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Abstract

We present an inner bound for the admissible rate region of the t-stage successive refinement problem

with side information, and we present an upper bound for the rate-distortion function for lossy source

coding with multiple receivers and side information. A single-letter characterisation of this rate-distortion

function is a long standing open problem in multi-terminal information theory, and it is widely believed

that the tightest upper bound is provided by Theorem 2 of Heegard and Berger’s paper “Rate-Distortion

when Side Information may be Absent,”IEEE Trans. Inform. Theory, 1985. We give a counterexample

to Heegard and Berger’s result, and we develop our new upper bound as a corollary to our inner bound

for the successive refinement problem with side information.
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I. INTRODUCTION

One of the most important results in multi-terminal information theory is Wyner and Ziv’s solution [1]

to the problem of lossy source coding with side information at the receiver; figure 1 shows the problem

setup. The main objective is to give a single-letter characterisation [2, Page 259] of the rate-distortion

functionR(d), which is defined as the smallest rate at which it is possible to encode a discrete memoryless

sourceXn = X1, . . . ,Xn such that the receiver with side informationY n = Y1, . . . , Yn can obtain a

reconstructionX̂n of Xn with an average per-letter distortion less thand. To this end, Wyner and Ziv

[1, Theorem 1] showed that

R(d) = min
{

I(X;U)− I(U ;Y )} , (1)

where the minimization is over all choices of a discrete finite alphabet auxiliary random variableU such

that: (1)Y 
 X 
 U forms a Markov chain, and (2) there exists a deterministic function X̂(U, Y ) with

an expected distortion less thand. In this paper we study two extensions of this problem with multiple

receivers.

X
n

Transmitter

M
Receiver

Y
n

X̂
n

Fig. 1. Lossy source coding with side information at the receiver.

If the side informationY n in Wyner and Ziv’s problem becomes unreliable in the sense that it may,

or may not, be available to the receiver, then the coding scheme [1, Section IV] used to prove (1) fails: a

more complex coding scheme is required to exploitY n. This observation independently inspired Kaspi [3]

in 1980 (published by Wyner on behalf of Kaspi in 1994) as wellas Heegard and Berger [4] in 1985

to consider problem shown in Figure 2 – the so called Kaspi/Heegard-Berger problem. As before, the

objective is to find the smallest rateR(d1, d2) such that receiver 1 resp. 2 can find reconstructions with

average per-letter distortionsd1 resp.d2. Heegard and Berger1 showed that [4, Theorem 1]

R(d1, d2) = min
{

I (X;W ) + I (X;U | Y,W )
}

,

1Kaspi’s result [3, Theorem 2] gives an alternative characterisation ofR(d1, d2).
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where the minimization is over all choices of two discrete finite alphabet auxiliary random variablesU

andW such that: (1)Y 
X
 (U,W ) forms a Markov chain, and (2) there exists functionsX̂1(Y,U,W )

andX̂2(W ) with expected distortions bound byd1 andd2 respectively.

X
n

Transmitter

M Receiver

1

Receiver

2

Y
n

X̂
n

1

X̂
n

2

Fig. 2. Lossy source coding when side information may be absent at the receiver.

The Kaspi/Heegard-Berger problem was further generalisedby Heegard and Berger in [4, Section

VII] to the problem shown in Figure 3. There aret receivers (each with their own side information)

and the objective is to characterise the corresponding rate-distortion functionR(d1, d2, . . . , dt). Today, a

single-letter characterisation ofR(d1, d2, . . . , dt) is still lacking; since its formulation in 1985, Heegard

and Berger’s problem has resisted final solution and is now regarded as a classic in multi-terminal

information theory. Notwithstanding this difficulty, the problem has stimulated a number of important

results over the past two decades [3], [5]–[9], and it has been solved for the special case of degraded

side informationX 
 Y{t} 
 Y{t−1} 
 · · · 
 Y{1} [4, Theorem 3].

For arbitrarily correlated side information, Heegard and Berger presented the functionRHB(d1, d2, . . . ,

dt) in [4, Theorem 2] as an upper bound forR(d1, d2, . . . , dt). (The expression forRHB(d1, d2, . . . , dt)

follows in (14); however, this expression requires the notation and definitions from Section II.) This

function is widely believed to be the tightest upper bound.

The present paper was motivated by our discovery of a counterexample to [4, Theorem 2]. That is,

a situation where the claimed upper boundRHB(d1, d2, . . . , dt) is strictly less than the rate distortion

functionR(d1, d2, . . . , dt). The invalidity ofRHB(d1, d2, . . . , dt) as an upper bound forR(d1, d2, . . . , dt)

is by no means obvious. Despite being used with modest frequency in the literature, it appears to have

gone unnoticed for more than two decades. The claim is based on a complex random coding argument

that uses2t − 1 individual descriptions (via2t − 1 auxiliary random variables) to convey information
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aboutXn to the receivers. We will see, however, that the expression for RHB(d1, d2, . . . , dt) does not

provide appropriate conditional independence between certain auxiliary random variables; thus, there is

insufficient rate for each of the2t − 1 descriptions to be reliably decoded at the receivers.

X
n

f
M

g1

g2

gm

Y
n

1

Y
n

2

Y
n

t

X̂
n

1

X̂
n

2

X̂
n

t

Fig. 3. Lossy source coding witht receivers – each with arbitrary side information.

This observation led us to consider the generalisation of Heegard and Berger’s problem shown in

Figure 4. The transmitter encodes the source intot messagesM1,M2, . . . ,Mt. Receiverj receives

messagesM1 throughMj and forms a reconstruction̂Xj with average per-letter distortion less than

dj . It is readily seen that this generalisation of Heegard and Berger’s problem is a multi-stage version of

the successive refinement problem with side information [6], [8], [9], and for this reason we refer to it

as a successive refinement problem2.

