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Cascade and Triangular Source Coding with

Side Information at the First Two Nodes

Haim Permuter and Tsachy Weissman

Abstract

We consider the cascade and triangular rate-distortioblgmo where side information is known to the source
encoder and to the first user but not to the second user. Waatbere the rate-distortion region for these problems.
For the quadratic Gaussian case, we show that it is suffie@ebnsider jointly Gaussian distributions, a fact that
leads to an explicit solution.

Index Terms

Cascade source coding, empirical coordination, quad@igssian, Pareto frontier, source coding, side informa-
tion, rate distortion, triangular source coding

|. INTRODUCTION

Yamamoto [[1] considered the cascade source coding probléagre a source sends a message to User 1, and
then User 1 sends a message to User 2. In this paper, we exéandmbto’s cascade source coding problem to
the case where side information is known to the source ands&y W, but not to User 2. The problem is depicted

in Fig.[d.
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Fig. 1. A cascade rate distortion problem with three nodasdeer, User 1, User 2), where the first two nodes have sideniationY. User
1 and User 2 need to reconstruct the souksewithin distortion criteria.

More recently, Vasudevan, Tian and Diggavl [2] considereel tascade source coding problem, where side
information,Y’, is known to the source encoder and to User 1, additionalisfdemationZ is known to User 2,

and the Markov chaitk — Z — Y holds. Vasudevan et al.l[2] provided an inner and an outenth@nd showed that
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TABLE |
LITERATURE OVERVIEW OF CASCADE SOURCE CODING WITH SIDE INFRMATION AS SHOWN IN FIG.[2

|| Switch a | Switch b | Switch ¢ Gaussian quadratic case| General case ||
open open open Solved [1] Solved [1]
open open closed Solved [2] Upper and lower bound§][2
open closed open Upper and lower bound§][3] Upper and lower bound§][3
open closed closed Solved [2] Upper and lower bound§][2
closed open open Solved [1] Solved [1]
closed open closed Solved [2] Upper and lower bound§1[2
closed closed open Section[ TV Section1)

the bounds coincide for the Gaussian case. Cuff, Su and Eir@d [3] considered the cascade problem where the
side information is known only to the intermediate node amal/jged an inner and an outer bound. An additional
related problem, which was considered and solvedlin [4]ha bf cascade source coding when side information
is known to all nodes with a limited rate. Tallle | summarizes literature on cascade source coding with side

information.
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Fig. 2. A cascade rate distortion problem with several aytiof side information. Tabld | summarizes the lietrtaurethis problem.

Of special interest in lossy source coding is the Gaussian wath quadratic distortion, which in many source
coding problems results in an analytical solution such athénWyner-Ziv problem[[5] where side information is
available to the decoder, the Heegard-Berger probleém [&reviside information at the decoder may be absent,
Kaspi's problem[[7], [[8] where side information is known toetencoder and may or may not be known to the
decoder, the multiple description probleim [9],][10], theotway source coding problerh [11], the multi-terminal
problem [12] [13], the CEO problenm [14]=[1L6], rate distortiwith a helper[[17],[[18], and successive refinement
[19] and its extension to successive refinement for the Wiineproblem [20].

Our main result in this paper is that the achievable regiantii@ problem depicted in Fid. 1 is given by

R(D1, Ds2), which is defined as the set of all rate-paif3;, R;) that satisfy

Ry > I(Y,X;X»), 1



Ry > I(X;Xy,X,|Y), (2)
for some joint distributionP(x, y) P(Z1, 22|z, y) for which
Ed;(X,X;) < Dj, i=1,2. 3)

An extension of the cascade source coding problem is theguilar setting[[211], where there is an additional
direct link from the source encoder to User 2. We solve thabjgm where side information exists at the source
encoder and User 1, but not at User 2.

The remainder of the paper is organized as follows. In Seffflowe formally define the cascade problem and
present the theorem establishing the achievable regio®ebtion[dll, we provide a converse and achievability
proofs of the theorem, and in Sectionl IV we explicitly comrgthe rate region for the Gaussian case. In Se€fion V
we extend our result to the triangular case (cf. Elg. 5), an8ectior "Vl we further extend the results to multiple

users and discuss the corresponding empirical coordimatioblem.

