arXiv:1412.7188v1 [cs.IT] 22 Dec 2014

Layered Interference Alignment:

Achieving the Total DoF of MIMO X Channels

Seyyed Hassan Mahboubi, Mumtaz Hussaidbolfazl Seyed Motahari and Amir Keyvan Khandani
Department of Electrical and Computer Engineering, Ursigrof Waterloo
Waterloo, ON, Canada N2L3G1
{shmahbou,abolfazl, khanda@icst.uwaterloo.ca
tSchool of Mathematical and Physical Sciences, The Urityeo§ Newcastle, Callaghan, NSW 2308, Australia

mumtaz.hussain@newcastle.edu.au

Abstract

The K x 2 and 2x K, Multiple-Input Multiple-Output (MIMO) X channel with castant channel cdicients
available at all transmitters and receivers is considefechew alignment scheme, namédayered interference
alignment is proposed in which both vector and real interferencenatignt are exploited, in conjunction with joint
processing at receiver sides. Data streams with fractiontiplexing gains are sent in the desired directions tgrali
the interfering signals at receivers. To decode the inténdessages at receivers, a joint procegsingltaneous
decoding technique, which exploits the availability of st receive antennas, is proposed. This analysis is subse-
quently backed up by metrical results for systems of lineams. In particular, for such linear forms, Khintchine—
Groshev type theorems are proved over real and complex msmbis observed thad x2 and %K, X channels with
M antennas at all transmittgrsceivers enjoy duality in Degrees of Freedom (DoF). It isvah that incorporating
the layered interference alignment is essential to chariaet the total DoF oﬁ%\f inthe K x 2 and 2x K, M

antenna X channels.

Index Terms

X Channel, Degrees of Freedom (DoF), Layered Interferenigmient, Diophantine Approximation, Khintchine—

Groshev Type Theorems, Complex Channel Realization.

|. INTRODUCTION

Sharing the available wireless medium for higher data trassion has made interference management one of the
most important challenges in wireless networks. Howevedense networks, achieving the optimum throughput
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of the system is not necessarily obtained by orthogonalmsebe making interference management inevitable.
Extensive #orts have been made to characterize the ultimate obstnuittad interference imposes on the capacity
of wireless networks. In order to reduce the sevdfect of interference for th& > 2 users interference channel,
the use of a new technique known as interference alignmesruisal.

Interference Alignment was first introduced by Maddah-Alag [21] in the context of Multiple-Input Multiple-
Output (MIMO) X channels. It renders the interference leamdging by merging the communication dimensions
occupied by interfering signals. Interference alignmentidimensional Euclidean spaces for> 2, known as
vector interference alignment, has been studied by sewesahbrchers, e.gl,/[4],/[5]. [17], [21]. In this method, at
each receiver, a subspace is dedicated to interferenae;thieesignaling is designed such that all the interfering
signals are squeezed into the interference subspace. Wssgethod, Cadambe and Jafar [4] showed th&t-a
user Gaussian Interference Channel (GIC) with varying okhgains could achieve the total DoF Jéf Since the
assumption of varying channel gains is unrealistic, paldity that all the gains should be known at the transmitters
the practical application of these important theoretiesluits is limited.

Motahari et al.[[23] settled the problem for the general acierby proposing a new type of interference alignment
that can achiev% DoF for almost allK-user real GIC with constant cficients. This result was obtained by
introducing a new type of interference alignment known ad meterference alignment. In this technique, tools
from the field of Diophantine approximation in number theptgy a crucial role, see—Appendix. Studies such as
[4], [23] showed that for &-userM antenna MIMO interference channel, the total DoF is equa{%ﬂo whether
the channel is constant or time varyjfrgquency selective.

In [23], a scheme similar to_[3] is used where both signal amekrference are received in a single communication
dimension, but unlike[[3], the signal and interference amé separated based on the received power level. [23]
shows that the properties of real numbers can be exploitatigo signals and achieve the full DoF of time invariant
interference channels.