Steinberg and Merhav [6] introduced and solved the two-receiver successive refinement problem with

degraded side informationX 
 Y2 
 Y1, and Tian and Diggavi [9] extended this solution tot-receivers

2In this paper we shall be exclusively interested in the characterisation of an inner bound for the region of admissible rate

tuples. We will not require, or even define, any notion of successive refinability of the source. For such details, the interested

reader is directed to [6], [8], [9].
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with degraded side informationX
Yt
· · ·
Y2
Y1. More recently, Tian and Diggavi [8] gave inner and

outer bounds for the admissible rate region for two receivers assumingX
Y1
Y2 forms a Markov chain

– a reverse of the degradednessX
Y2 
Y1 used in [6], [9]. Our main result is a coding theorem for the

t-stage successive refinement problem with arbitrarily correlated side information shown in Figure 4. An

immediate corollary of this theorem is an upper bound for therate-distortion functionR(d1, d2, . . . , dt)

for Heegard and Berger’s problem shown in Figure 3.

X
n

Transmitter

Receiver

1

Receiver

2

Receiver

t

Y
n

1

Y
n

2

Y
n

t

X̂
n

1

X̂
n

2

X̂
n

t

Receiver

/
X̂

n

3

Y
n

3

M1

M2

M3

Mt

Fig. 4. Successive Refinement witht stages and side information.

An outline of the remainder of this paper is as follows. In Section II we formally define thet-receiver

successive refinement problem shown in Figure 4; we present an inner bound for the admissible rate

region in Theorem 1; and we show that this inner bound includes the coding theorems of Steinberg and

Merhav [6] as well as Tian and Diggavi [8], [9] as special cases. Our proof of Theorem 1 is given in

Section III. In Section IV we formally define Heegard and Berger’s problem shown in Figure 3; we show
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that there exists a situation whereRHB(d1, d2, . . . , dt) < R(d1, d2, . . . , dt); we present a new upper

bound forR(d1, d2, . . . , dt) in Corollary 1; and we show that this bound includes the coding theorems

of Wyner and Ziv [1], Heegard and Berger [4], and Kimura and Uyematsu [10] as a special case. In

Section V we describe a new lossless source coding problem and present an achievable rate. Finally, the

paper is concluded in Section VI.

Notation:Sets will be identified using calligraphic typeface, e.g.X ; random variables will be identified

by upper case characters3 e.g.X ∈ X ; and particular realizations of random variables will be identified

by lowercase characters e.g.x. Superscripts will be used to denote sequences, e.g.Xj = X1,X2, . . . ,Xj ,

similarly Xj
i = Xi,Xi+1, . . . ,Xj . For any natural numbert ∈ N we let [t] = {1, 2, . . . , t}, and fors < t

we let [s, t] = {s, s+1, . . . , t}. Set-valued subscripts will serve as indices4, e.g.US with S ⊂ [t] denotes

the random variable assigned to the subsetS . For brevity, singletons or other small sets will be written

without brace notation, e.g.U{1} andU{1,2} will be written asU1 andU12 respectively. Sequences of

so-labelled variables will be denoted byU j
S ,i = US ,i, US ,i+1, . . . , US ,j . Finally, tuples will be denoted

by boldface, e.g.d = (d1, d2, . . . , dt).

II. SUCCESSIVEREFINEMENT WITH RECEIVER SIDE INFORMATION

We begin with a formal definition of the problem that is shown in Figure 4. LetX andYj (for all

receiversj ∈ [t]) be discrete finite alphabets. We assume that

(

Xn, Y n
1 , Y n

2 , . . . , Y n
t

)

,

{

(

Xi, Y1,i, Y2,i, . . . , Yt,i)
}n

i=1

are n independent and identically distributed (i.i.d.) tuples of random variables emitted by a discrete

memoryless source(X × Y1 × Y2 × · · · × Yt, Q), whereQ is an arbitrary probability mass function

on the cartesian product spaceX × Y1 × Y2 × · · · × Yt:

Q (x, y1, . . . , yt) , Pr [X1 = x1, Y1 = y1, . . . , Yt = yt] .

The transmitter encodesXn with an encoder

f (n) : X
n → M1 × M2 × · · · × Mt ,

whereMj is a discrete finite set with|Mj | elements. The resultingt indices (M1, M2, . . . , Mt) =

f (n) (Xn) are sent to the receivers over channels1 throught respectively.

3With the exception ofH and I , which will be respectively reserved for the entropy and mutual information functions as

defined in [11]. Similarly,R will be reserved for rate-distortion functions and admissible rates.

4Rather than to denote the set{Ui, i ∈ S } of random variables, which is common usage in the literature.

October 26, 2018 DRAFT



7

At the jth-receiver, letX̂j be a reconstruction alphabet andδj : X × X̂j → R+ , [0,∞) be a

per-letter distortion measure. (The reconstruction alphabet and distortion measure used at each receiver

need not be identical.) Thejth-receiver is required to generate a reconstructionX̂n
j = g

(n)
j (M1, M2, . . . ,

Mj , Y
n
j ) of Xn using a decoder

g
(n)
j : M1 × M2 × · · · × Mj × Y

n
j → X̂

n
j ,

and the quality of this reconstruction is measured by the average distortion

∆j ,
1

n
E

n
∑

i=1

δj(Xi, X̂j,i) ,

whereE denotes the expectation operator.

Definition 1 (d-Admissible Rate Tuple):Supposed = (d1, d2, . . . , dt) ∈ Rt
+ is an arbitrary distortion

tuple. A rate tupleR = (R1, R2, . . . , Rt) ∈ Rt
+ is said to bed-admissible if, for arbitraryǫ > 0, there

exists a sufficiently largen, an encoderf (n) andt decodersg(n)1 , g(n)2 , . . ., g(n)t , where∆j ≤ dj + ǫ and

1

n
log2 |Mj | ≤ Rj + ǫ

for everyj ∈ [t]. We letR(d) denote the closure of the set of alld-admissible rate tuples.