II. CASCADE RATE DISTORTION PROBLEM DEFINITIONS AND MAIN RESULTS

Here we formally define the cascade rate-distortion probtgmere side information is known to the source
encoder and to User 1. We present a single-letter charzatien of the achievable region. We use the regular
definitions of rate distortion, and we follow the notation[@B]. The source sequencés; € X, i = 1,2,---},
and the side information sequengg € ), i = 1,2, -- -} are discrete random variables drawn from finite alphabets
X and ), respectively. The random variabléX;,Y;) are i.i.d.~ P(x,y). Let X, and X, be the reconstruction
alphabets, and, : X x X; — [0,00), i = 1,2, are single letter distortion measures. Distortion betwssguences

is defined in the usual way

1 n

j=1
Let M; denote a set of positive integef$, 2, .., M;} for i = 1,2.
Definition 1 (Cascade rate distortion code with side infotima at the first two nodes)An

(n, My, M>, Dy, Dy) code for sourceX and side informatiort” consists of two encoders

i AT x Y= My

fo o V' XMy — My (5)
and two decoders

g YUX My — AT

g2 1 Mo — XY (6)
such that

1 « 5
E |- di( X, X4 < D;, 7=1,2 7
[nz J( J)‘| i J (7)



The rate pai Ry, R2) of the (n, My, Ms, D1, D2) code is defined by
Ri = l lOg]\/[i; 1= 1,2. (8)
n

Definition 2: Given a distortion paifD;, D2), a rate pair(R1, R2) is said to beachievableif, for any ¢ > 0,
and sufficiently large:, there exists affn, 2"+, 2752 D, +¢, Dy +¢) code for the sourc&’ with side information
Y.

Definition 3: The (operational) achievable regidd® (D;, D,) of cascade rate distortion is the closure of the
set of all achievable rate pairs.
Theorentl is the main result of this work.

Theorem 1:For the cascade rate distortion problem with side inforomatt the source and User 1, as depicted

in Fig.[, the achievable region is given by
RO(DlaDQ):R(DlaDQ)a (9)

where the regioR (D, D-) is defined in [1L){(B).

[1l. PROOF OFTHEOREM[

Achievability: The proof follows classical arguments, and therefore tlohrteal details will be omitted. We

describe only the coding structure and justify why the iatBd region is achievable. We fix a joint distribution

Pyy %, for which (3) holds, and am > 0, and we show that there exists a code with rates
Ry = I(Y,X;X2)+e (10)
R = I(X;X1,Xo|Y)+ 36 (11)

complying with the distortion constraints.

Generate randomly2n(!(X.Y:iX2)+¢) codewords using an i.i.d~ Pg,. Then bin the codewords into
onI(X:X:2Y)+2¢) hins, In each bin, there ar@(/(X,Y:X2)—I(XiXe[Y)=€) — on(I(YiX2)=€) codewords. In addi-
tion, for any typical sequenceg’, 27 generate2n(!(X:X1lY:X2)+¢) codewords using the pmP(:7[y",37) =
[T Px, v x, (@1,ilyi, 22,0)-

The source-encoder receives the sequenteg™ and first looks for a codewordly that is jointly typical with
x™, y™. If there is such a codeword, the source encoder sends tee& ofdthe bin that includes this codeword to
User 1. User 1 looks which codeword in the received bin istipitypical with the side informatiog™. Since there
are less thar2”!(YiX2) in the bin, with high probability only one codeword will beifdly typical with y" and it
would be the codeword sent by the encoder. User 1 then fosatarelcodeword to User 2.

Now we can think of a new problem where the source-encoderUsed 1 have side informatioki”, X5 and
hence a ratd (X; X,|Y, X5) + ¢ is needed to generat€] that is jointly typical with(X™, Y™, X,). Therefore, a
total rate to User 1 oR; = I(X; Xo|Y) + 2¢ + I(X; X1|Y, X3) + € = I(X; X1, Xo|Y) + 3¢ is needed, and an
additional rateR, = I(Y, X;Xg) + € is needed from User 1 to User 2.



Converse: Assume that we have gm, M; = 2" M, = 2"F2 D, D,) code as in Definitiofl]1. We will show
the existence of a joint distributioRy, ;. ¢ that satisfies[{1):(3). Deno® = f1 (X", Y™") € {1, ..., 2nfiy and
T, = fg(Tl,Yn) S {1, ...,2"R2}. Then,

nRQ > H(Tg)
> (X" Y™ Ty)
= Y H(X.Y:) - H(X,,Yi|Te, XL Y1)
i=1
(i) ZH(X’M}/’L) _H(Xi,}/i|X27i,T2,Xi_17Yi_l)
i=1
z ZI(XJ/;XM), (12)

=1
where equality (a) follows from the fact that the recondinrcat times, XQZ is a deterministic function of5.

Now consider

TLRl

Y

H(Ty)

Y

H(T1[Y™)

—
S
Nasd

H(Ty, To|Y™")

Y

I(Xn;Tl, T2|Yn)

= Y H(Xi|Yi) - H(X;|[Y", Ty, Tp, X'~ 1)
i=1

- ZH(X’A}/Z')_H(Xi|Yn7T17T27Xi713Xl,iaXQ,i)
i=1

Y

ZH(XHY}) — H(X,|Yi, X1, X24)
=1

= ZI(XﬁXl,iaXQ,iD/i), (13)

=1
where equality (a) follows from the fact thdt is a deterministic function of; andY™, and, similarly, equality
(b) follows from the fact thatf(u and Xgﬂ- are deterministic functions dff},Y™) andT», respectively.
The proof is concluded in the standard way by lettipdpe a random variable independentXf, Y, uniformly
distributed over the sefl, 2,3,..,n}, and considering the joint distribution df@YQ,XLQ,XQ,Q. For this joint
distribution, inequalities (12) an@_(113) imply thal (1) a@@) hold, respectively, and](7) implies thai (3) holds

IV. CASCADE RATE DISTORTION THE GAUSSIAN CASE

In this section we explicitly calculate the rate regiRQD, , D) for the cases wher& andY are jointly Gaussian
and the distortion is the square-error distortion. The eosw and the achievability in the previous sections areguov

for the finite alphabet case, but it can be extended to the sBausase[[5].