Although [23] shows that the total DoF éffor the single antenna22, X channel can be achieved, the MIMO
X channel cannot be treated similarly. The MIMO X channeldwts diferently compared with thK-user MIMO
GIC. Although in the latter the total DoF is fully charactsdl for the case of equal number of antennas at all
nodes, the corresponding problem in the former setup isoftén. It is observed that neithevéctor interference
alignment” nor “real interference alignmenttechniques can provide the necessary means to settle théepro
individually. The aim of this paper is to introduce a new tygienterference alignment, callddyered interference
alignment in which a similar approach to real interference alignmientised in conjunction with signal linear
pre-coding (similar to vector alignment) to obtain optinfial terms of DOF) signaling for the MIMOK x 2 and

2x K, X channels. Derivations rely on a new number theoretic mn@asstimates that are proved in this paper.



Il. System MoDEL
A. Notation

Throughout this article, boldface upper-case letters, elgare used to represent matrices. Matrix elements will
be shown in brackets, e.dd,= [h; j] for a set of values, j. Vectors are shown using boldface italic lower-case Isfter
e.g.,v. Vector elements are shown inside parentheses\e=g(vi, Vo, ..., Vi). The transpose and conjugate transpose
of a matrixA will be represented a&' andA’, respectively. In general, the transmitted signal fromkieantenna
of transmitteri, desired to be decoded at receijglis represented b)(ik’j. At each antenna of transmitters in the
X channel, a linear combination of all desired messagesiféerdnt receivers will be transmitted. To simplify the
derivations, with some misuse of notation, we deﬁbe Zjﬁjx:;j, whereg; is the weight of messagé;j for linear
encoding at transmitteir The transmitted vector signal at transmitiewill be represented as' = (X, X, ..., X\)".

We use single superscript labelling for the indices of ba#tmgmitters and receivers, for exampi represents
the noise vector at the receiverSingle subscripts are used for the antenna labelling srddserwise stated; for
example,y‘j represents the received signal at e antenna of receivar The superscript pair, j represents the
variable from transmitter to receiverj, and similarly the subscript pairn represents the variable from antenna
| to antennan. For exampleh::,j] represents the channel gain betweenltheantenna of transmittérand thenth
antenna of the receivgr We use upper-case calligraphic alphabets to represesethaf constellation points such

asU. The M dimensional ring of integers is representedz¥.

B. K-Transmitter, 2-Receiver, M Antenna X Channel

A constant fully connected-transmitter, 2-receiver MIMO Gaussian X channel is coaesed. This channel
models a communication network witk transmitters and two receivers. Each transmitter is eaqappith M
antennas and wishes to communicate with both receiverssriting a dedicated message to each of them. Each
of the receivers is also equipped with antennas. All transmitters share a common bandwidth. There# outputs

at the receivers are characterized by the following inpuipot relationship:
y = HY X+ H2 % 4+ L+ HRIXK 4 2

wherei € {1,2} is the receiver indexk € {1,2,...,K} is the transmitter indexy' = (Y., Y. ....¥},)! is theM x 1
output vector signal of théh receiverx! = (xj,xé, xi,l)t is the M x 1 input vector signal of thgth transmitter,

Hil = [hlj”:]] is the M x M channel matrix between transmittgrand receiveii, where hlj,’:1 specifies the channel
gain from thelth antenna of thgth transmitter to thenth antenna of théth receiver, and? = (2,2, ....2,,)" is

M x 1 Additive White Gaussian Noise (AWGN) vector at receivehll noise terms are assumed to be independent

and identically distributed (i.i.d.), zero mean, unit wente Gaussian random variables. It is assumed that each



transmitter is subject to an average power consti@jrite.,
E[(x))"(x)] < P

whereE|.] represents the expectation. As mentioned earlier, tmstnitted signal from thkth antenna of transmitter

i desired to be decoded at receiyés represented b)d(’j. At each antenna of each transmitter, a linear combination
of all desired messages forfidirent receivers will be transmitted. Recall tlx'gt: 2B xik’j, whereg; is the weight

of message<ik’j in the linear combination.

Let P(j;i denote the probability of error for a message sent by tratenjito receiveri, i.e.,
PL = Priwh = Wi}

whereW! is the message sent by transmitjep receiveri with the rateR" andW!" is the corresponding decoded
message.

For a given power constraif, a rate regiorR(P) is determined byR’s. The closure of the set of all achievable
rate tuples is called the capacity region of the channel mitwer constrainP and is denoted bg(P). The notion
of DoF is defined next.

