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Abstract

We present an inner bound for the admissible rate regioneof#itage successive refinement problem
with side information, and we present an upper bound for #te-distortion function for lossy source
coding with multiple receivers and side information. A dexgtter characterisation of this rate-distortion
function is a long standing open problem in multi-termirmgbrmation theory, and it is widely believed
that the tightest upper bound is provided by Theorem 2 of Hekgnd Berger's paper “Rate-Distortion
when Side Information may be AbsentBEE Trans. Inform. Theoryl985. We give a counterexample
to Heegard and Berger’s result, and we develop our new uppandas a corollary to our inner bound

for the successive refinement problem with side information
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. INTRODUCTION

One of the most important results in multi-terminal infotioa theory is Wyner and Ziv's solution [1]
to the problem of lossy source coding with side informatiotha receiver; figuréll shows the problem
setup. The main objective is to give a single-letter charégdtion [2, Page 259] of the rate-distortion
function R(d), which is defined as the smallest rate at which it is posstbentode a discrete memoryless
sourceX™ = X,,..., X, such that the receiver with side informatidfi* = Y;7,...,Y,, can obtain a
reconstructionX” of X" with an average per-letter distortion less thariTo this end, Wyner and Ziv
[1, Theorem 1] showed that

R(d) = min {I(X;U) — I(U;Y)} , (1)

where the minimization is over all choices of a discrete digilphabet auxiliary random variablé such
that: (1)Y o X o U forms a Markov chain, and (2) there exists a deterministifion X(U,Y) with
an expected distortion less thanIn this paper we study two extensions of this problem witHtipie

receivers.

;

n n
X —| Transmitter P Receiver [——p X

Fig. 1. Lossy source coding with side information at the nexre

If the side informationY™ in Wyner and Ziv's problem becomes unreliable in the senag ithmay,
or may not, be available to the receiver, then the codingreehi@&, Section IV] used to provel(1) fails: a
more complex coding scheme is required to exgidit This observation independently inspired Kaspi [3]
in 1980 (published by Wyner on behalf of Kaspi in 1994) as vesllHeegard and Berger [4] in 1985
to consider problem shown in Figuké 2 — the so called Kasgigded-Berger problem. As before, the
objective is to find the smallest rafe(d;, d2) such that receiver 1 resp. 2 can find reconstructions with

average per-letter distortions resp.ds. Heegard and Ber&showed that [4, Theorem 1]

R(dy,do) = min {I(X;W)+1(X;U|Y, W)},
'Kaspi's result [3, Theorem 2] gives an alternative charigation of R(d, ds).
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where the minimization is over all choices of two discreteétdiralphabet auxiliary random variablés
and W such that: (1) e X e (U, W) forms a Markov chain, and (2) there exists functichgY, U, W)
and X, (W) with expected distortions bound hi andd, respectively.
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Fig. 2. Lossy source coding when side information may be rabsethe receiver.

The Kaspi/Heegard-Berger problem was further generalisedHeegard and Berger in [4, Section
VII] to the problem shown in Figurél3. There atereceivers (each with their own side information)
and the objective is to characterise the correspondingdiatertion functionR(d;, ds, . ..,d;). Today, a
single-letter characterisation @t(d;,ds, ..., d;) is still lacking; since its formulation in 1985, Heegard
and Berger’s problem has resisted final solution and is nayarteed as a classic in multi-terminal
information theory. Notwithstanding this difficulty, thegblem has stimulated a number of important
results over the past two decades [3], [5]-[9], and it hamlmdved for the special case of degraded
side informationX e Yy, © Y;_13 © --- © Y{yy [4, Theorem 3].

For arbitrarily correlated side information, Heegard areid&r presented the functid®y g (d1, d, .. .,

d;) in [4, Theorem 2] as an upper bound fB{d;,ds, ..., d;). (The expression foRyp(di,ds, ..., d;)
follows in (14); however, this expression requires the tiotaand definitions from Sectioin]Il.) This
function is widely believed to be the tightest upper bound.

The present paper was motivated by our discovery of a coexderple to [4, Theorem 2]. That is,
a situation where the claimed upper bouRg p(d1,ds, ..., d:) is strictly less than the rate distortion
function R(dy, da, ..., d;). The invalidity of R p(dy, da, . .., d;) as an upper bound faR(dy, ds, . . ., d;)
is by no means obvious. Despite being used with modest frexyuia the literature, it appears to have
gone unnoticed for more than two decades. The claim is based a»mplex random coding argument

that use2! — 1 individual descriptions (vi&2! — 1 auxiliary random variables) to convey information
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about X™ to the receivers. We will see, however, that the expressiomRiyz(d;, ds, . .., d;) does not
provide appropriate conditional independence betweetaiceauxiliary random variables; thus, there is

insufficient rate for each of th#/ — 1 descriptions to be reliably decoded at the receivers.
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Fig. 3. Lossy source coding withreceivers — each with arbitrary side information.