Our first step in finding the achievable region for the quadi@aussian case is to show that it suffices to consider
only jointly Gaussian distributionPX_’YXl_& in order to exhaust the rate region. Then we solve an optiiniza
problem to find the achievable rate-region explicitly.

Lemma 2 (Optimality of jointly Gaussian distributiondjor the quadratic Gaussian cascade rate-distortion prob-
lem with side information known to the source-encoder andJger 1, i.e.,X,Y are jointly Gaussian and
di(z,%1) = (x—21)2, daf, £2) = (x — 22)?, it suffices to consider only jointly Gaussian distribusaR, | ¢ ¢
in order to exhaust the rate regi@( D1, D») given in [1)-[3).

Proof: Let us fix a point(R1, Ro, D1, D7) in the rate region and leP, be a joint distribution that

Y, X1,Xo
satisfies [(1)E[3). Such a distribution must exist since Uadities [1)438) define the rate region (TheorEm 1). Let
K denote the covariance matrix induced B, . ;v ¢ and |etpx.yf(1_)22 denote a normal joint distribution
with mean zero and covariance matii& Now let us show thaf{1]-[3) also hold where the joint disttion is

Py vy x, x,- Inequality [3) is automatically satisfied, since it depema the distribution 0(X,Y,X1,X2) only

through the covariance matrik. Consider,

Ry

Y

I(X; X1, Xo|Y),
= h’(X|Y)_h(X|X13X27Y)7

Y X|Y) = (X — (1 X1 + Xy + a3Y) | X1, Xo,Y),

Q) . N

= h,(X|Y) — h(X — (a1X1 + O[QXQ + OégY))
(© . N

> h(XlY) —hls(X— (041X1+042X2+043Y))
()

I5(X; X1, Xo|Y), (14)

equality (a) is true for any set of scaldrs; , a2, au3) and in particular if we choose those that are the linear @stim
of X givenXl, X,,Y. Note that the coefficienty;, as, a3) and the variancé (X — (ale +asXs +a3Y))? are

a function only of the covariance matriX. Inequality (b) follows from the fact that conditioning r&zks entropy,
and (c) follows from the fact that, given a variance, the Gaus distribution maximizes the differential entropy.
The termIs(X; X1, X»|Y) denotes the mutual information induced by the Gaussianiflision PX7Y,X17X2, and
equality (d) follows from the fact that for the Gaussian wigttion the error, i.e. X — (ale +ag Xy + azY), is
independent of the observatiofis , X,, Y.

Similarly, we have
Ry > I(Y,X;X5)
= I(Y;Xs) + I(X; Xo|Y)
> (V3 Xo) + I5(X; Xo|Y), (15)
where the last inequality follows from the same stepd ak. (14) [ |

The next theorem provides an explicit expression for thesSian case. The proof is provided in Appendix A

and is based on Lemnia 2 and on solving an optimization prolli#émquadratic constraints and a linear objective.



Theorem 3 (Cascade Gaussian cas€hie rate region of the cascade source coding with side irdtom at the
first two nodes, where the souréé and the side informatioy = X + Z are jointly Gaussian distributed, where

X and Z are mutually independent, and the distortion is quadreigjven by

1 Ug{\y Ug{\y
Ri(D1, D2, Ry) = 5 max log g ,log ) 01, (16)
X|Wy

9 S .
Whereo—X|W7Y is given by the following four cases

-1
22R2p, o2 —2 ; 2 o% 2R, oy (0% —=D2)  o%
( O-2Za-2xa2 + O.X‘Y ) |f D2 S UXIY and Do S 2 S O.2ZG_2X_D20_22_D20_§( D>
2 2 2
i 2 2R» 0z (0x —D2) ox
) ) Do, if Dy < 0%y and22% > ey e el
UX|W,Y(D17D27R2) = 92Rapy o2 ) _1 ) 2 i
rora T Oy if Dy > 02, and & < 22f2 < b
7202 X|Y ’ = YX|Y Dy — — 0% Da2+o,D2—0% 0%,
4
2 i 2 2R2 ox
Xy if Dy > oX|y and22 > P

17)
ox D270§(2*2R2 -

anda = | 2z (M 1)