Definition 1: To an achievable rate tupR(P) € C(P), one can correspond an achievable DoFd&f provided

that
1
Rj’l = Ed“ |092(P) + O(IOQZ(P))

The set of all achievable DoF tuples is called the DoF regiwh ia denoted by?.
Definition 2: The maximum sum rate or sum capacity of tetransmitter, 2-receiver MIMO X channel is
defined as

2 K
= j’i
Cx(P) R“nggag) Z Z RM.

i=1 j=1

The maximum achievable sum DoF (or simply total DoF) is defiae

In sequel, the notatiorK(x 2, M) X channel refers t&-transmitter, 2-receiver MIMO X channel witll antennas

at each transmittgeceiver.

C. 2-Transmitter, K-Receiver, M Antenna X Channel

A fully connected 2-transmittei-receiver MIMO Gaussian X channel is considered. Trangmsithnd receivers
are equipped wittM antennas (see Figuré 2). The channel outputs at the res@ireecharacterized by the following

input-output relationships:
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Fig. 1. Kx 2, M antenna X channel

y =HU x!+ H2Ix%4 7

wherei € {1,2, ..., K} is the receiver index and = (2,2, ..., 2,)" is the M x 1 AWGN vector at receiver. Similar
to the K x 2, MIMO X channel, sum capacity and DoF region fox X, MIMO X channels can be defined. In
the sequel, the notation K, M) X channel refers to constant channel gain, 2-transmikereceiver MIMO X

channel withM antennas at each transmitteceiver.

[1l. M AN CoNTRIBUTIONS AND DiscussioNn
A. Main Contributions

In this article, the total DoF of the following channels ateracterized:
1. (2x K, M) X channel with constant real or complex channel realizatio
2. (K x 2, M) X channel with constant real or complex channel realiratio
It is observed that the dualjtgciprocity holds for the DoF of this class of X channels,,iié the role of
transmitters is interchanged with that of receivers, tha f0oF will be conserved. The technigue used in this article
named layered interference alignment, benefits from afipea-coding similar to vector interference alignment
at transmitters, in conjunction with a number theoretichtégue similar to that of real alignment using rational

dimensions at transmitters. A new mathematical tool isoghiced to empower the use of joint processing and
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Fig. 2. 2x K, M antenna X channel

mutual decoding among the receiver antennas to achieveothkftactional DoF of each desired message. The

main results can be stated as follows:

Theorem 1: The total DoF of K x 2, M) X channel is2&¥ for almost all channel realizations.

Theorem 2: The total DoF of the (X K, M) X channel is2¥ for almost all channel realizations.

This implies that when the base for comparison is the DokK(2M) and Kx2, M) X channels are duakciprocal.
Theorem 3: The total DoF of the (X K, M) X channel and its dual, thek(x 2, M) X channel with complex

and time invariant channel cfigients, is% for almost all channel realizations.

This is twice that of the same channel with real channel gailage that the DoF for complex channel realizations
should be defined as half of its value for real channels, stheecomplex case uses two dimensions for each
transmission. This implies that the total DoF per transrmtahsion is the same as real channel realization, which
is equal toZM.

A crucial ingredient in proving these theorems is the cotineavith the ‘size’ estimates of sets of real or complex
numbers having certain approximation properties. Suchiceqipation properties are modelled in the linear forms
setup. The Khintchine—Groshev type theorems play a cerglalin determining the ‘size’ of such sets by means
of convergence or divergence of certain series which dntifepend upon the approximation error of the linear

forms. For such linear forms we establish Khintchine—Gesstype theorems in the Appendix.



Before getting into details of layered interference aligmt) we need to review some basics of transmit signal
design using rational dimensions and a simple decoder mdsigthe real interference alignment. We will go
through some basic examples that show how the conventinteaférence alignment techniques fall short in some
simple channels. We will go through the deployment of thestag interference alignment fé x 2 and 2x K X

channels.