This observation led us to consider the generalisation cfgded and Berger's problem shown in
Figure[4. The transmitter encodes the source intmessages\ii, M-, ..., M;. Receiverj receives
messages)/; through M; and forms a reconstructioﬁ(j with average per-letter distortion less than
d;. Itis readily seen that this generalisation of Heegard aed&’s problem is a multi-stage version of
the successive refinement problem with side information [[]] [9], and for this reason we refer to it
as a successive refinement proldem

Steinberg and Merhav [6] introduced and solved the twoivecesuccessive refinement problem with

degraded side informatioX e Y, e Y7, and Tian and Diggavi [9] extended this solutiontteeceivers
2In this paper we shall be exclusively interested in the attarisation of an inner bound for the region of admissible ra
tuples. We will not require, or even define, any notion of &ssive refinability of the source. For such details, therasied

reader is directed to [6], [8], [9].
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with degraded side informatiol o Y; e - --©Y5eY;. More recently, Tian and Diggavi [8] gave inner and
outer bounds for the admissible rate region for two recsiassumingX o Y; e Y, forms a Markov chain

— a reverse of the degradednéss Y, o Y7 used in [6], [9]. Our main result is a coding theorem for the
t-stage successive refinement problem with arbitrarilyedated side information shown in Figure 4. An
immediate corollary of this theorem is an upper bound forrdte-distortion functionRk(d;, ds, . .., d;)

for Heegard and Berger's problem shown in Figure 3.

|
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|
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Fig. 4. Successive Refinement wittstages and side information.

An outline of the remainder of this paper is as follows. In tgedlllwe formally define the-receiver
successive refinement problem shown in Fidure 4; we presemmrer bound for the admissible rate
region in Theorem]1; and we show that this inner bound indutie coding theorems of Steinberg and
Merhav [6] as well as Tian and Diggavi [8], [9] as special ageur proof of Theorerhl1 is given in

Sectior1ll. In Sectiol IV we formally define Heegard and Betg problem shown in Figuie 3; we show
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that there exists a situation wheryp(di,ds,...,d;) < R(di,ds,...,d;); we present a new upper
bound for R(d;,ds,...,d;) in Corollary[1; and we show that this bound includes the cgdheorems
of Wyner and Ziv [1], Heegard and Berger [4], and Kimura andebhatsu [10] as a special case. In
Section ¥ we describe a new lossless source coding problehp@sent an achievable rate. Finally, the
paper is concluded in Sectign]VI.

Notation: Sets will be identified using calligraphic typeface, €4j; random variables will be identified
by upper case charactBrs.g.X € Z; and particular realizations of random variables will beritified
by lowercase characters eag.Superscripts will be used to denote sequences¥.g= X1, Xo, ..., X,
similarly Xij = X, Xi41,...,X;. For any natural numbere N we let[t] = {1,2,...,t}, and fors <t
we let[s,t] = {s,s+1,...,t}. Set-valued subscripts will serve as indﬁ&sg.Uy with . C [t] denotes
the random variable assigned to the suhgetFor brevity, singletons or other small sets will be written
without brace notation, e.d/;;, and Uy 5, will be written asU; and Uy, respectively. Sequences of
so-labelled variables will be denoted b@m =Uy:,Uyit1,...,Us ;. Finally, tuples will be denoted

by boldface, e.gd = (dy,ds, ..., d;).

[l. SUCCESSIVEREFINEMENT WITH RECEIVER SIDE INFORMATION

We begin with a formal definition of the problem that is shownFigure[4. Let2" and %; (for all

receivers;j € [t]) be discrete finite alphabets. We assume that

(X”’ Y1n7Y2n7 .. 7}@”) £ {(X“ Ylﬂ" Ygﬂ', - ’Y.m_)}"

are n independent and identically distributed (i.i.d.) tupldsrandom variables emitted by a discrete
memoryless sourceZ” x # x % x --- x %, @Q), whereQ is an arbitrary probability mass function

on the cartesian product spaggé x %1 x % x --- X %
Q@ y,...,y) EPr[Xi =z, Vi =y1,.... Y, = .
The transmitter encodeX™ with an encoder
FO Xty x My % X My
where .#; is a discrete finite set with./Z;| elements. The resulting indices (M, M, ..., M;) =

f™ (X™) are sent to the receivers over chanrielrought respectively.

3with the exception ofHf and I, which will be respectively reserved for the entropy and waltinformation functions as

defined in [11]. Similarly,R will be reserved for rate-distortion functions and adntiksirates.