Fig.[3 depicts the regions for two specific valuesiof and D such that it captures all four cases of Hq.](17).
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Fig. 3. The Gaussian quadratic rate region. The graph orethbdnd side shows the rate region for the case Wb@(re: chZ =1,D2=0.35
and Dy = 0.4. Since Dy < oﬁﬂy, the rate region is given by Cases (a) and (b) in Egl (17). Tdte hand side graph shows the rate region

for the case whereg( = chZ =1, D2 = 0.65 and D; = 0.5. SinceDy > cri(‘y, the rate region is given by Cases (c) and (d) in Eql (17)

Now, let us consider several extreme cases that can be sasilyd using Theoreid 3.
1) Side information is independent of the souftel Y: This means that,, = 0% ando? = oco. For such

a case[(17) becomes

2 2
2 if D 2 o 2R [
0x, if 2<0XandD); <2 2<D);

oXwy (D1,D2, Ra) = { Da, if Dy < 0% and22f2 > o< (18)
oo, If Dy > agc, and22f2 >



and this implies that

1 2 o5
Ri(D1, D2, Ry) = 5 max <1og %alog g'lya()) ; (19)

recovering a result that appears in the successive refinesnance coding paper [19].
2
2) Side information equals the source, i.&,= Y For this caseg%,, = 0; henceR; = 0 and2* > 7,
consistent with the well known rate distortion function bétGaussian source.

3) Ry — o0 If Dy < a§(|y then

1 Ug{\y U§(|Y
Ry1(D1,Do, Ry) = 5 max <1og Dy ,log D—1,0> , (20)
and if Dy > crgqy
Ry(Ds, D, Ry) = % max <1og UE;';“ , o) . (21)

Note that for this case we can assume that the side informaties known to all three nodes; hence ora&{ly
is manifested in the expression.

4) The message that User 2 receives depends only on the &deation: In this extreme case, the rafe and
the distortionD, are large enough so that the message that User 2 receivasddepaly on the side information.

This case is depicted in Fifl 4.

X1
X Encode}

A
| | - Ercode} f-m[User 2}— w5,

Y

Fig. 4. An extreme case where the rd?g and the distortiond), are large enough so that the message that User 2 receivasddemaly on
the side information.
For this extreme, the rate region is simply

R, I(X; X1|Y),

Y

Ry > I(Y;Xo), (22)

for all joint Gaussian distributions that sa'usﬁgqm1 < D; and TX|%s < Ds.
More explicitly, this region is given by

0% (0327 + 07)

D2 = 0'§( +0_2Z (23)
2
1 IX|y
> = .
Ry > 5 Mmax <1og D, ,0) (24)



Indeed, if [2B) holds, then according to Theoleh3(D;, D2, R2) = %max <1og Ug‘ly , O> .

V. TRIANGULAR SOURCE CODING WITH SIDE INFORMATION

In this section, we extend the cascade source coding deguisgprevious sections by adding a direct link from
the encoder to the second user, as depicted inFig. 5. Thetibefiaf the code(n, My, Ms, M3, D1, D) is similar
to the one given in Defl]1 for the cascade case, with an additimessagé/; at rate R3 sent from the source to

User 2.

Rs3

Fig. 5. A triangular rate distortion problem with three nedencoder, User 1, User 2), where side informafiéris known to the encoder

and User 1, but not to User 2. User 1 and User 2 need to recon#iel sourseX to within distortion criteria.

A. Main theorem and its proof

Theorem 4 (The achievable rate region for the triangularedashe achievable region for the problem depicted

in Fig.[H is given byRA (D1, D<), which is defined as the set of all rate-triplg3,, R, R3) that satisfy

Ry > I(X;X,U[Y), (25)
R2 Z I(Ya X; U)a (26)
Ry > I(X;X|U), (27)

for some joint distributionP(x, y) P(Z1, Z2, u|x, y) satisfying

Edi(X,X;) < Dy, i=1.2, (28)

3

where the cardinality of the auxiliary variablé may be bounded bji/| < |-X[| V|| Xy || Xa| + 2.
Lemma [ below shows that one can restrict the joint distidlout P(x,y)P (21,2, ulz,y) to

P(x,y)P(21,ulx,y)P(Z2]z,w) without affecting the region.
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Proof of Converse Part of Theordrh Assume that we have gm, 271, 2"R2 2nfis D) Dy) code. We will show
the existence of a joint distributioRy, ., ¢, ¢, that satisfies[(25]-(28). Denofg = f1(X",Y™") € {1, 20 RY
andTy = fo(Ty,Y™) € {1,...,2"F} and Ty = f3(X™,Y") € {1,...,2"F}. Then,

nRy > H(T))

> H(Thly™)

9 g, Ty

= Y HY) - H(XY" T, T2 X'
=1

(:b) ZH(Xili/i)_H(Xi|yn7T17T21Xi_17X1,i7Ui)
=1

> STHXY) - H(Xi|Y:, X1, Us)
=1

= ZI(XﬁXl,ianD/i)a (29)
=1

where equality (a) follows from the fact tha} is a deterministic function df; andY™, and, similarly, equality (b)
follows from the fact thatX, ; is a deterministic function of7’,Y™) and from definingl/; £ (Ty, X*~1, Yi~1).