B. Interference Alignment

In the following, we will discuss the general encoder andodiee design for aligning interference in X channels.
A single layer constellation is used to modulate data stesain@ach transmitter. Despite its simplicity, it is powerfu
enough to support interference alignment, and achieve ttedd the X channel. Prior to deriving the main results,
the performance of a typical decoding technique is analySbmbughout this paper, we will rely on these results,
in conjunction with a special form of Khintchine-Grosheypéytheorem. It is noteworthy that in [23], the authors

showed for constant real channel gains, the total Dog of achievable for a 2 2, SISO X channel.

C. Transmission using Rational Dimensions

To simplify notations, the desired message for the firstivecds noted awj:(uj,ué,...,u,jvl)t, and the desired
message for the second receiver is noted/as (vj,vé, ...,vi,l)t.

Transmitterj selects two constellationg/! andV!, to send data streamto both receivers. The corresponding
constellation points are chosen from the set of integegs @’ c ZM andV! c ZM. It is assumed that/! andV!
are bounded sets. Hence, there is a consastich that?{! c [-Q, Q] and V! c [-Q, Q] intervals. The maximum
cardinality of 24! and<V!, which limits the rate of data streafis denoted byX!| = max|2/|,|V!|}. This design
corresponds to the case where all integers betwe@rand Q are selected, which, in spite of its simplicity, is
capable of achieving the total DoF for several channels.

Having formed the constellation, the transmitter consgriewvo random codebooks for data streqmwith rates
R andRI* to be received by the first and the second receivers, respictThis can be accomplished by choosing
a probability distribution on the input alphabets. A unifodistribution is used for the sake of simplicity. Note
that, since the input constellation is symmetrical by agstion, the expectation of the uniform distribution is zero.
The power consumed by the data strepean be bounded a®?. Even though this bound is not tight, it does not
decrease the performance of the system as far as the DoF désroed. The transmit signal at tihé& antenna of
transmitterj can be represented as

xlj = aﬂ ulj + bljvlj.

Whereulj contains the partial information in data streqiat is intended to the first receiver and is being transnhitte



by thelth antenna of transmittey. Accordingly, vlj presents the part of the information for data strepthat is
desired at the second receiver and is being transmitted ebltittantenna of transmittey.

Real number$31j and blj are rationally independent, i.e., the equatiiﬂul + blsz = 0 has no rational solutions
for eachj € {1,2,...,K} andl € {1, 2, ..., M}. This independence is because a unique map from consiallpdiints
to the message sets is required. Reliance on this indepeadeeans that any real numb)qir belonging to the
set of constellation points is uniquely decomposableas a/ul + blvl. Observe that if there is another possible
decompositionxlj = éﬂuﬂ + Bljvlj, then it forcesaf and Blj to be rationally dependent.

With the above method, each transmitter forms its transatia dtreank! = (aﬂuﬂ + bljvlj) for =1,2,.,M. To

adjust the power, the transmit signal is multiplied by a ¢tansA, i.e., the transmit signal is! = A &J.

D. Recovering the Mixed Signal in Rational Dimensions

After rearrangement of the interfering term, the receivigtha can be represented as
y=0WC+gHt+ . g+ 2 (1)

Hereafter, we consideg®"= g° to unify the notation. Next, the decoding scheme used to akad from vy is
explained. It is worth noting that if the receiver is intdegbin more than one data stream, then it performs the
same decoding procedure for each data stream.

At the receiver, the received signal is first passed througlard decoder. The hard decoder maps the received
point U = g®UC + L7 + ... + §"I™ to the nearest point in the constellation. This changes dnéirwious channel
to a discrete-input, discrete-output channel in which tigut symbols are from the transmit constellatifi and
the output symbols are from the received constellation.

Note thatZ! is the constellation due to single or multiple data strea®isce it is assumed that in the latter case
there is a linear combination of multiple data streams witieger cofficients, it can be concluded that c Z for
je{l,2,...,m.

To bound the performance of the decoder, it is assumed thattteived constellation has the property that there
is a many-to-one map frordi{ to U°. This in fact implies that if there is no additive noise in ttreannel, then the
receiver can decode the data stream with zero error pratyafdihis property is called property. It is assumed
that this property holds for all received constellations.satisfy this requirement at all receivers, usually a edref
transmit constellation design is needed at all transmsittehich will be explained next.