“Rather than to denote the sfit;,i € .#} of random variables, which is common usage in the literature
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At the jM-receiver, letZ; be a reconstruction alphabet adg: 2 x Z; — R, 2 [0,00) be a
per-letter distortion measure. (The reconstruction dghand distortion measure used at each receiver
need not be identical.) Thg"-receiver is required to generate a reconstrucﬁqh: g§”)(M1, Mo, ...,

M, Y]") of X™ using a decoder
Oty < My XX M B DT
and the quality of this reconstruction is measured by theamedistortion
1< .
Aj £ -~ E;5j(Xi,Xj,i) ;

whereE denotes the expectation operator.
Definition 1 d-Admissible Rate Tuple)Supposel = (di, ds, ..., d;) € R, is an arbitrary distortion
tuple. A rate tupleR = (Ry, Rs, ..., R;) € R, is said to bed-admissible if, for arbitrarye > 0, there

exists a sufficiently large, an encoder(™ andt decodersyln), gé"), gt("), whereA; < d; + € and
1
E10g2 | ;| < R;j + €

for everyj € [t]. We letZ(d) denote the closure of the set of dlladmissible rate tuples.

For eachj € [t], let d;jmin = E[min,_ .

is no rate tupleR € R, for which the distortion tuplel is admissible; the se#(d) is empty. In the

0;(X, 2)]. If dj < djmin for any receiverj € [t], then there

following, we are interested in the characterisatiorzg(d) for distortion tuples wheré; > d; ,, for
all j € [t]. The following proposition shows that this region is alwaysvex; its proof follows from the
standard code time sharing argument [12, Appedix].

Proposition 1: If d € RY, with d; > d; .., for all j € [j], then thed-admissible rate regios?(d) is
a closed convex subset Bf, .

The inner bound that we will develop in Theor€in 1 requizés- 1 auxiliary random variables — one
for each non-empty subset of receivers. For this purposeetyéor each non-empty subset C [¢], &7
be a discrete finite alphabet abl, be an auxiliary random variable defined ar-. Additionally, we
let % £ {Uz; 0 # 7 C [t]} be the set of all such auxiliary variables, and we define theviing two

subsets of% :

v (S)E{Us : S CTC[t]}, and

T+, 7=
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We define the auxiliary random variables #i via a family of probability mass functions?(d, Q)
on[l, oy x Z x % x--- x %. Specifically, a probability mass functignis a member of(d, Q)
if it satisfies the following four properties:

(P1) The " x %7 x % x --- x % marginal ofp is equal toQ.
(P2) p factors to form the Markov chai” ¢ X o (Y7, Y, ..., Y}).
(P3) For every subset” C [t], p factors to form the Markov chaitVy e (%*(.), X) e % (7).

(P4) For every receivey < [t], there exists a deterministic functioX; (Y;, U;, % *(5)) with
E(Sj (X, Xj (1/37 U],%*(]))> < d]"
For each mass functiome #(d, @), define

j
Z(d,p) £ {R ER, : > R > ie@%ﬂl(X;Uy Y, %), Vi€ [t])} (2)
=1 L C[t]

L NI1#0

and let

%*(d)co( U %(d,p)),

peZ(d,Q)
where cd-) denotes the closure of the convex hull. The following theoie the main result of the paper.

Theorem 1:If d € RY, andd; > d; min for every receiverj € [¢], then every rate tuple withigz*(d)
is d-admissible:

2" (d) C Z(d) .

The proof of this coding theorem is provided in the next sectiThe following two examples show
that this inner bound yields the entickadmissible rate region when the side information is degplad
and it reduces to the largest known inner bound for the siftgrimation scalable source coding problem.

Example 1 (Degraded Side Informationyhe side information is said to be degradedXife Y; o
Y; 1 e .-+ e Y; forms a Markov chain. The first result for degraded side imfation was provided by
Steinberg and Merhav [6, Theorem 1] for two receiviets 2. This result was subsequently extended by
Tian and Diggavi [9, Theorem 1] to any finite number of recesve> 2. To see how Theorefd 1 gives
the coding part of [9, Theorem 1] consider the following. Boged € R, with d; > d; ., for all
J € [t], and letZ,.4(d, Q) denote those mass functions 4A(d, Q) whereU is degenerate (constant)

whenevery # [j,t] for somej € [t]. For eactp € Z4.,4(d, Q), the region specified by 1(2) simplifies to
J j
Z(d,p) £ {R ERY > R =D T (X;Uuy | Vi, Uny, Uy Upi—1ry) » Vi € [t]} ,
i=1 i=1

which is the desired result.
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Example 2 (Side Information Scalable Source Codinghent = 2 andX e Y, e Y; forms a Markov
chain, Heegard and Berger [4, Theorem 3] showed that an aptiompression strategy should satisfy
distortion constraints of receiver after the distortion constraints of receivérhave been satisfied.
However, if the side information is not degraded, then thidedng may not be optimal. This observation
lead Tian and Diggavi [8] to propose the side informationlaula source coding problem, where it is
assumed thak e Y; e Y; forms a Markov chain. Under this Markov constraint, the oegdefined by
(@) reduces to

Ry >1(X;U,Up2 | Y1)
ZA(d,p) =S (R1,R2) €RY © R+ Ry >1(X;Us,Usa|Y2) ¢ -
+I(X;U; | Y1,Ur2)
which yields the inner bound reported in [8, Theorem 1]. Agérletter solution for this problem remains

open.