For eachj ∈ [t], let dj,min = E[min
x̂∈X̂j

δj(X, x̂)]. If dj < dj,min for any receiverj ∈ [t], then there

is no rate tupleR ∈ Rt
+ for which the distortion tupled is admissible; the setR(d) is empty. In the

following, we are interested in the characterisation ofR(d) for distortion tuples wheredj ≥ dj,min for

all j ∈ [t]. The following proposition shows that this region is alwaysconvex; its proof follows from the

standard code time sharing argument [12, Appedix].

Proposition 1: If d ∈ Rt
+ with dj ≥ dj,min for all j ∈ [j], then thed-admissible rate regionR(d) is

a closed convex subset ofRt
+.

The inner bound that we will develop in Theorem 1 requires2t − 1 auxiliary random variables – one

for each non-empty subset of receivers. For this purpose we let, for each non-empty subsetS ⊆ [t], AS

be a discrete finite alphabet andUS be an auxiliary random variable defined onAS . Additionally, we

let U , {UT ; ∅ 6= T ⊆ [t]} be the set of all such auxiliary variables, and we define the following two

subsets ofU :

U
∗(S ) ,

{

UT : S ( T ⊆ [t]
}

, and

U
†(S ) ,







UT :
T ⊆ [t], T ∩ S 6= ∅,

T 6= S , |T | = |S |







.
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We define the auxiliary random variables inU via a family of probability mass functionsP(d, Q)

on
∏

S
AS ×X ×Y1 × · · · ×Yt. Specifically, a probability mass functionp is a member ofP(d, Q)

if it satisfies the following four properties:

(P1) The X × Y1 × Y2 × · · · × Yt marginal ofp is equal toQ.

(P2) p factors to form the Markov chainU 
 X 
 (Y1, Y2, . . . , Yt).

(P3) For every subsetS ⊆ [t], p factors to form the Markov chainUS 
 (U ∗(S ),X) 
 U †(S ).

(P4) For every receiverj ∈ [t], there exists a deterministic function̂Xj (Yj , Uj ,U
∗(j)) with

E δj

(

X, X̂j (Yj , Uj ,U
∗(j))

)

≤ dj .

For each mass functionp ∈ P(d, Q), define

R(d, p) ,

{

R ∈ Rt
+ :

j
∑

i=1

Ri ≥
∑

S⊆[t]

S∩[j] 6=∅

max
i∈S∩[j]

I (X;US | Yi,U
∗(S ) , ∀j ∈ [t])

}

(2)

and let

R
∗(d) = co





⋃

p∈P(d,Q)

R(d, p)



 ,

where co(·) denotes the closure of the convex hull. The following theorem is the main result of the paper.

Theorem 1:If d ∈ Rt
+ anddj ≥ dj,min for every receiverj ∈ [t], then every rate tuple withinR∗(d)

is d-admissible:

R
∗(d) ⊆ R(d) .

The proof of this coding theorem is provided in the next section. The following two examples show

that this inner bound yields the entired-admissible rate region when the side information is degraded,

and it reduces to the largest known inner bound for the side information scalable source coding problem.

Example 1 (Degraded Side Information):The side information is said to be degraded ifX 
 Yt 


Yt−1 
 · · · 
 Y1 forms a Markov chain. The first result for degraded side information was provided by

Steinberg and Merhav [6, Theorem 1] for two receiverst = 2. This result was subsequently extended by

Tian and Diggavi [9, Theorem 1] to any finite number of receivers t > 2. To see how Theorem 1 gives

the coding part of [9, Theorem 1] consider the following. Supposed ∈ Rt
+ with dj ≥ dj,min for all

j ∈ [t], and letPdeg(d, Q) denote those mass functions inP(d, Q) whereUS is degenerate (constant)

wheneverS 6= [j, t] for somej ∈ [t]. For eachp ∈ Pdeg(d, Q), the region specified by (2) simplifies to

R(d, p) ,

{

R ∈ Rt
+ :

j
∑

i=1

Ri ≥

j
∑

i=1

I
(

X;U[i,t] | Yi, U[1,t], U[2,t], . . . , U[i−1,t]

)

, ∀j ∈ [t]

}

,

which is the desired result.

October 26, 2018 DRAFT



9

Example 2 (Side Information Scalable Source Coding):Whent = 2 andX
Y2
Y1 forms a Markov

chain, Heegard and Berger [4, Theorem 3] showed that an optimal compression strategy should satisfy

distortion constraints of receiver2 after the distortion constraints of receiver1 have been satisfied.

However, if the side information is not degraded, then this ordering may not be optimal. This observation

lead Tian and Diggavi [8] to propose the side information scalable source coding problem, where it is

assumed thatX 
 Y1 
 Y2 forms a Markov chain. Under this Markov constraint, the region defined by

(2) reduces to

R(d, p) =



















(R1, R2) ∈ R2
+ :

R1 ≥ I (X;U1, U12 | Y1)

R1 +R2 ≥ I (X;U2, U12 | Y2)

+I (X;U1 | Y1, U12)



















,

which yields the inner bound reported in [8, Theorem 1]. A single-letter solution for this problem remains

open.

III. PROOF OFTHEOREM 1

We now show that every rate tupleR ∈ R(d, p) is d-admissible for anyp ∈ P(d, Q). (The d-

admissibility of rate tuples inR∗(d) follows by the standard code time sharing argument.) The main

ingredient of the proof is a multi-layered random coding argument, which uses Kramer’s notion ofǫ-

letter typical sequences [13]. For convenience, we have reviewed the relevantǫ-letter typical results in

Appendix II. Finally, to help elucidate the main ideas of therandom coding argument, we present the

special case oft = 3 receivers as a series of examples in parallel to the main proof.