Now, consider

nRg 2 H(Tg)

> I(X"Y"Ty)

= Y H(X;,Yi)— H(X;,Yi|Ty, X1, Y"1
=1

WS HXLY) - HXL YUY
=1

> Y I(X,Y;U)), (30)
1=1

where equality (a) follows from definition df; = (75, X*~!, Y*~1). In addition, consider

nR3 2 H(T3)
> H(I3[T3)
>

I(Xn, Yn; T3|T2)

= Y HX, YTy, XL YY) = H(X, Y| Ty, Ts, X1 Y

%

Il
-

H(X;,Yi|U;) — H(X;,Yi|Xa4,Uy)

o
INgE

i=1
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> XY Xo,|Us)
i=1
> ZI(X;Xz,z'|Uz‘)a (31)

=1

Y

where equality (a) follows from the definition &f; = (T, X~!,Y?~') and the fact thaiX, ; is a deterministic
function of (T, T3).

The proof is concluded in the standard way by lettipdpe a random variable independentXf, Y, uniformly
distributed over the sefl,2,3,..,n}, and considering the joint distribution o€y, Yy, UQ,XLQ,XZQ. For this
joint distribution, Inequalitied (29)[(B0)._(B1) implyah(28), [26) and{27) hold, respectively, and the fact that t
code we have fixed satisfies the distortion constraints gaphat [[2B) holds.

To prove the cardinality bound d@f, we invoke the support lemma]23, pp. 310]. The external camdariable
U must have|.X||V||X;||Xs| — 1 letters to preserveé®(z,y, #1,42) plus three more to preserve the expressions
I(X; Xy, U|Y), I(Y,X;U), I(X; X5|U). Note that preserving®(z,y, &1, 42) implies thatEd; (X, X;) < D; for
i =1,2is also preserved. |

For the achievability part, we first establish the following

Lemma 5 (Optimality ofXs — (X,U) — (X1,Y)): The rate regiomR (D1, Dy), which is defined by[{25)-(28),
does not decrease by restricting the joint distributionhi® form P(x, y) P(Z1, u|x, y) P(Z2|x, u).

Proof: For a fixed (D1, D5), let the rate-triple(R;, R2, R3s) € Ra(D1,Ds2). Then there exists a joint
distribution

P(Iayvua:ilva) = P(Iay)P('ilv'inuhjay)? (32)

for which (28)-[28) hold. Let P(%1,ulz,y) and P(#s]z,u) be the conditional distribution induced by
P(z,y,u,1,%2). We now claim that[(25):(28) are satisfied under the jointritigtion

P(‘Tayaua:ﬁla‘%?) = P(:Eay)P(i'lauLTvy)P(‘%Z'xvu) (33)

This is true, since the expressiofs](25)}(28) depend’on y, u, 21, &2) only through the marginal®(x, v, u, 1)
and P(z,u, Z2). Now notice that those marginals are the same whether the dastribution isP(z,y, u, 1, Z2)
or P(z,y,u, &1, 22). [ ]
Sketch of proof of Achievability part of Theordth #he achievability proof follows directly from the
achievability of cascade source coding as given in Thedrkriirkt, we fix a joint distribution of the form
P(z,y)P(&1,u|z,y)P(is|x,u,y) such that[Z5)H28) hold. Sinc&, > I(X;X,,U|Y) and Ry > I(Y,X;U),
then according to Theored 1, we can gene(sz@‘, U™) that with high probability would be jointly typical with
(X™,Y™) according to the distributioP(z, y) P(Z1,u|z,y). Now, sinceU™ is known both to the encoder and
to User 2, we need a ratg; > I(X;X2|U) to generatef(;l such that with high probability it is jointly typical
with X™, U™. Finally, because of the Markov relatio¥, — (X,U0)— (Xl, Y’), we can invoke the Markov lemma,
and conclude that the sequendéQ,Y”,X{l, ,X;, U™ are jointly typical and therefore the distortion criterige a

satisfied. [ |
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B. The Gaussian triangular case

We now evaluate the rate region of the triangular networkiadeg in Fig.[% for the quadratic Gaussian case,
i.e., X,Y are jointly Gaussian and, (z,%1) = (x — 21)?, da(z,22) = (z — 22)%. We first show that it suffices to
consider only Gaussian joint distributions for exhausting region, and then we show that by a small change in
the Gaussian cascade region we obtain the Gaussian tramrggion.

Theorem 6 (Optimality of jointly Gaussian distributiongjor the quadratic Gaussian triangular rate-distortion
problem with side information known to the source-encodedt o User 1, it suffices to consider only jointly
Gaussian distribution®y - ;; ¢, in order to exhaust the rate regi@n (D;, D) given in [25){28).