I1l. PROOF OFTHEOREM[

We now show that every rate tupR € Z#(d,p) is d-admissible for anyp € £2(d,Q). (The d-
admissibility of rate tuples iZ*(d) follows by the standard code time sharing argument.) Theamai
ingredient of the proof is a multi-layered random codinguangnt, which uses Kramer’s notion ef
letter typical sequences [13]. For convenience, we haviewed the relevant-letter typical results in
Appendix[l. Finally, to help elucidate the main ideas of a@dom coding argument, we present the

special case of = 3 receivers as a series of examples in parallel to the mainfproo

A. Code Construction

Supposad € RY. (with d; > d; .., for every receiverj € [t]) andp € Z(d, Q) are given. For each
non-empty subset” C [t], construct an.”|-layer nested codebook in the following manner: for each

vector valued index

ko £ (ko1 kyo . kg k)

with ko ; € 2"74], i =1,2,..., || andk/, € [2"f~], generate a length codeworda’,, (k) € &2
by selectingn symbols from.< in an i.i.d. manner using th&, marginal ofp. The quantitiesR  ;
and R’, will be defined shortly.
Example 3 §-Receivers Code Construction)Ve construct seven nested codebooks; one codebook for

each non-empty subset ¢f, 2, 3}. Figure[5 shows tha-layer nested codebook associated with the subset
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{1,2,3}. In the first layer, there arg"f=s.: bins (labelled with the indeX;93,1) each of which contain
on(Rias+His 2+ Ri2ss) codewords. The set of codewords inside a particular layerbim define the second
layer of the codebook. Specifically, each layer one indgx ; € [2"%1231] identifies2"#12s.2 Jayer two
bins. These bins are labelled with the indexs >, and each bin contain®™(fi2s +R123.3) codewords.
Similarly, each pairkia31 € [27231] and kig3 9 € [27%1232] identifies27f232 |ayer three bins. There

are 2"(123) codewords in each one of the layer three bins.

'
2"y codewords

TI00 U000 000 @O0t

onfizs hing

2nlr2 hing

2nEr 1 ping

Fig. 5. Three-layer codebook.

B. Encoding

To describe the encoding and decoding procedure, it will dvenient to introduce some additional
notation. Arrange the subsets [pf into a list with descending cardinality. (For subsets witke same
cardinality, use lexicographical ordering). With a sligtituse of notation, label the resulting list with the
sequencey, s, ..., 1. For example, for = 3 receivers we have?; = {1,2,3}, % = {1,2},
S =1{1,3}, S ={2,3}, S = {1}, % = {2} and.7 = {3}. Now define

UNS}) 2 Uy, S50 #0, |75 = 1), i <)

to be those auxiliary random variables labelled by loweekatl sets, which share at least one element
with .#; and have the same size &§. Finally, let &7 (i) denote thei-th element of.”” under natural
ordering. For example, i#” = {1,3} then.”(1) =1 and.”(2) = 3.

Encoding proceeds sequentially % — 1 stages using-letter typical set encoding rules. For this
purpose, choose < ¢y < €; < --- < eor t0o be arbitrarily small real numbers.

The transmitter is given a vectoef' € 2. At encoding stagé (for j = 1,2,...,2!—1), it selects the

codebook with label”; and looks for an index vectdts, where the corresponding codeward, (k. )
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<5 | Subset | A.R.V. UHS) Index-to-Channel Mag

ks, 1 — Channell
1 {1,2,3} | Us, 0 ks, » — Channel2

ks, 3 — Channel3

k — Channell
S| (1,2} | Us 0 721
k.s,,2 — Channel2

k., 1 — Channell
S3 {173} Us, {Uy2} 3
k4,2 — Channel3

) ks, 1 — Channel2
S| 12,3} | Usy | {Us,, Uy} o
ks,2 — Channel3

s {1} Uy, 0 ks, 1 — Channell
s {2} U, 0 kg1 — Channel2
y {3} Uy, 0 k.1 — Channel3

Fig. 6. The figure illustrates the label and channel-tosndssignments for three receivers.

is ¢;-letter typical withz™,

{a’ (ks): 72 .7, i<j}, and

{a% (ks): SN S5 £ 0,1 = 7], i <5} . (3)
If successle, the transmitter sends the bin indéx, ; over channel”;(i) for eachi = 1,2,...,[.7}|.

If unsuccessful, the transmitter Seﬂdv%7i = 1 over each of these channels.

Example 4 §-Receivers Encoding)Figure[® illustrates the labels used to identify the sevenempty
subsets of 1, 2, 3}; the assignment of seven auxiliary random variables; thebees of each of the sets
Ui(yj); and the channels on which the bin indices are sent. In thiediirsoding stage, the transmitter
looks for a vectorkk s, = (kg 1,k 2,k 3,k ) such that the corresponding codewart) (ko) is
typical with 2”. The indicesky, 1, ks, 2 and kg, 3 are sent over channels 2 and 3 respectively.
In the fourth encoding stage, the encoder looks for a vekior = (ky471,ky472,]{7ry4) such that the
corresponding codeword;, (k,) is typical witha’, (ks,), a”, (k,), a’, (k) andz™. Similarly, in
the sixth encoding stage, the transmitter looks for a véetgr= (k. 1, k', ) such that the corresponding

codeworda’y, (k) is typical witha’, (ks,), a’y, (ks,), a”, (k) andx".

