters (n, |M1|, |M2|) satisfying 1

n log2 |Mi | ≤ Ri + ǫ,

for i = 1, 2, andE[d(n)(X, X̂)] ≤ D + ǫ.
The rate-distortion region, denoted byRD, is defined as the

set of all admissible (R1,R2,D) tuples and is a closed subset
of R3. For anyD ∈ R, the minimum value of (R1 + R2) such
that (R1,R2,D) ∈ RD is the two-message sum-rate-distortion
function and will be denoted byRsum,2(D). The following
single-letter characterization ofRD was established in [1]:

RD = { (R1,R2,D) | ∃ pV1|Y, pV2|XV1, g, s.t.

R1 ≥ I (Y; V1|X),

R2 ≥ I (X; V2|Y,V1),

E[d(X, g(V1,V2,Y))] ≤ D }, (2.2)

whereV1 ∈ V1 and V2 ∈ V2 are auxiliary random variables
with bounded alphabets,3 such that the Markov chainsV1 −

Y − X and V2 − (X,V1) − Y hold, andg : V1 × V2 × Y → X̂

is a deterministic single-letter decoding function. From (2.2),
it follows that

Rsum,2(D) = min
pV1 |Y,pV2|XV1 ,g:

E[d(X,g(V1,V2,Y))]≤D

{I (Y; V1|X) + I (X; V2|Y,V1)}.

(2.3)
Since a one-message code is a special case of a two-message

code with |M1| = 1, the inequalityRsum,2(D) ≤ Rsum,1(D)
holds for all D ∈ R. Even though the single-letter character-
izations ofRsum,1(D) and Rsum,2(D) are known, it has proved
difficult to demonstrate the existence ofpXY, d, and D such
that Rsum,2(D) < Rsum,1(D). In the distributed source coding
literature, to the best of our knowledge, there is neither an
explicit example which shows thatRsum,2(D) < Rsum,1(D) nor
an implicit proof that such an example must exist nor a proof
that there is no such example. In this paper we will construct
an explicit example for whichRsum,2(D) < Rsum,1(D).

3Bounds for the cardinalities ofV1 andV2 can be found in [1].

In [6], [7], for a generalt ∈ Z+, we established a connection
between thet-message sum-rate-distortion function and the
(t − 1)-message sum-rate-distortion function using the rate
reduction functional defined in the next subsection. This
connection and the properties of the rate reduction functional
allows one to compareRsum,2(D) andRsum,1(D) without having
to explicitly solve the optimization problem in (2.3).

C. Key tool: rate reduction functionals

Generally speaking, fori = 1, 2, Rsum,i depends on
(pXY, d,D). As in [6], [7], we fix d and view Rsum,i as a
functional of (pXY,D). The sum-rate needed to reproduce only
terminal A’s source at terminal B with nonzero distortion
can only be smaller than the sum-rate needed to losslessly
reproduce both sources at both terminals which is equal to
H(X|Y) + H(Y|X). The reduction in the rate for lossy source
reproduction in comparison to lossless source reproduction of
both sources at both terminals is the rate-reduction functional.
Specifically, the rate reduction functionals [7] are definedas
follows. For i = 1, 2,

ρi(pXY,D) := H(X|Y) + H(Y|X) − Rsum,i(pXY,D). (2.4)

Since Rsum,1 ≥ Rsum,2 and ρ1 ≤ ρ2 always hold,
Rsum,1(pXY,D) > Rsum,2(pXY,D) if, and only if, ρ1(pXY,D) <
ρ2(pXY,D), i.e., if, and only if,ρ1(pXY,D) , ρ2(pXY,D). The
following key lemma provides a means for testing whether or
not ρ1 = ρ2 without ever having to evaluate or work withρ2,
i.e., without explicitly constructing auxiliary variables V1,V2

and the decoding functiong in (2.3).
Lemma 1:The following two conditions are equivalent: (1)

For all pXY and D, ρ1(pXY,D) = ρ2(pXY,D). (2) For all pX|Y,
ρ1(pX|YpY,D) is concave with respect to (pY,D).