Before proving the theorem, let us introduce the Paretatitof24] of a region and show that if two rate-regions
have the same Pareto frontier then they are identical. Adreto frontier of a regionR, which we denote by

Par(R), is the set of all points for which there is no strictly betpsint in the region. Formally,
Par(R) = {R" € R : #IR" € R s.t. R" < R"}, (34)

where R" < R™ denotes thaf?; < R; for all 1 < i < n and for somel <i < n, R; < R,.
Lemma 7:If two rate-regions)R; and R, have the same Pareto frontier, then they are identical.

Proof: Let us show that the assumptiofRse R, and R ¢ R, lead to a contradiction. IR € R4, then there
exists a pointR, € Par(R,) that satisfiesR, < R. SinceR,, € Par(R4), it follows that R, € Par(R,). Finally,
sinceR, € R, and R, < R, thenR € R», which contradicts the assumption. [ |

Proof of Theoreriil6As a result of LemmAl7, we conclude that it suffices to proveofé@[6 only for the points
in the Pareto frontier. In addition, we notice that pointattare Pareto optimal satisfy (25)-(27) with equality, whic

may be also written as

Ry = I(X;Xy,UlY), (35)
Ry = I(Y,X;U), (36)
Rs+Ry, = I(Y,X;X5,U). (37)

Finally, assuming without loss of generality is real-valued and using similar arguments as in Leriina 2, we

conclude that for any joint distributiof?, there exists a Gaussian joint distributidﬁx Y.X with

Y, X1,Xa,U Xo,U?

the same covariance matrix & y ¢, ¢, p» for which the induced right hand sides Bf13E)4(37) do naraasam

Now, with a small change in the solution to the Gaussian cisoae obtain the triangular Gaussian region. The
proof is deferred to AppendixIB.

Theorem 8 (Triangle Gaussian casél)he rate region of the triangular source coding with sidermfation at
the first two nodes, where the sourde and the side informatio = X + Z are jointly Gaussian distributed,
where X and Z are mutually independent, and the distortion is quadratigiven by Eq.[(I6)EA7), wher®, is
replaced byD,22%s i.e., R"""'(Dy, Dy, Ry, Rg) = RSascade( Dy, Dy228s Ry).
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VI. EXTENSIONS

Here we present two further extensions. The first is obtamedeneralizing the triangular network results to

more users. The second is obtained by considering a moraajgweblem of empirical coordination rather than

distortion criteria.

A. Multiple Users

Y Y
i . |

X5

Fig. 6. A triangular rate distortion problem with+ [ users, where the side informatidn is known to the encoder and to Users2, ..., k,

but not to Userse + 1,k + 2, ...,k +[.

The triangular problem depicted in F{g. 5 can be extendek tol users, where the side information is known
to the source encoder and to Usérg, ..., k, but is not known to Userg + 1,k + 2, ..., k + (. This problem is
depicted in Fig[b, and its region is given by the next theorem

Theorem 9:The achievable region for the problem depicted in Hig. 6 isegi by the vector rates

(Rl, Rs, ..., Rk+l+1) that satisfy

Ri > I(X:Xi, Xig1, o X, UY), 1<i<k
Ry > I(X;Xj,..Xp1,U), k+1<j<k+1
Rppsr > I(X Xe|U),
(38)
for some distributionP(z, y) P(&1, &2, ..., &, ulx, y) for which
Ed;(X,X;) < Dy, 1<i<k+l (39)

where the cardinality of the auxiliary variablé may be bounded byi/| < | X||V|| X1 || Xa]...| Xri| + k + L.
The proof of Theorerfi]9 follows similar steps as the proof oédien(# and is therefore omitted.
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B. Empirical coordination

In [25], two coordination problems were introduced: Emgiti coordination, where the goal is to generate
sequences with a specific empirical distribution, and gfrooordination, where the goal is to generate sequences
with a distribution that is close (in total variation) to aegjfic i.i.d. distribution. The empirical coordination fnem
is a generalization of the rate distortion problem, sincestodion constraint defines a half-plane in the empirical
distribution space. Hence, if we find the optimal rate neeegenerate a specific empirical distribution, we also
find the optimal rate needed to generate a specific distocimstraint.

For the cascade rate distortion problem with side inforomaéit the first two nodes, the extension to the empirical
coordination problem is straightforward.

Theorem 10 (Rate coordination in the cascade problefif)e rate coordination regioRp, (P(&1, &2|z,y)) of
the cascade problem where side information is known to tls¢ fivo nodes, whereX,Y ~ Py(z,y), and an

empirical distributionPy(x, y) P (i1, &2|x,y) is desired, is given by
Ry > I(Y.X;Xy),

Ry > I(X;X,Xo|Y), (40)

where the joint distribution evaluating the mutual infotroa expression i (x, y) P (&1, Z2|z, y).