5If there are two-or-more such codewords, we assume thatrémsrhitter selects one codeword arbitrarily and sends the

corresponding indices.
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C. Decoding

Like the encoding procedure, receivie(for eachl € [t]) forms its reconstructiorf(ﬁ using 2! — 1
sequential decoding stages. Recall, receiweicovers every bin index transmitted on chanreisrough
I; it does not have access to any index transmitted on chahnelsthrought. In stagej (for all stages
j=1,2,...,2' —1) it considers subse¥;. If [ ¢ .7}, then it does nothing and moves to decoding stage

Jj+ 1. 1f I € .7, then it takes the bin indices

{koi; i=1,2,.... |l N}
and looks for an index vectdks,, with ks ; = ks ; for all i = 1,2,...,|[1] N %], such that the

corresponding codeword"(f{%_) is €;41-letter typical withy" and those codewords which belong to

supersets of/:

({a ) = 542 550 < 3} aty (k)owit) € T, (). (4)
There are exactly
7]
€xpy |1 R_/yj + Z Ry, i
i=|[lN.7]+1
codewords in the bin specified by the indicgs,, ; : i = 1,2,...,[[I] N .#;|}. If one or more of these

codewords satisfy this typicality condition, then receiveselects one arbitrarily and sdts% = llyj. If
there is no such codeword, it sets each of the unknown indigesal tol.

Example 5 §-Receivers Decoding)Consider the second receiv@r = 2). In stage one, také s, ;
(from channell) and k., » (from channek) and look for a vectok s, = (ks 1, ks, 2, ks, 3, Ky, ) such
that the corresponding codeww@l(ky]) is typical with y5. Similarly, in stage four také o, ; (from
channel2) and look forky, = (ks 1,k,2.k,) such that the corresponding codewart) (k) is
jointly typical with a", (Ryl) and yy. Finally, in stage six také s, ; (from channel2) and look for
ks, = (ks1,k,) such that the corresponding codewart) (k) is jointly typical with a?, (ks ),

a"yz(f{ ), 6@4(12 ) andyy.

D. Error Analysis: Encoding

The coding scheme is based eitetter typical set encoding and decoding techniques. Ah,sthe
distortion criteria at each receiver will not be satisfiedewliz", y7, v, ..., yf') ¢ TE(O")(p) — an event

we denoted byF,. From Lemmd[RR, the probability of this event may be bound by

Pr [El] <1 (n7 607:“(17)) ’
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whered (n, €, 1(p)) —0 asn — oco.
Now let E; o, denote the event that the transmitter fails to findegitetter typical codeword during

stage;j of encoding procedure given that it found grletter typical codeword for every stage [j —1].

From LemmdB and the inequalift — z)t < e~** we have

(o1 )

Pr[Eyy] = [1 — Pr|({a, (k) } U, (k,),2") € T, ()]

< exp ( - (1 o 52)2H(R,l¢j+2ij1‘ R,?”j,i) . 2—n (I(%*(%)’%I(%)’X;U“j)+267‘H(U‘/j))) (5)

where, for compact representation, we have writterx fHetter typicality condition in[(B3) as{a’y, (k,)},
Uy (k). a") € TV (p) and the functionsy (n, ¢;_1, ¢;, 1u(p)) asos.
From property(P4) we have thatUy, e (%*(.%;),X) e %1(.%;) forms a Markov chain. Since

UNS) CUNS), Uy, o (%*(F),X) e} () also forms a Markov chain; therefore,
(% (), (). XiUs, ) = T(U*(), X:Us,)
Consequently((5) simplifies to

Pr[Ey 7] <exp (- (1- 52)2"(R3fj+2lzij1‘ R, .2_"<I(%*(%)’X;U’"J’)+26jH(U“J’))) :

Let E> denote the event where a typical codeword cannot be foundyab@e of the encoding stages.

By the union bound we get the following upper bound fofABi:

2t—1

Pr(E;] < ) exp <— (1- 52)2”(’% T2 Ray) g7m (I(%*(%)’X;U%)+25"H(ij)>) :
j=1

Finally, note that if

17|
Ry, +Y Ryi>I1(U'(S),X:Us) +2¢H (Uy,) (6)
1=1

for every encoding stagge [2¢ — 1], thenPr[Es] — 0 asn — cc.