A. Code Construction

Supposed ∈ Rt
+ (with dj ≥ dj,min for every receiverj ∈ [t]) andp ∈ P(d, Q) are given. For each

non-empty subsetS ⊆ [t], construct an|S |-layer nested codebook in the following manner: for each

vector valued index

kS ,
(

kS ,1, kS ,2, . . . , kS ,|S |, k
′
S

)

,

with kS ,i ∈ [2nRS ,i ], i = 1, 2, . . . , |S | andk′
S

∈ [2nR
′
S ], generate a lengthn codewordan

S
(kS ) ∈ A n

S

by selectingn symbols fromAS in an i.i.d. manner using theUS marginal ofp. The quantitiesRS ,i

andR′
S

will be defined shortly.

Example 3 (3-Receivers Code Construction):We construct seven nested codebooks; one codebook for

each non-empty subset of{1, 2, 3}. Figure 5 shows the3-layer nested codebook associated with the subset
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{1, 2, 3}. In the first layer, there are2nR123,1 bins (labelled with the indexk123,1) each of which contain

2n(R
′
123+R123,2+R123,3) codewords. The set of codewords inside a particular layer one bin define the second

layer of the codebook. Specifically, each layer one indexk123,1 ∈ [2nR123,1 ] identifies2nR123,2 layer two

bins. These bins are labelled with the indexk123,2, and each bin contains2n(R
′
123+R123,3) codewords.

Similarly, each pairk123,1 ∈ [2nR123,1 ] andk123,2 ∈ [2nR123,2 ] identifies2nR123,3 layer three bins. There

are2n(R
′
123) codewords in each one of the layer three bins.

2
nRS ,3 bins

2
nRS ,2 bins

2
nRS ,1 bins

2
nR

′

S codewords

. . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . .. . .

Fig. 5. Three-layer codebook.

B. Encoding

To describe the encoding and decoding procedure, it will be convenient to introduce some additional

notation. Arrange the subsets of[t] into a list with descending cardinality. (For subsets with the same

cardinality, use lexicographical ordering). With a slightabuse of notation, label the resulting list with the

sequenceS1,S2, . . . ,S2t−1. For example, fort = 3 receivers we have:S1 = {1, 2, 3}, S2 = {1, 2},

S3 = {1, 3}, S4 = {2, 3}, S5 = {1}, S6 = {2} andS7 = {3}. Now define

U
‡(Sj) , {USi

: Sj ∩ Si 6= ∅, |Sj| = |Si|, i < j}

to be those auxiliary random variables labelled by lower indexed sets, which share at least one element

with Sj and have the same size asSj . Finally, let S (i) denote thei-th element ofS under natural

ordering. For example, ifS = {1, 3} thenS (1) = 1 andS (2) = 3.

Encoding proceeds sequentially in2t − 1 stages usingǫ-letter typical set encoding rules. For this

purpose, choose0 < ǫ0 < ǫ1 < · · · < ǫ2t to be arbitrarily small real numbers.

The transmitter is given a vectorxn ∈ X n. At encoding stagej (for j = 1, 2, . . . , 2t−1), it selects the

codebook with labelSj and looks for an index vectorkSj
where the corresponding codewordan

Sj
(kSj

)

October 26, 2018 DRAFT
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Sj Subset A.R.V. U‡(Sj) Index-to-Channel Map

S1 {1, 2, 3} US1 ∅

kS1,1 → Channel1

kS1,2 → Channel2

kS1,3 → Channel3

S2 {1, 2} US2 ∅
kS2,1 → Channel1

kS2,2 → Channel2

S3 {1, 3} US3

˘

US2

¯ kS3,1 → Channel1

kS3,2 → Channel3

S4 {2, 3} US4

˘

US2 , US3

¯ kS4,1 → Channel2

kS4,2 → Channel3

S5 {1} US5 ∅ kS5,1 → Channel1

S6 {2} US6 ∅ kS6,1 → Channel2

S7 {3} US7 ∅ kS7,1 → Channel3

Fig. 6. The figure illustrates the label and channel-to-index assignments for three receivers.

is ǫj-letter typical withxn,

{

anSi
(kSi

) : Si ) Sj , i < j
}

, and

{

anSi
(kSi

) : Si ∩ Sj 6= ∅, |Si| = |Sj |, i < j
}

. (3)

If successful5, the transmitter sends the bin indexkSj ,i over channelSj(i) for eachi = 1, 2, . . . , |Sj |.

If unsuccessful, the transmitter sendskSj ,i = 1 over each of these channels.

Example 4 (3-Receivers Encoding):Figure 6 illustrates the labels used to identify the seven non-empty

subsets of{1, 2, 3}; the assignment of seven auxiliary random variables; the members of each of the sets

U ‡(Sj); and the channels on which the bin indices are sent. In the first encoding stage, the transmitter

looks for a vectorkS1
= (kS1,1, kS1,2, kS1,3, k

′
S1

) such that the corresponding codewordan
S1

(kS1
) is

typical with xn. The indiceskS1,1, kS1,2 and kS1,3 are sent over channels1, 2 and 3 respectively.

In the fourth encoding stage, the encoder looks for a vectorkS4
= (kS4,1, kS4,2, k

′
S4

) such that the

corresponding codewordan
S4

(kS4
) is typical with an

S1
(kS1

), an
S2

(kS2
), an

S3
(kS3

) andxn. Similarly, in

the sixth encoding stage, the transmitter looks for a vectorkS6
= (kS6,1, k

′
S6

) such that the corresponding

codewordan
S6

(kS6
) is typical with an

S1
(kS1

), an
S2

(kS2
), an

S4
(kS4

) andxn.