In simple terms,ρ1 = ρ2 if, and only if, ρ1 is concave
underY-marginal and distortion perturbations. The proof of
Lemma 1 is along the lines of the proof of part (i) of
Theorem 2 in [7] and is omitted. In fact, it can be proved that
if for some t ∈ Z+, the t-message rate-reduction functional
is identically equal to the (t + 1)-message rate reduction
functional, i.e.,ρt = ρt+1, thenρt = ρ∞, the infinite-message
rate-reduction functional. As discussed in [7, Remark 6],
Lemma 1 does not hold if all the rate reduction functionals are
replaced by the sum-rate-distortion functionals. Therefore the
rate reduction functional is the key to the connection between
a one-message distributed source coding scheme and a two-
message distributed source coding scheme.

The remainder of this paper is organized as follows. In The-
orem 1, we will use Lemma 1 to show that there existpXY, d,
and D for which Rsum,1(pXY,D) > Rsum,2(pXY,D). We will do
this by (i) choosingpX|Y so thatX and Y are symmetrically
correlated binary random variables withP(Y , X) = p, (ii)
takingd(x, x̂) to be the binary erasure distortion function, (iii)
selecting a value forD, and (iv) showing thatρ1(pX|YpY,D)
is not concave with respect topY. By Lemma 1, this would
imply that ρ1(pXY,D) , ρ2(pXY,D) which, in turn, would
imply that Rsum,1(pXY,D) > Rsum,2(pXY,D). In Theorem 2 we
will show that for certain values of parametersp and D, the



two-message sum-rate can be split in such a way that the
ratio R1/R2 is arbitrarily small and simultaneously the ratio
Rsum,1/(R1 + R2) is arbitrarily large. This will be proved by
explicitly constructing auxiliary variablesV1,V2 and decoding
function g in (2.3). While the explicit construction ofV1,V2

andg in the proof of Theorem 2 may make the implicit proof
of Theorem 1 seem redundant, it is unclear how the explicit
construction can be generalized to other families of source
distributions and distortion functions. The approach followed
in the proof of Theorem 1, on the other hand, provides an
efficient method totestwhether the best two-message scheme
can strictly outperform the best one-message scheme formore
general distributed source coding and function computation
problems. The implicit proof naturally points to an explicit
construction and was, in fact, the path taken by the authors to
arrive at the explicit construction.

III. M ain results

Theorem 1:There exists a distortion functiond, a joint
distribution pXY, and a distortion level D for which
Rsum,1(pXY,D) > Rsum,2(pXY,D).

Proof: In the light of the discussion in Section II-C, to
prove Theorem 1, it is sufficient to show there existpX|Y, d,
andD for which ρ1(pX|YpY,D) is not concave with respect to
pY. In particular, it is sufficient to show that there existpY,1

and pY,2 such that

ρ1

(
pX|Y

pY,1 + pY,2

2
,D

)
<
ρ1

(
pX|YpY,1,D

)
+ ρ1

(
pX|YpY,2,D

)

2
.

(3.5)
Let X = Y = {0, 1}, and X̂ = {0, 1, e}. Let d be the binary
erasure distortion function, i.e.,d : {0, 1} × {0, e, 1} → {0, 1,∞}
and for i = 0, 1, d(i, i) = 0, d(i, 1 − i) = ∞, and d(i, e) = 1.
Let pY,1(1) = 1 − pY,1(0) = pY,2(0) = 1 − pY,2(1) = q, i.e.,
pY,1 = Bernoulli(q) and pY,2 = Bernoulli(q̄).4 Let pX|Y be
the conditional pmf of the binary symmetric channel with
crossover probabilityp, i.e., pX|Y(1|0) = pX|Y(0|1) = p. Let
pY := (pY,1 + pY,2)/2 which is Bernoulli(1/2). The joint
distribution pXY = pYpX|Y is the joint pmf of a pair of doubly
symmetric binary sources (DSBS) with parameterp, i.e., if pxy

denotespXY(x, y), then p00 = p11 = p̄/2 andp01 = p10 = p/2.
For these choices ofpX|Y, pY,1, pY,2, pY, and d, we will
analyze the left and right sides of (3.5) step by step through
a sequence of definitions and propositions and establish the
strict inequality for a suitable choice ofD. The proofs of all
the propositions are given in Section IV.
• Left-side of (3.5):From (2.1) and (2.4) we have