E. Error Analysis: Decoding

Consider thel-th receiver (for alll € [t]) and a set”; with j € .#;. Let D; o, be the event that it
cannot find a unique codeword during decoding stagehich satisfies the typicality conditiohl(4); given

that at every stagé< j it found a unique codeword satisfying this typicality carah.
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By the Markov lemma (Lemmal4), the probability that the COdEdNa_r%(kyj) selected by the

transmitter is not jointly typical withy* is small for largen:
Pr (v ¢ 70, (p | {aly, ()}l (ks ),2™ ) | < 82 (n, 5, €1 1(P))
where for brevity we have used
{a (er)} = {a,(kz) : 4 2 i < 5} ©

An upper bound for the probability that there exists one ormdewords;”yg(llyy) # a%y (k)
which satisfy [(4), is

Pr [U {{a (ko) bovptsa, (k) | € TS <p>}

X
B4
<expy n(Ry, + Y. Ry = IUsi %5 (F)Y0) + 260 H(Uz)) | ©)
i=|[1]NS;|+1
where we take the union over all codewords
Hj = {lzsj #ks,, {ks, ;= ksj,i}LSiZ""’l}mSjl} :
and we have again used (7) for brevity. Applying the unionrzbwe get
57
Pr [Dl,yj] < J9 + expsy n(Rfy] + Z Ryjﬂ) — n<I<ij; %*(%)Jx‘l) — 25j+1H(ij)>
i=|[l]n7]
Thus, if
41
R, + > Ryi<IUy;% (). Y1) —2¢1H (Uy)) ©)
i=|[l]NS;|+1

thenPr[D; & ] — 0 asn — oc.

F. Rate Constraints

Consider receivet and any subset” wherel € .#. On combining the rate constraints (6) ahfl (9) we

get
BZall

Ul
Ry > 1% (), X;Us) —1(Usr; % (), Y1) - (10)
1=1
(Sincee; ande;; may be selected arbitrarily small, we can ignore 26 + €;1)H (.#;) term.) From

property (P2) we have thatZZ ¢ X e Y; forms a Markov chain. This implie§ o o (%*(7),X) e Y]
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forms a Markov chain and(%*(.%),X;Uy) = I(%*(),X,Y;;Uy). Consequently, simplifies the

rate constraint (10) simplifies to
1N~
> Ryi>I(X;Uy | %*(S),V1) . (11)

i=1
Repeating this procedure for any receiver (1] N.#;, we obtain

0.
Y Ryi>1(XiUy | %*(5).Y)) .
=1
SinceR; > 0 for all ¢, it must be true that

[N
> Ryi> max I(X;Uy |%*(S).Y)) ; (12)
i—1 lellns
that is, the rate constraint for receiviemust be at least as large as the rate constraint for receiver
The rate constraini (12) is valid for any set wherel € .. For those subset®” with | € .7, define
A= max;cny i- Sincel* € 7 and[I*] N = [I]N.7, it follows that [12) is also valid for any se¥’
wherell] N .7 # 0.

Finally, consider the sum ratgﬁz1 R; for the first! channels. By construction, we have that

[N
]

!
j{:fﬁiz j{: j{: Ry . (13)
=1

FCltl =1
FN[1]#£0

Substituting the rate constraint (12) info(13) yields thesiced result.

IV. RATE-DISTORTION WITH RECEIVER SIDE INFORMATION
We now turn attention to Heegard and Berger’s lossy sourdaggoroblem shown in Figuie 3. This
problem may be recovered from the setup of Sediibn Il by dnads#,| = | 45| = --- = | 4| = 1.
We are interested in the characterisation of the rate-diigtofunction

R(d) = inf{Rl eR,y: (Rl,O,...,O) S %(d)} .

A single-letter characterisation d?(d) is an open problem, and in this section we provide an upper
bound.
Given a distortion tuplel and family 2 of probability mass functions ofy| ,, &7y x 2" x %) X - - - x %,

define

* Ay . . . . *
R*(d,2) g&g{yqﬂg@gﬂ?ﬂ Uy | Y, U (5’))}-

The following upper bound foR(d) follows directly from Theoren]1.

October 26, 2018 DRAFT



16

Corollary 1: If d € RY, andd; > d;n.», for every receivey € [t], then

R'(d,#(d,Q)) = R(d).
At this point it is useful to recall Heegard and Berger’s fime Ryp(d) from [4, Theorem 2].

Adopting the above notation, this function may be written as

Ryp(d) = R*(d, Znp(d,Q)) (14)

where Zr5(d, Q) is set of probability mass functions satisfyii®1), (P2) and (P4) — but not(P3).
HenceR*(d, #(d,Q)) and Ry (d) differ only in the set on which the minimization takes platée
following example shows that the Markov condition providgd(P3) is not superfluous, and it provides
a counterexample to the claim of [4, Theorem 2].

Example 6 Ry p(d) can be smaller tharR(d)): Lett = 3 and supposé&; = Y, = Y3 = constant.
Let 2; = 2 = {0,1,2} for all j with Hamming distortion,

Sy =4 O AT (15)
1, otherwise,
Additionally, consider the situation where it is desiredttiX” is recovered at each receiver with =
dy = d3 = 0. Finally, suppose thaB and C' are independent random variables, uniform{®nl,2},
and set:X = B; Uy = Uy = Uz = Uyg3 = constantU;s = C; U3 = B® C; andUss = B @ 2C in
modulo-3 arithmetic.