5If there are two-or-more such codewords, we assume that the transmitter selects one codeword arbitrarily and sends the

corresponding indices.
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12

C. Decoding

Like the encoding procedure, receiverl (for eachl ∈ [t]) forms its reconstruction̂Xn
l using 2t − 1

sequential decoding stages. Recall, receiverl recovers every bin index transmitted on channels1 through

l; it does not have access to any index transmitted on channelsl+1 throught. In stagej (for all stages

j = 1, 2, . . . , 2t− 1) it considers subsetSj . If l /∈ Sj , then it does nothing and moves to decoding stage

j + 1. If l ∈ Sj, then it takes the bin indices

{

kSj ,i; i = 1, 2, . . . , |[l] ∩ Sj|
}

and looks for an index vector̃kSj
, with k̃Sj ,i = kSj ,i for all i = 1, 2, . . . , |[l] ∩ Sj|, such that the

corresponding codewordan(k̃Sj
) is ǫj+1-letter typical with ynl and those codewords which belong to

supersets ofSj:
({

anSi
(k̂Si

) : Si ) Sj, i < j
}

, anSj
(k̃Sj

), ynl

)

∈ T (n)
ǫj+1

(p). (4)

There are exactly

exp2



n



R′
Sj

+

|Sj|
∑

i=|[l]∩Sj|+1

RSj ,i









codewords in the bin specified by the indices{kSj ,i : i = 1, 2, . . . , |[l] ∩ Sj |}. If one or more of these

codewords satisfy this typicality condition, then receiver l selects one arbitrarily and setsk̂Sj
= k̃Sj

. If

there is no such codeword, it sets each of the unknown indicesequal to1.

Example 5 (3-Receivers Decoding):Consider the second receiver(l = 2). In stage one, takekS1,1

(from channel1) andkS1,2 (from channel2) and look for a vector̃kS1
= (kS1,1, kS1,2, k̃S1,3, k̃

′
S1

) such

that the corresponding codewordan
S1

(k̃S1
) is typical with yn2 . Similarly, in stage four takekS4,1 (from

channel2) and look for k̃S4
= (kS4,1, k̃S4,2, k̃

′
S4

) such that the corresponding codewordan
S4

(k̃S4
) is

jointly typical with an
S1

(k̂S1
) and yn2 . Finally, in stage six takekS6,1 (from channel2) and look for

k̃S6
= (kS6,1, k̃

′
S6

) such that the corresponding codewordan
S6

(k̃S6
) is jointly typical with an

S1
(k̂S1

),

an
S2

(k̂S2
), an

S4
(k̂S4

) andyn2 .

D. Error Analysis: Encoding

The coding scheme is based onǫ-letter typical set encoding and decoding techniques. As such, the

distortion criteria at each receiver will not be satisfied when (xn, yn1 , y
n
2 , . . . , y

n
t ) /∈ T

(n)
ǫ0 (p) – an event

we denoted byE1. From Lemma 2, the probability of this event may be bound by

Pr [E1] ≤ δ1 (n, ǫ0, µ(p)) ,
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whereδ1 (n, ǫ0, µ(p))→0 asn → ∞.

Now let E2,Sj
denote the event that the transmitter fails to find anǫj-letter typical codeword during

stagej of encoding procedure given that it found anǫi-letter typical codeword for every stagei ∈ [j−1].

From Lemma 3 and the inequality(1− x)t ≤ e−tx we have

Pr
[

E2,Sj

]

=

[

1− Pr
[

({

anSi
(kSi

)
}

, Un
Sj

(kSj
), xn

)

∈ T (n)
ǫj+1

(p)
]

]2
n

„

R′
Sj

+
P

|Sj |

i=1
RSj ,i

«

≤ exp

(

−
(

1− δ2
)

2
n

“

R′
Sj

+
P|Sj|

i=1 RSj ,i

”

· 2
−n

(

I(U ∗(Sj),U ‡(Sj),X;USj)+2ǫjH(USj )
)

)

(5)

where, for compact representation, we have written theǫj-letter typicality condition in (3) as({an
Si
(kSi

)},

Un
Sj

(kSj
), xn) ∈ T

(n)
ǫj (p) and the functionδ2 (n, ǫj−1, ǫj , µ(p)) asδ2.

From property(P4) we have thatUSj

 (U ∗(Sj),X) 
 U †(Sj) forms a Markov chain. Since

U ‡(Sj) ⊆ U †(Sj), USj

 (U ∗(Sj),X) 
U ‡(Sj) also forms a Markov chain; therefore,

I
(

U
∗(Sj),U

‡(Sj),X;USj

)

= I
(

U
∗(Sj),X;USj

)

.

Consequently (5) simplifies to

Pr
[

E2,Sj

]

≤ exp

(

−
(

1− δ2
)

2
n

“

R′
Sj

+
P|Sj |

i=1 RSj ,i

”

· 2
−n

(

I(U ∗(Sj),X;USj)+2ǫjH(USj )
)

)

.

Let E2 denote the event where a typical codeword cannot be found at any one of the encoding stages.

By the union bound we get the following upper bound for Pr[E2]:

Pr [E2] ≤
2t−1
∑

j=1

exp

(

−
(

1− δ2
)

2
n

“

R′
Sj

+
P|Sj |

i=1 RSj ,i

”

· 2
−n

(

I(U ∗(Sj),X;USj )+2ǫjH(USj )
)

)

.

Finally, note that if

R′
Sj

+

|Sj|
∑

i=1

RSj,i > I
(

U
∗(Sj),X;USj

)

+ 2ǫjH
(

USj

)

(6)

for every encoding stagej ∈ [2t − 1], thenPr[E2] → 0 asn → ∞.

E. Error Analysis: Decoding

Consider thel-th receiver (for alll ∈ [t]) and a setSj with j ∈ Sj. Let Dl,Sj
be the event that it

cannot find a unique codeword during decoding stagej, which satisfies the typicality condition (4); given

that at every stagei < j it found a unique codeword satisfying this typicality condition.
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By the Markov lemma (Lemma 4), the probability that the codeword an
Sj

(kSj
) selected by the

transmitter is not jointly typical withynl is small for largen:

Pr
[

Y n
l /∈ T (n)

ǫj+1

(

p | {anSi
(kSi

)}, anSj
(kSj

), xn
)]

≤ δ2 (n, ǫj , ǫj+1, µ(p)) ,

where for brevity we have used

{

anSi
(kSi

)
}

=
{

anSi
(kSi

) : Si ) Sj, i < j
}

. (7)