Proof: The achievability proof follows immediately from the ackadility proof of Theoreni L, where we fixed
an empirical distribution and showed that it can be achiax@dg the above rates. The converse also follows from
the converse of Theorelm 1, but in the last step we need to én[& Proposition 2], which states that the expected
empirical distribution equals the distribution of the rand variables chosen uniformly over the time sequence
1,2, ...n, i.e,E PXH,YH,X?Xg(x,y,i:l,:272)} =Py vo % oo g (T4, 1, B2). -

However, the triangular coordination problem is an operbjam, even without side information. The solution
here is heavily based on the fact that in the achievabiligopit suffices to consider only a specific empirical

distribution (with a Markov structure), but for an arbityadistribution the coordination problem remains open.

APPENDIXA
PROOF OFTHEOREM[3
Following Lemmd2 we can rewrite the rate region for the Giamssase as:
Ry > I(Y,X;W), (41)
Ry > I(X;V,W|Y), (42)

where the vectof X, Y, V, W) is jointly Gaussian distributed and satisfies

IN

TXw Dy (43)

IN

quw,uy Dy, (44)

whereo?, ; £ B[(A — E[A]|B])?].
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Without loss of generality let us choose the following stuve

Y = X+7Z,
= X+a¥Y+Zo=(1+4+ )X +aZ+ Zy,
V = X+8Y +~v22+ 7y, (45)

where the random variableX, 7, 7,, 7, are jointly Gaussian and mutually independent, with varésn
0%,0%,0%, ,0%,, respectively, and the coefficients, 3,~) are real number scalars.
Equations[(4R)E(44) become

Ry

Y

I(X,Y; W)

= H(W) - H(W|X,Y)
(14 a)?0%k + 0% + 0%,

1
3 log cr% 2 (46)

0% (0% +0%)

(1+a)20% + %03 + 0%,

2 2

1 IX|y IX|y

Ry = — max | log ,log , (48)
2 < U?(\W,Y D1

Dy > 0%y = (47)

whereo%, = % andoylyy =057 +ox’ o,
Inequalities[(4b) and (47) follow directly froni (1) arld J48espectively. Eq[(48) follows from combining the
following two equations[{49){(50). ID; > aﬁ(‘wﬂy, then [4%) is automatically satisfied, and tHéris not needed

(may be independent of anything else) and therefore

Ry

Y

I(X;W]Y)
= H(X|Y) - H(X|Y,W)

= H(X|Y)- H(X|Y,W)

2
1 o

= —log QX‘Y . (49)
2 IxX|w,y

If D; < aﬁ‘wy, then
R > I(X;V,W|Y)

= H(X[Y) - H(X|Y,V,W)
2
1 Ox|y
= —log——. 50

518 (50)

The last equality is due to the fact that we can chogsey, Z1) such that”?qw,v,y = Ds.
Now let us fix D1 > 0, Dy > 0, and Ry > %log %, and let us find the functio®, (D1, D2, R2), which defines

the rate region. (The condition oR; is due to the fact that iR, < %log % the rate will not be achievable for

any R,). To find R; we need to solve the following optimization problem
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maximize o7, (51)
subject to (2°% — 1)}, > (1 + a)’0% +a’oy (52)
0%2 (crgg —Dy) < oz2(cr§(D2 + U%DQ - O'?CO'QZ) + 2aa§(D2 + DQO'%( (53)
The objective[(5l1) follows from the fact thdt; depends only om? and [52) and[(33) follow from{46) and
(@2), respectively. To solve this optimization problem, eieide the problem into four cases, where each case has

a simple solution (each case corresponds to a linE7h (17)).

Case 1: For this case we assume that

2 2
o500
Ug(DQ“rO'%DQ—O%(U% <0= Dy < ﬁ :U§(|Ya (54)
Z X
and
(0% — D2) %

1
Ry > <—log 9z

. 55
- 2 0%0% — Dy0% — Dac% Do (53)

Because of the assumption {0]73), Hg.l(53) holds with etyalince otherwisery can be increased until it
hits the boundary of (33).

Constraint Eq.[(32)

Constraint Eq.[(33)

Fig. 7. Case 1: the maximum 0@2, where both constraints hold, is obtained at the maximumapf(&3).

The argument that achieves the maximum of a quadratic fewh+ go + ¢ is ;—f hence the argument that

maximizes[(5B) is

2
_ _UXDZ
a = , 56
0§(D2 + O'%DQ — 0§(UQZ (56)
and the maximum is

_ b?
T T h

GiDQ

= 3D 252 (0% — D2)(0% D2 + 03D — 030%)
Ozl02 — 070



= aa%.

Note that [5F) can be also written as
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(57)

(58)

If (@t,5%,) satisfy Eq.[[(5R), then the solution to the optimization peabis simplya%_ and using[(4B) we obtain

2 2
1 o o
Ry = 3 max <1og LA;LY ,log ;—Y) .