The above selection of random variabl&s Uy, 5y, Uy 3y and Uy, 3y is by no means arbitrary. Both
functions Ry and R* require existence of function¥ : @s x 3 — X, Xo : Aoy X oy — X
and X : /3 x ohs,— 2 wherez = X (a12,a13), © = Xa(a12,a23) andz = X3(a13, azs) whenever
p(z,a12,a13) > 0, p(x,a12,a23) > 0 and p(z, a3, azs) > 0 respectively. It is readily checked that this
selection of random variables implies the existence of $ucttions. Finally, note that the Markov chains
Uis © X © (Uys,Ur2), U © X o (U12,Us3) andUsys © X o (U2, Uss) do not hold; therefore, this is
not a valid selection of auxiliary random variables for thgper bound in Corollarj/]1.

It is clear thatRy(0,0,0) = I (X;Ui2)+ I (X;Ui3)+ I (X;Uss). However, on closer inspection, it
can be seen that each of these mutual information terms a &xzero. In Appendix | we prove that
R(0,0,0) > H(X) > 0; therefore,Rr5(0,0,0) < R(0,0,0).

In the following two examples, we show that Corollafy (1) @gvthe rate-distortion function for the
degraded side information and complementary delivery |prob.

Example 7 (Degraded Side Informationip [4, Theorem 3], Heegard and Berger characteriBéd)

under the assumption of degraded side informafior Y; ¢ Y; | © --- © Y;. To see how Corollan/{1)
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gives the coding theorem of [4, Theorem 3] consider the Wahg. Recall the set of probability mass
functions Z4.4(d, Q) from Examplel. On substituting?,.,(d, Q) into Corollary [1) we get

t
R (d, Pyr(d,Q)) > mi I(X:Upy | YosUn g Usger o Uiy a)
(d, Py Q»_Mgggd@Z (X3 Ui 1 Y5, Upi gy Uy i-14)

j=1
which is the desired result.

Example 8 (Complementary DeliveryJhe complementary delivery problem was originally progbse
and solved as a source coding problem (with vanishing blaosr gorobability) by Wyner, Wolf and
Willems [14]. Recently, Kimura and Uyematsu [10] solvedstproblem in the rate-distortion setting.

Suppose thaf\ = (X1, Xs,...,X;) is a product source of?” = 27 x 23 x --- x 23, where the
Z; are discrete finite alphabets. Additionally, suppose thatside information at receivgris given by
Y; = X§ £ (X1, Xo,...,Xj-1,Xj+41,...,X¢). The resulting rate-distortion function is given by [10]

R(d) = minl;éz?gl (X;;C | X;) ,
where the minimization is over all choices of an auxiliarmadam variableC'. The forward implication

of this result is a special case of Corollaty 1 whép is set to be a constant whenevet C [¢].

V. LOSSLESSSOURCE CODING WITH INDIVIDUAL MESSAGES

If 3&9 = %2 forall j=1,2,...,t, and the distortion measute is Hamming, th%\

R(0,0,...,0) =max H (X | Y;).
Jelt]

The forward part of this result follows directly from Coratly [ whenUy is set toX if S = [¢] and
constant otherwise, and the converse is given in Appendioi this reason, it is generally accepted that
the lossless version of thereceiver problem of Figurgl 3 is well understood.

In the following, we present a second lossless source caalioiglem for which the set of achievable
rates is not known. In fact, this problem appears to be justiffisult as the rate-distortion problem.

In the same manner as the complementary delivery problepposeX = (X, Xo, ..., X;) is a
product source 02" = 27 X Z5 X - -- x 2. Now Ietﬁfj = Z; and assume that receivgis interested
only in lossless reconstruction df7". Of interest is the smallest rat;), such that this is possible. A
direct application of Corollary]1 with the Hamming distorii measure yields an upper bound oy,;.
Unfortunately, however, it is not known if this bound is tigfrhe following corollary shows that this

upper bound matches the rate distortion function when tthe isiformation is degraded.

®The vanishing block error probability version of this preil was solved by Sgarro in [15].
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Corollary 2: If the side information is degradel o Y; ¢ Y; 1 & --- o Y, then

t
Ry =) H(X; | X1,Xa,...,X;-1,Y)).
j=1
The coding theorem follows from evaluation &f(0,0,...,0) using CorollaryL 1L, withd;(z,Z;) =
du(xj, &), and by settingl» = X, if ¥ = [j,t] and constant otherwise. The converse follows by

making some minor changes to the converse of [4, Section Ml expedience, these details are omitted.

VI. CONCLUSION

The main result of the paper (Theoréin 1) gives an inner boanth& region of admissible rate tuples
for the t-stage successive refinement problem with side informafibis result unifies the existing inner
bounds of Steinberg, Merhav, Tian and Diggavi [6], [8], [# immediate application of Theorepm 1
yields an upper bound for the rate-distortion function foe problem of lossy source coding problem
with side information at many receivers (Corollady 1). Thisund reduces to the rate-distortion function
for Heegard and Berger's degraded side information problémTheorem 3], as well as Kimura’'s
complementary delivery problem [10]. Of particular int&trés a counterexample to Heegard and Berger’s
general upper bound [4, Theorem 2] for arbitrary side infation. Although the successive refinement
and rate-distortion bounds presented in this paper subsursieng results in the literature, it is not clear

if either bound is tight.