ρ1(pXY,D) = max
pU|X ,g: E[d(X,g(U,Y))]≤D

{H(X|Y,U) + H(Y|X)}. (3.6)

For the binary erasure distortion and a full support joint source
pmf taking values in binary alphabets, (3.6) simplifies to the
expression given in Proposition 1.

Proposition 1: If X = Y = {0, 1}, supp(pXY) = {0, 1}2,
d is the binary erasure distortion, andD ∈ R, then ρ1 =

4For anya ∈ [0, 1], ā := 1− a. For the erasure symbole, ē := e.

maxpU|X (H(X|Y,U)+ H(Y|X)), whereU = {0, e, 1} and

pU|X(u|x) =



α0e, if x = 0, u = e,
1− α0e, if x = 0, u = 0,
α1e, if x = 1, u = e,
1− α1e, if x = 1, u = 1,
0, otherwise,

(3.7)

where α0e, α1e ∈ [0, 1] satisfy E[d(X,U)] = pX(0)α0e +

pX(1)α1e ≤ D.
The expression forρ1 further simplifies to the one in

Proposition 2 by usingpU|X given by (3.7) in (3.6).
Proposition 2: If X = Y = {0, 1}, supp(pXY) = {0, 1}2, d is

the binary erasure distortion, andD ∈ R, then

ρ1(pXY,D) = max
α0e,α1e∈[0,1]:

φ(pXY,α0e,α1e)≤D

ψ(pXY, α0e, α1e), (3.8)

where

ψ(pXY, α0e, α1e)

:= (p00α0e+ p10α1e)h

(
p00α0e

p00α0e + p10α1e

)

+(p01α0e + p11α1e)h

(
p01α0e

p01α0e + p11α1e

)

+(p00+ p01)h

(
p00

p00+ p01

)
+ (p11+ p10)h

(
p11

p11+ p10

)
,

φ(pXY, α0e, α1e) := pX(0)α0e + pX(1)α1e, and h is the binary
entropy function:h(θ) := −θ log2 θ − θ̄ log2 θ̄, θ ∈ [0, 1].

Finally, for a DSBS with parameterp and the binary
erasure distortion,ρ1 reduces to the compact expression in
Proposition 3.

Proposition 3: If d is the binary erasure distortion,D ∈
[0, 1], and pXY is the joint pmf of a DSBS with parameterp,
then

ρ1(pXY,D) = (1+ D)h(p). (3.9)

• Right-side of (3.5):Solving the rate reduction functionals in
the right-side of (3.5) requires solving the maximization prob-
lem (3.8) for asymmetric distributionspX|YpY,1 and pX|YpY,2.
Exactly solving this problem is cumbersome but it is easy to
provide a lower bound for the maximum as follows.

Proposition 4: If d is the binary erasure distortion,pY,1 is
Bernoulli(q), pY,2 is Bernoulli(q̄), and pX|Y is the conditional
pmf of the binary symmetric channel with crossover probabil-
ity p, then the inequality

ρ1(pX|YpY,1,D) + ρ1(pX|YpY,2,D)

2
≥ C(p, q, α0e, 1) (3.10)

holds for D = η(p, q, α0e, 1), where

C(p, q, α0e, α1e) := ψ(pX|YpY,1, α0e, α1e),

η(p, q, α0e, α1e) := φ(pX|YpY,1, α0e, α1e).