An upper bound for the probability that there exists one or more codewordsan
Sj

(k̃Sj
) 6= an

Sj
(kSj

),

which satisfy (4), is

Pr





⋃

Kj

{

{anSi
(kSi

)}, ynl , a
n
Sj

(k̃Sj
)
}

∈ T (n)
ǫj+1

(p)





< exp2

[

n
(

R′
Sj

+

|Sj|
∑

i=|[l]∩Sj|+1

RSj ,i − I
(

USj
;U ∗(Sj), Yl

)

+ 2ǫj+1H
(

USj

)

)

]

, (8)

where we take the union over all codewords

Kj =
{

k̃Sj
6= kSj

, {k̃Sj ,i = kSj ,i}
|{1,2,...,l}∩Sj |
i=1

}

,

and we have again used (7) for brevity. Applying the union bound we get

Pr
[

Dl,Sj

]

< δ2 + exp2

[

n

(

R′
Sj

+

Sj
∑

i=|[l]∩Sj|

RSj,i

)

− n

(

I
(

USj
;U ∗

(

Sj

)

, Yl

)

− 2ǫj+1H(USj
)

)]

.

Thus, if

R′
Sj

+

|Sj|
∑

i=|[l]∩Sj|+1

RSj ,i < I
(

USj
;U ∗(Sj), Yl)− 2ǫj+1H

(

USj

))

(9)

thenPr[Dl,Sj
] → 0 asn → ∞.

F. Rate Constraints

Consider receiverl and any subsetS wherel ∈ S . On combining the rate constraints (6) and (9) we

get
|S∩[l]|
∑

i=1

RS ,i > I
(

U
∗(S ),X;US

)

− I
(

US ;U ∗(S ), Yl

)

. (10)

(Sinceǫj andǫj+1 may be selected arbitrarily small, we can ignore the2(ǫj + ǫj+1)H(Sj) term.) From

property(P2) we have thatU 
 X 
 Yl forms a Markov chain. This impliesUS 
 (U ∗(S ),X) 
 Yl

October 26, 2018 DRAFT



15

forms a Markov chain andI
(

U ∗(S ),X;US

)

= I
(

U ∗(S ),X, Yl;US

)

. Consequently, simplifies the

rate constraint (10) simplifies to

|[l]∩S |
∑

i=1

RS ,i > I (X;US | U
∗(S ), Yl) . (11)

Repeating this procedure for any receiverl̃ ∈ [l] ∩ Sj, we obtain

|[l̃]∩Sj|
∑

i=1

RS ,i > I
(

X;US | U
∗(S ), Y

l̃

)

.

SinceRS ,i ≥ 0 for all i, it must be true that

|[l]∩S |
∑

i=1

RS ,i > max
l̃∈[l]∩S

I
(

X;US | U
∗(S ), Yl̃

)

; (12)

that is, the rate constraint for receiverl must be at least as large as the rate constraint for receiverl̃.

The rate constraint (12) is valid for any setS wherel ∈ S . For those subsetsS with l ∈ S , define

l∗ , maxi∈[l]∩S i. Sincel∗ ∈ S and [l∗]∩S = [l]∩S , it follows that (12) is also valid for any setS

where[l] ∩ S 6= ∅.

Finally, consider the sum rate
∑l

i=1Ri for the first l channels. By construction, we have that

l
∑

i=1

Ri =
∑

S⊆[t]

S∩[l] 6=∅

|[l]∩S |
∑

i=1

RS ,i . (13)

Substituting the rate constraint (12) into (13) yields the desired result.

IV. RATE-DISTORTION WITH RECEIVER SIDE INFORMATION

We now turn attention to Heegard and Berger’s lossy source coding problem shown in Figure 3. This

problem may be recovered from the setup of Section II by choosing |M2| = |M3| = · · · = |Mt| = 1.

We are interested in the characterisation of the rate-distortion function

R(d) = inf {R1 ∈ R+ : (R1, 0, . . . , 0) ∈ R(d)} .

A single-letter characterisation ofR(d) is an open problem, and in this section we provide an upper

bound.

Given a distortion tupled and familyQ of probability mass functions on
∏

S
AS ×X ×Y1×· · ·×Yt,

define

R∗(d,Q) , min
p∈Q







∑

S⊆[t]

max
j∈S

I (X;US | Yj,U
∗(S ))







.

The following upper bound forR(d) follows directly from Theorem 1.
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Corollary 1: If d ∈ Rt
+ anddj ≥ dj,min for every receiverj ∈ [t], then

R∗(d,P(d, Q)) ≥ R(d).

At this point it is useful to recall Heegard and Berger’s function RHB(d) from [4, Theorem 2].

Adopting the above notation, this function may be written as

RHB(d) = R∗(d,PHB(d, Q)) (14)

wherePHB(d, Q) is set of probability mass functions satisfying(P1), (P2) and (P4) – but not (P3).

HenceR∗(d,P(d, Q)) andRHB(d) differ only in the set on which the minimization takes place.The

following example shows that the Markov condition providedby (P3) is not superfluous, and it provides

a counterexample to the claim of [4, Theorem 2].

Example 6 (RHB(d) can be smaller thanR(d)): Let t = 3 and supposeY1 = Y2 = Y3 = constant.

Let X̂j = X = {0, 1, 2} for all j with Hamming distortion,

δH(x, x̂) =







0, if x̂ = x

1, otherwise,
(15)

Additionally, consider the situation where it is desired that Xn is recovered at each receiver withd1 =

d2 = d3 = 0. Finally, suppose thatB andC are independent random variables, uniform on{0, 1, 2},

and set:X = B; U1 = U2 = U3 = U123 = constant;U12 = C; U13 = B ⊕ C; andU23 = B ⊕ 2C in

modulo-3 arithmetic.