APPENDIX |

A LOWERBOUND FORR(d) UNDER HAMMING DISTORTION

Lemma 1:Consider the rate-distortion functioR(d), which is defined in Section_IV. If%@- =2

and¢; is Hamming distortion measure (for all receivgrs [t]), then

R(0,0,...,0) > m&[u}(H(X|YZ) .
i€lt
Proof: Consider thej-th receiver (for some € [t]). Let P.; = Pr[X;; # X;,| denote the

probability that this receiver incorrectly reconstrucysndol i (for i € [n]), and let

1 n 1 n N
Pe = EZ;PEJL = EZ_;EéH(X%“XJvZ) S €
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denote the average probability of symbol error oxesymbols. By definition, we have
Liogla = Laomy = La (o | v
n & n Y= Pt
1
> EI (X{L§Ml ’Yyill)

1 n
— EZ.r(Xi;M1 | XL YY)
=1

S (X X Y Y 1) (19)
2 (K ¥ V5

S ONCTAPPRVIRARTRGS)

=—Z[ (X | V5) — H (X | M, Yy, X)) (17)
) n [ e~ H (0] %)

z% 3 (1056 1% = (P~ Puslog 2] 18)

:H(X’Yj)—;zh(Pe,i)_Pelog"%‘

ZH(X|Y})_h(Pe)_PelOg|%| (19)

> H (X | Y;) ~ h(e) - elog| 2| (20)
where [16) follows becaus&; e Y;; e (X}~ 1,Y;11,YJ"Z+1) forms a Markov chain,[(17) is due to
Xj = g» )(Ml,Yffl) (18) follows from Fano’s inequality [11, Page 39] witl{-) as the binary entropy

function [11, Page 14][(19) follows from Jensen’s ineagyal20) follows by assuming is small (i.e.
0 < e < 1/2). Finally, h(e) + elog|Z| — 0 ase — 0. [

APPENDIX Il

e-LETTER TYPICALITY

Fore > 0, a sequence™ € 2" is said to bec-letter typical with respect to a discrete memoryless
source( 2, px) if
—N(a|z") —px(a)| <e-px(a) Yae 2,
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whereN (a|z™) is the number of times the letteroccurs in the sequenaé. The collection of alk-letter
typical sequences is denoted W) (px)-
In a similar fashion, a pair of sequences andy” are said to jointlye-letter typical with respect to

a discrete memoryless two sourC&” x % pxy) if
1
EN(aab’wnayn) _pXY(a7 b) <e 'pXY(G’J b) V(CL, b) EX XY )

where N (a, blz™,y™) is the number of times the pair of lettefs, b) occurs in the paifz",y"). The
collection of all jointe-typical sequence pairs is denoted ES}” (pxy)-

Given (Z x % ,pxy) andz™ € 2", the set
T (pxy [2") = {y" + (" y") € T (pxy)}

is called the set of conditionally-letter typical sequences.

Let u(Z2 ,px) = min{px(z) : = € supportpx)} and define
81 (n,€, pu(px)) = 2| 27| - e 1P,

NO'[e,é(n7 e,u(px)) — 0 asn — oo.
Lemma 2 (Theorem 1.1, [13])SupposeX™ is emitted by a discrete memoryless soufc&, px). If
0 <e<pu(px), then
1 =961 (n,e, u(px)) < Pr [X" € Te(")(px)] <1.
Now consider a discrete memoryless two-sour@é x % pxy ), let

(eg—€1)?

52(71761,62,#(},)“/)) =212||#| - P ﬂ(PXY)’

and note that, (n, €1, €2, u(px)) — 0 asn — oo.
Lemma 3 (Theorem 1.3, [13])SupposeY™ is emitted by (#,py) where py is equal to theY-

marginal ofpxy. If 0 < ¢; < €2 < p(pxy) anda™ € TE(]")(pX), then

(1 - 62 (TL, €1, €2, M(pXY))) 2_n(I(X;Y)+2E2H(Y))

< Pr [yn € T™ (pxy | )] < 27 "IV )=26H(Y)
Finally, a direct consequence of Lemina 3 for Markov soursethé following result.
Lemma 4 (Markov Lemma [13])Suppose X™, Y™, Z™) is emitted by a discrete memoryless three-

source(Z X ¥ x ¥ ,pxyz) whereX oY o Z. If 0 < e < e < p(pxyz) and(z",y") € TE(I")(pr),
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then

Pr [Z" € TE(Z") (pxyz |z y") | Y" =9y"
=Pr [Z" € TE(Z") (pxyz | 2™ y") | X" =2 Y" = y"]

>1— 062 (n,e1, €2, 1(pxvyz))-
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