Remark 1:The rate-distortion tuple (H(X|Y) + H(Y|X) −
C(p, q, α0e, 1), η(p, q, α0e, 1)) is admissible for one-message
source coding for joint source distributionpX|YpY,1 and cor-
responds to choosingpU|X given by (3.7) withα1e = 1 and the
decoding functiong(u, y) = u. Since this choice ofpU|X andg



may be suboptimal,C(p, q, α0e, 1) is only a lower bound for
the rate reduction functional.
• Comparing left and right sides of (3.5):The left-side of
(3.5) and the lower bound of the right-side of (3.5) can be
compared as follows.

Proposition 5: Let d be the binary erasure distortion,pY

be Bernoulli(1/2), andpX|Y be the binary symmetric channel
with parameterp. For allq ∈ (0, 1/2) and allα0e ∈ (0, 1), there
exists p ∈ (0, 1) such that the strict inequalityρ1(pXY,D) <
C(p, q, α0e, 1) holds forD = η(p, q, α0e, 1).

Since the left-side of (3.5) is strictly less than a lower bound
of the right-side of (3.5), the strict inequality (3.5) holds, which
completes the proof of Theorem 1.

Theorem 2 quantifies the multiplicative reduction in the
sum-rate that is possible with two messages.

Theorem 2:If d is the binary erasure distortion andpXY

the joint pmf of a DSBS with parameterp, then for allL > 0
there exists an admissible two-message rate-distortion tuple
(R1,R2,D) such thatRsum,1(pXY,D)/(R1+R2) > L andR1/R2 <

1/L.
Proof: We will explicitly construct pV1|Y, pV2|XV1, and g

in (2.2) which lead to an admissible tuple (R1,R2,D). Let
pV1|Y be the conditional pmf of the binary symmetric channel
with crossover probabilityq. Let the conditional distribution
pV2|XV1(v2|x, v1) have the form described in Table I and let
g(v1, v2, y) := v2.

TABLE I
Conditional distribution pV2|XV1

pV2|XV1 v2 = 0 v2 = e v2 = 1
x = 0, v1 = 0 1− α α 0
x = 1, v1 = 0 0 1 0
x = 0, v1 = 1 0 1 0
x = 1, v1 = 1 0 α 1− α

The corresponding rate-distortion tuple can be shown to
satisfy the following property.

Proposition 6: Let d be the binary erasure distortion and
let pXY be the joint pmf of a DSBS with parameterp. For
pV1|Y, pV2|XV1, andg as described above, and allL > 0, there ex-
ist parametersp, q, α such that the two-message rate-distortion
tuple (R1,R2,D) given byR1 = I (Y; V1|X), R2 = I (X; V2|Y,V1),
D = E[d(X,V2)] satisfiesRsum,1(pXY,D)/(R1 + R2) > L and
R1/R2 < 1/L.

This completes the proof of Theorem 2.
The conditional pmfspV1|Y and pV2|XV1 in the proof of

Theorem 2 are related to the conditional pmfpU|X in the proof
of Theorem 1 as follows. GivenV1 = 0, the conditional dis-
tribution pXYV2|V1(x, y, v2|0) = pY,1(y)pX|Y(x|y)pU|X(v2|x), where
pU|X is given by (3.7) withα0e = α and α1e = 1. Given
V1 = 1, the conditional distributionpXYV2|V1(x, y, v2|1) =
pY,2(y)pX|Y(x|y)pU|X(v2|x), where pU|X is given by (3.7) with
α1e = α and α0e = 1. Conditioning on V1, in effect,
decomposes the two-message problem into two one-message
problems that were analyzed in the proof of Theorem 1.

IV. Proofs

Proof of Proposition 1:Given a generalpU|X andg satisfying
the original constraint in (3.6), we will constructU∗ satisfying

the stronger constraints in Proposition 1 with an objective
function that is not less than the original one as follows.