The above selection of random variablesX, U{1,2}, U{1,3} andU{2,3} is by no means arbitrary. Both

functionsRHB andR∗ require existence of functionŝX1 : A12 × A13 → X , X̂2 : A12 × A23 → X

and X̂3 : A13 × A23,→ X wherex = X̂1(a12, a13), x = X̂2(a12, a23) andx = X̂3(a13, a23) whenever

p(x, a12, a13) > 0, p(x, a12, a23) > 0 andp(x, a13, a23) > 0 respectively. It is readily checked that this

selection of random variables implies the existence of suchfunctions. Finally, note that the Markov chains

U12 
 X 
 (U13, U12), U13 
 X 
 (U12, U23) andU23 
 X 
 (U12, U23) do not hold; therefore, this is

not a valid selection of auxiliary random variables for the upper bound in Corollary 1.

It is clear thatRHB(0, 0, 0) = I (X;U12)+ I (X;U13)+ I (X;U23). However, on closer inspection, it

can be seen that each of these mutual information terms are equal to zero. In Appendix I we prove that

R(0, 0, 0) ≥ H(X) > 0; therefore,RHB(0, 0, 0) < R(0, 0, 0).

In the following two examples, we show that Corollary (1) gives the rate-distortion function for the

degraded side information and complementary delivery problems.

Example 7 (Degraded Side Information):In [4, Theorem 3], Heegard and Berger characterisedR(d)

under the assumption of degraded side informationX 
 Yt 
 Yt−1 
 · · · 
 Y1. To see how Corollary (1)
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gives the coding theorem of [4, Theorem 3] consider the following. Recall the set of probability mass

functionsPdeg(d, Q) from Example1. On substitutingPdeg(d, Q) into Corollary (1) we get

R∗(d,Pdeg(d, Q)) ≥ min
p∈Pdeg(d,Q)

t
∑

j=1

I
(

X;U[j,t] | Yj , U[1,t], U[2,t], . . . , U[j−1,t]

)

,

which is the desired result.

Example 8 (Complementary Delivery):The complementary delivery problem was originally proposed

and solved as a source coding problem (with vanishing block error probability) by Wyner, Wolf and

Willems [14]. Recently, Kimura and Uyematsu [10] solved this problem in the rate-distortion setting.

Suppose thatX = (X1,X2, . . . ,Xt) is a product source onX , X1 × X2 × · · · × Xt, where the

Xj are discrete finite alphabets. Additionally, suppose that the side information at receiverj is given by

Yj = Xc
j , (X1,X2, . . . ,Xj−1,Xj+1, . . . ,Xt). The resulting rate-distortion function is given by [10]

R(d) = minmax
j∈[t]

I
(

Xj ;C | Xc
j

)

,

where the minimization is over all choices of an auxiliary random variableC. The forward implication

of this result is a special case of Corollary 1 whenUS is set to be a constant wheneverS ( [t].

V. L OSSLESSSOURCE CODING WITH INDIVIDUAL MESSAGES

If X̂j = X for all j = 1, 2, . . . , t, and the distortion measureδj is Hamming, then6

R(0, 0, . . . , 0) = max
j∈[t]

H (X | Yj) .

The forward part of this result follows directly from Corollary 1 whenUS is set toX if S = [t] and

constant otherwise, and the converse is given in Appendix I.For this reason, it is generally accepted that

the lossless version of thet receiver problem of Figure 3 is well understood.

In the following, we present a second lossless source codingproblem for which the set of achievable

rates is not known. In fact, this problem appears to be just asdifficult as the rate-distortion problem.

In the same manner as the complementary delivery problem, supposeX = (X1, X2, . . . , Xt) is a

product source onX = X1×X2×· · ·×Xt. Now let X̂j = Xj and assume that receiverj is interested

only in lossless reconstruction ofXn
j . Of interest is the smallest rateRIM such that this is possible. A

direct application of Corollary 1 with the Hamming distortion measure yields an upper bound forRIM .

Unfortunately, however, it is not known if this bound is tight. The following corollary shows that this

upper bound matches the rate distortion function when the side information is degraded.

6The vanishing block error probability version of this problem was solved by Sgarro in [15].
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Corollary 2: If the side information is degradedX 
 Yt 
 Yt−1 
 · · · 
 Y1, then

RIM =
t
∑

j=1

H (Xj | X1,X2, . . . ,Xj−1, Yj) .

The coding theorem follows from evaluation ofR(0, 0, . . . , 0) using Corollary 1, withδj(x, x̂j) =

δH(xj, x̂j), and by settingUS = Xj if S = [j, t] and constant otherwise. The converse follows by

making some minor changes to the converse of [4, Section VII]. For expedience, these details are omitted.

VI. CONCLUSION

The main result of the paper (Theorem 1) gives an inner bound for the region of admissible rate tuples

for the t-stage successive refinement problem with side information. This result unifies the existing inner

bounds of Steinberg, Merhav, Tian and Diggavi [6], [8], [9].An immediate application of Theorem 1

yields an upper bound for the rate-distortion function for the problem of lossy source coding problem

with side information at many receivers (Corollary 1). Thisbound reduces to the rate-distortion function

for Heegard and Berger’s degraded side information problem[4, Theorem 3], as well as Kimura’s

complementary delivery problem [10]. Of particular interest is a counterexample to Heegard and Berger’s

general upper bound [4, Theorem 2] for arbitrary side information. Although the successive refinement

and rate-distortion bounds presented in this paper subsumeexisting results in the literature, it is not clear

if either bound is tight.

APPENDIX I

A L OWER BOUND FORR(d) UNDER HAMMING DISTORTION

Lemma 1:Consider the rate-distortion functionR(d), which is defined in Section IV. IfX̂j = X

andδj is Hamming distortion measure (for all receiversj ∈ [t]), then

R(0, 0, . . . , 0) ≥ max
i∈[t]

H(X|Yi) .