Now let us investigate whe(w, 62Z2) satisfies Eq.[(32) (or equivalently_(46))

(1+@)?0% +0%0% + 7%,

1
Ry > =log —5

2 T,

@ 1), 7%@ 0% +7%,)
2 55, D2

® 1 log o% (ajcrzz +ao%)
2 aoy Do

© 1, oA-D) A
2 a%ag( — DQU% — D2cr§( Dy’

where (@) follows from Equality((47), (b) fronh (b7) and (cpin (58).

Case 2: Assume that

2 2
05,0
Dy < 22X — 52
U%—i—og( Xy
and

1 o%(c% — D o
Ry < =log 22Z(X2 2) . X

2 04,0% — D207, — Dao% Do

(59)

(60)

(61)

(62)

Now if (€0) is not satisfied, then the maximum @}2 should be on the boundary of the constraints, namely, both

(52) and [[5B) should hold with equality. This is because thgen part of the intersection should be either increasing

or decreasing. Such a case is shown in Eig. 8.

Constraint Eq.[(32)

Constraint Eq.[(53)

2 -15 -1 -0.5 0 0.5 1 15

Fig. 8. Case 2: the maximum OfQZ2, where both constraints hold, is obtained at the interseatf [52) and[(5B).
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Consider the case whelle {46) and](47) hold with equalitynThie obtain

2
sky 2 0x(@%0% +0%)
2707, = D—Qa (63)
which implies
2 2
2 979x 2
O'Z2 = m& . (64)
Now substitutings%_ given by [64) into[[5R) we obtain
a?o% 0% (22F2 1)
2RDy — 0% (1+a)’0% + a0z, (65)
which simplifies to
a’o% (0% — D2) 2 2
Taking the square-root on each side of the equation we obtairpossible solutions fod:
1 oz crg( — Dy
— =t/ —5— -1 67
oY ox \| Dy — 032721 (67)

Since we need to maximiZzeQZz, which is proportional tav? (see Eq.[(64)), we choose the solution with the plus
sign.

Case 3: Assume that
2 2

o5,0
Dy > 42X _ 52 68
2 = 0_% —|—O'§( O-X‘Ya ( )
and
1 022(0’?( —Dy) ok

Ry

%
02

1 . 69
2 o O'ZUX DQO'Z_DQO'X Do (69)

Constraint Eq.[(52

Constraint Eq.[(33)

-10 -8 -6 -4 -2 0 2 4

-10

Fig. 9. Case 3: the maximum 0%2, where both constraints hold, is obtained at infinity, siti@e is a infinite overlap between the constraints.

(0% D + 03Dy —0%03) _ 0%k +07
— Do = 22R: 17

(70)
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which is equivalent to
4
g
22f2 > X , 71
- ag(Dg + U%DQ — ag(a% (71)

then the maximum onZZ is obtained at infinity (as illustrated in Figl 9), which irgd that

2 2
1 Ox|y 1 IX|y
Ry = —max | 0,lo =—1lo . 72
1= 5 ( »log 75 SR} (72)
450
400
350
300
250
NQDO
s}
100 Constraint Eq.[(H
50
0
Constraint Eq.[(53)
75915 -10 -5 0 5 10 15 20 25
Q
Fig. 10. Case 4: the maximum of2Z2, where both constraints hold, is obtained at the interseatf [52) and[(5B).
Case 4: Assume that
U%Ugc 2
Do > 24 2 =g 73
2 O_QZ + 0_3( X‘Ya ( )
and
1 02(6% — D o2
Ry < —1og222(x2 2) o (74)
2 0%,0% — D207, — Dao% Do

If (ZI) does not hold, then the maximum of, should be at boundary of the constraint, namdly] (52) and
(53) should hold with equality. This is because the uppet pathe intersection should be either increasing or

decreasing. Such a case is shown in Eig. 10. |

APPENDIXB

PROOF OFTHEOREMI[@

Let us rewrite the rate region equations similarly [fol (423)(as,

Ry = I(X;V,W[Y), (75)
Ry > I(X;W'W), (77)

where the vectot X, Y, V, W) is jointly Gaussian distributed and satisfies

0'§( ‘ W, W S DQ (78)
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cxwvy < Di, (79)

Without loss of generality, we may assume thaft’, W, V' have the same structure as[inl(45) &t = X +nW+ 2’
whereZ’ ~ N(0, 0%, is independent of, Y, W, V. Furthermore, we note that we can assume fhat (77) holds with
equality, since if not, we can changeand Z’ such that equality will hold, and the change will only decea

0§(|W7W, - therefore [[Zb)E(719) will continue to hold. Now, the eqtalin (74) implies that

2R3

0§(|W,W’ = Ug{\w2_ (80)
Hence [[7B) becomes

oxjw < Dp2°73, (81)

Now we note that we obtain the same optimization problem &&@&)-(48), just thatDs is replaced byD,2%%: m
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