Without loss of generality, we assume supp(pU) = U. For
i = 0, 1, letUi := {u ∈ U : pX|U(i|u) = 1}. LetUe := {u ∈ U :
pX|U(1|u) ∈ (0, 1)}. Then{U1,U0,Ue} forms a partition ofU.
For eachu ∈ Ue, sincepXY|U(x, y|u) > 0 for all (x, y) ∈ {0, 1}2,
it follows thatg(u, y = 0) = g(u, y = 1) = e must hold, because
otherwiseE(d(X, g(U,Y))) = ∞. But for everyu ∈ Ui , i = 0, 1,
g(u, y) may equali or e but not (1− i) to get a finite distortion.
When we replaceg by

g∗(u, y) =

{
i, if u ∈ Ui , i = 0, 1,
e, if u ∈ Ue,

the distortion foru ∈ Ui , i = 0, 1, is reduced to zero, and
the distortion foru ∈ Ue remains unchanged. Therefore we
have E(d(X, g∗(U,Y))) ≤ E(d(X, g(U,Y))) ≤ D. Note that
g∗(U,Y) is completely determined byU. Let U∗ := g∗(U,Y).
Then U∗ = i iff U ∈ Ui , i = {0, 1, e}. The objective
function H(X|Y,U) + H(Y|X) = H(X|Y,U,U∗) + H(Y|X) ≤
H(X|Y,U∗) + H(Y|X), which completes the proof.

Proof of Proposition 3:
For a fixedpXY, H(X|Y,U)+H(Y|X) is concave with respect

to pXYU and therefore alsopU|X. Since pU|X is linear with
respect to (α0e, α1e), ψ(pXY, α0e, α1e) = H(X|Y,U) + H(Y|X) is
concave with respect to (α0e, α1e).

The maximum in (3.8) can be achieved along the axis of
symmetry given byα1e = α0e because (i)ψ and φ are both
symmetric with respect toα0e andα1e, i.e.,ψ(pXY, α0e, α1e) =
ψ(pXY, α1e, α0e) andφ(pXY, α0e, α1e) = φ(pXY, α1e, α0e), and (ii)
ψ(pXY, α0e, α1e) is a concave function of (α0e, α1e). WhenD ∈
[0, 1], ρ1 can be further simplified as follows.

ρ1(pXY,D) = max
α0e=α1e∈[0,D]

ψ(pXY, α0e, α1e) = (1+ D)h(p),

which completes the proof.

Proof of Proposition 4:For the joint pmfpX|YpY,1 summarized
TABLE II

Joint distribution pX|Y pY,1

pX|Y pY,1 y = 0 y = 1
x = 0 p̄q̄ pq
x = 1 pq̄ p̄q

in Table II, functionsψ andη simplify even further to special
functions of (p, q, α0e, α1e) as follows:

C(p, q, α0e, α1e) = ψ(pX|YpY,1, α0e, α1e)

= q̄(p̄α0e + pα1e)h

(
p̄α0e

p̄α0e+ pα1e

)

+q(pα0e+ p̄α1e)h

(
pα0e

pα0e+ p̄α1e

)

+(p̄q̄+ pq)h

(
p̄q̄

p̄q̄+ pq

)

+(p̄q+ pq̄)h

(
p̄q

p̄q+ pq̄

)
, (4.11)

η(p, q, α0e, α1e) = φ(pX|YpY,1, α0e, α1e)

= (p̄q̄+ pq)α0e+ (p̄q+ pq̄)α1e.



Observe that C(p, q, α0e, α1e) = C(p, q̄, α1e, α0e), and
η(p, q, α0e, α1e) = η(p, q̄, α1e, α0e) hold. Therefore we have

ρ1(pX|YpY,2,D) = max
α0e,α1e∈[0,1]:

η(p,q̄,α0e,α1e)≤D

C(p, q̄, α0e, α1e)

= max
α0e,α1e∈[0,1]:

η(p,q,α1e,α0e)≤D

C(p, q, α1e, α0e)

= ρ1(pX|YpY,1,D).