Proof: Consider thej-th receiver (for somej ∈ [t]). Let Pe,i = Pr[Xj,i 6= X̂j,i] denote the

probability that this receiver incorrectly reconstructs symbol i (for i ∈ [n]), and let

Pe =
1

n

n
∑

i=1

Pe,i =
1

n

n
∑

i=1

E δH(Xj,i, X̂j,i) ≤ ǫ

October 26, 2018 DRAFT



19

denote the average probability of symbol error overn symbols. By definition, we have

1

n
log |M| ≥

1

n
H(M1) ≥

1

n
H
(

M1 | Y
n
j,1

)

≥
1

n
I
(

Xn
1 ;M1 | Y

n
j,1

)

=
1

n

n
∑

i=1

I
(

Xi;M1 | X
i−1
1 , Y n

j,1

)

=
1

n

n
∑

i=1

I
(

Xi;M1,X
i−1
1 , Y i−1

j,1 , Y n
j,i+1 | Yj,i

)

(16)

≥
1

n

n
∑

i=1

I
(

Xi;M1, Y
i−1
j,1 , Y n

j,i+1 | Yj,i

)

=
1

n

n
∑

i=1

[

H (Xi | Yj,i)−H
(

Xi | M1, Y
n
j,1

)]

=
1

n

n
∑

i=1

[

H (Xi | Yj,i)−H
(

Xi | M1, Y
n
j,1, X̂j,i

)]

(17)

≥
1

n

n
∑

i=1

[

H (Xi | Yj,i)−H
(

Xi | X̂j,i

)]

≥
1

n

n
∑

i=1

[

H (Xi | Yj,i)− h (Pe,i)− Pe,i log |X |
]

(18)

= H (X | Yj)−
1

n

n
∑

i=1

h (Pe,i)− Pe log |X |

≥ H (X | Yj)− h (Pe)− Pe log |X | (19)

≥ H (X | Yj)− h(ǫ)− ǫ log |X | (20)

where (16) follows becauseXi 
 Yj,i 
 (Xi−1
1 , Y i−1

j,1 , Y n
j,i+1) forms a Markov chain, (17) is due to

X̂n
j = g(n)(M1, Y

n
j,1) (18) follows from Fano’s inequality [11, Page 39] withh(·) as the binary entropy

function [11, Page 14], (19) follows from Jensen’s inequality, (20) follows by assumingǫ is small (i.e.

0 < ǫ < 1/2). Finally, h(ǫ) + ǫ log |X | → 0 as ǫ → 0.

APPENDIX II

ǫ-LETTER TYPICALITY

For ǫ ≥ 0, a sequencexn ∈ X n is said to beǫ-letter typical with respect to a discrete memoryless

source(X , pX) if
∣

∣

∣

∣

1

n
N(a|xn)− pX(a)

∣

∣

∣

∣

≤ ǫ · pX(a) ∀a ∈ X ,
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whereN(a|xn) is the number of times the lettera occurs in the sequencexn. The collection of allǫ-letter

typical sequences is denoted byT (n)
ǫ (pX).

In a similar fashion, a pair of sequencesxn andyn are said to jointlyǫ-letter typical with respect to

a discrete memoryless two source(X × Y , pXY ) if
∣

∣

∣

∣

1

n
N(a, b|xn, yn)− pXY (a, b)

∣

∣

∣

∣

≤ ǫ · pXY (a, b) ∀(a, b) ∈ X × Y ,

whereN(a, b|xn, yn) is the number of times the pair of letters(a, b) occurs in the pair(xn, yn). The

collection of all joint ǫ-typical sequence pairs is denoted byT
(n)
ǫ (pXY ).

Given (X × Y , pXY ) andxn ∈ X n, the set

T (n)
ǫ (pXY | xn) =

{

yn : (xn, yn) ∈ T (n)
ǫ (pXY )

}

is called the set of conditionallyǫ-letter typical sequences.

Let µ(X , pX) = min{pX(x) : x ∈ support(pX)} and define

δ1 (n, ǫ, µ(pX)) = 2|X | · e−nǫ2µ(pX).

Note, δ
(

n, ǫ, µ(pX)
)

→ 0 asn → ∞.

Lemma 2 (Theorem 1.1, [13]):SupposeXn is emitted by a discrete memoryless source(X , pX). If

0 < ǫ ≤ µ(pX), then

1− δ1 (n, ǫ, µ(pX)) ≤ Pr
[

Xn ∈ T (n)
ǫ (pX)

]

≤ 1 .

Now consider a discrete memoryless two-source(X × Y , pXY ), let

δ2
(

n, ǫ1, ǫ2, µ(pXY )
)

= 2|X ||Y | · e
−n

(ǫ2−ǫ1)2

1+ǫ1
µ(pXY )

,

and note thatδ2
(

n, ǫ1, ǫ2, µ(pX)
)

→ 0 asn → ∞.

Lemma 3 (Theorem 1.3, [13]):SupposeY n is emitted by (Y , pY ) where pY is equal to theY -

marginal ofpXY . If 0 < ǫ1 < ǫ2 ≤ µ(pXY ) andxn ∈ T
(n)
ǫ1 (pX), then

(1− δ2 (n, ǫ1, ǫ2, µ(pXY ))) 2
−n(I(X;Y )+2ǫ2H(Y ))

≤ Pr
[

Y n ∈ T (n)
ǫ2 (pXY | xn)

]

≤ 2−n(I(X;Y )−2ǫ2H(Y )).

Finally, a direct consequence of Lemma 3 for Markov sources is the following result.

Lemma 4 (Markov Lemma [13]):Suppose(Xn, Y n, Zn) is emitted by a discrete memoryless three-

source(X ×Y ×Z , pXY Z) whereX 
 Y 
Z. If 0 < ǫ1 < ǫ2 ≤ µ(pXY Z) and(xn, yn) ∈ T
(n)
ǫ1 (pXY ),
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then

Pr
[

Zn ∈ T (n)
ǫ2 (pXY Z | xn, yn) | Y n = yn

]

= Pr
[

Zn ∈ T (n)
ǫ2

(pXY Z | xn, yn) | Xn = xn, Y n = yn
]

≥ 1− δ2 (n, ǫ1, ǫ2, µ(pXY Z)) .
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