It follows that

ρ1(pX|YpY,1,D) + ρ1(pX|YpY,2,D)

2
= ρ1(pX|YpY,1,D)

≥ C(p, q, α0e, 1)

holds for D = η(p, q, α0e, 1).
Proof of Proposition 5:

Since D = η(p, q, α0e, 1) ∈ [0, 1] always holds, we
have ρ1(pXY,D) = (1 + D)h(p) due to (3.9). We will
show that for any fixedq ∈ (0, 1/2) and α0e ∈ (0, 1),
limp→0 C(p, q, α0e, 1)/h(p) > limp→0(1 + D) holds, which
implies that∃p ∈ (0, 1) such thatC(p, q, α0e, 1)/h(p) > (1+D),
which, in turn, implies Proposition 5. It is convenient to use
the following lemma to analyze the limits.

Lemma 2:Let f (p) be a function differentiable aroundp =
0 such thatf (0) = 0 and f ′(0) > 0. Then

lim
p→0

h( f (p))
h(p)

= f ′(0)

Proof: Applying the l’Hôpital rule several times, we have

lim
p→0

h( f (p))
h(p)

= lim
p→0

ln(1− f (p)) − ln f (p)
ln(1− p) − ln p

f ′(0)

= lim
p→0

ln f (p)
ln p

f ′(0)

= lim
p→0

p
f (p)

( f ′(0))2

= f ′(0),

which completes the proof of Lemma 2.
Applying Lemma 2, we have

lim
p→0

C(p, q, α0e, 1)
h(p)

= 2− q(1− α0e), (4.12)

lim
p→0

(1+ D) = 2− q̄(1− α0e), (4.13)

lim
p→0

(
C(p, q, α0e, 1)

h(p)
− (1+ D)

)
= (1− 2q)(1− α0e).

Therefore for anyα0e ∈ (0, 1) and q ∈ (0, 1/2), there exists
a small enoughp such thatC(p, q, α0e, 1) > (1 + D) holds,
which completes the proof.

Proof of Proposition 6:
For the rate-distortion tuple (R1,R2,D) corresponding to

the choice ofpV1|Y, pV2|XV1 and g described in the proof of
Theorem 2, we have (i)R1 = I (Y; V1|X) = H(Y|X) −C2(p, q),
where C2(p, q) is the sum of the last two terms in (4.11);

(ii) R2 = I (X; V2|Y,V1) = 2h(p) − C(p, q, α, 1)− R1; and (iii)
D = η(p, q, α, 1). It follows that

lim
p→0

R1

h(p)
= 0,

lim
p→0

R2

h(p)
= 2− lim

p→0

C(p, q, α, 1)
h(p)

− lim
p→0

R1

h(p)
= q(1− α).

Therefore for allq > 0 andα ∈ (0, 1), we have

lim
p→0

R1

R2
= 0. (4.14)

For the one-message rate-distortion function, we have
Rsum,1(pXY,D) = 2h(p)−ρ1(pXY,D), whereρ1(pXY,D) is given
by (3.9). Therefore we have

lim
p→0

Rsum,1(pXY,D)
h(p)

=2− lim
p→0

ρ1(pXY,D)
h(p)

=q̄(1− α),

which implies that

lim
p→0

Rsum,1(pXY,D)
R1 + R2

=
q̄
q
. (4.15)

For anyL > 0, we can always find a small enoughq > 0 such
that q̄/q > L + 1. Due to (4.14) and (4.15), there existsp > 0
such thatR1/R2 < 1/L andRsum,1/(R1 + R2) > L.

Remark 2:The convergence of the limit analyzed in
Lemma 2 is actually slow, because the logarithm function
increases to infinity slowly. The consequence is that if one
chooses a smallq to get Rsum,1/(R1 + R2) close to the limit
q̄/q, then p needs to be very small. For example, when
q = 1/10, α0e = 1/2, q̄/q = 9, with p = 10−200, we get
Rsum,1/R∗sum,2 ≈ 8.16. This, however, does not mean that the
benefit of multiple messages only occurs in extreme cases. In
numerical computations we have observed that for the erasure
distortion, the gain for certain asymmetric sources can be much
more than that for the DSBS example analyzed in this paper.
The DSBS example was chosen in this paper only because it
is easy to analyze.
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