Let dmin denote the minimum distance in the received constellattaving propertyl’, the receiver passes the
output of the hard decoder through the many-to-one mappom fil to UC. The output is calledi®. Now, a

joint-typical decoder can be used to decode the data stremm d block ofu®. To calculate the achievable rate,



Fig. 3. SIMO multiple access channel

the error probability, i.e.Pe = Pr{UO + U9}, is bounded as

P <Q(%)< exp(—%). )

Definition 3 (Noise Removal)A receiver can completely remove the noise if the minimuntadise between the
received constellation points is greater thglhl, whereN is the noise variancé [23].

Now P. can be used to lower bound the achievable rate. Etkin andn®icte [8] used Fano’s inequality to
obtain a lower bound on the achievable rate, which is tightigh Signal-to-Noise Ratio (SNR) regimes. Following

similar steps, one obtains
R =1
= H(U% — H(u®|)
S HW) - 1 - Pelog|l”)
b 0 0
> log|U”| — 1 - Pelog|U”| 3
where (a) follows from Fano’s inequality and (b) follows rincthe fact thau® has uniform distribution. To have a

multiplexing gain of at leastl, |7/° needs to scale as SNRMoreover, if P, scales as extSNR ) for ane > 0,

then it can be shown th ggNR approaches at high SNR regimes.

E. Main Ideas and Basic Examples

Single-Input Multiple-Output (SIMO) Multiple Access Chah A Multiple Access Channel (MAC) with three

single antenna users and a 2-antenna receiver is shown tumeEly The channel can be modelled as

l=xlrax+bx+z
g ' (4)

yi= Xt + @ + D¢ + 2
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where all channel gains are constant, real numbers.

Since the capacity region of this channel is fully charazgst, it can be easily shown that the total DoF is 2.
Vector interference alignment falls short of achievingtBioF, as transmitters are equipped with a single antenna.
The naive application of real interference alignment nssinl a similar shortcoming. To see this, let us assume
that all three users communicate with the receiver usingglesidata stream. The data streams are modulated by
the constellatiord = A(-Q, Q)z = {all integers betweerQ and Q}, whereA is a factor controlling the minimum
distance of the received constellation.

The received constellation, which is a set of points in a tivaensional space, consists of pointsij such that
v =AU +al? +bud) andVv = A(ut + a? + bu?), whereu' s are members of/. Let us choose two sets of distinct
points {1,V1) and {,Vy) in the received constellation. The Khintchine-Groshesotlem provides a lower bound
on any linear combination of integers. It also provides sdrmend on the distance between any integer vector and
the linear combination of rationally independent vectddsing the Khintchine—Groshev theorem (Theorem 1 in
8A of appendix)form = 2,n = 1, one can obtaimy, ~ %, wheredmin is the minimum distance in the received
constellation, for precise calculation of min distance weer to [23, 8A].

By using the noise removal definition (Dél. 3) and assuminig wariance for the Gaussian noise, the noise can
be removed ifdyin = 1. Hence, it is sfiicient to haveA ~ Q2. In a noise-free environment, each receiver antenna
can decode the three messages if there is a one-to-one rgdippin the received constellation to the transmit
constellations. Mathematically, one can satisfy the sty condition by enforcing the following: Each recedre
antenna is able to decode all three messages if the chanefitiemts associated with that antenna are rationally
independent. In the above multiple access channel, foanest, the receiver can decode all messages by using the
signal from the first antenna if* + aw? + bu® = 0 has no non-trivial solution in integers fat, u?> and u®.

Useri’s rate is equal tdR = log(2Q — 1). Because of the power constraiRt= A2Q?. It was shown earlier that
A~ Q2. Therefore,P ~ Q°. Hence, _

R 1

i i _z
d _llmoo.SlogP 3

()

If all three messages are decoded, the achievable DoF fcki@nnel would be 1, while the total DoF is proved
to be 2. In[[23], authors deployed the real interferencenatignt technique to achieve the total DoF for the SISO
multiple access channel, but this scheme falls short foigdgreeral MIMO channel.

Motivated by above shortcomings, a new alignment schemedctdyered interference alignment is proposed
to achieve the total DoF of this channel and a class of MIMOndlets. This technique, in general, combines
vector and real interference alignment techniques in aleswidy to enjoy the benefits of multiple antennas at
both transmit and receive sides. The SIMO multiple accessmél considered in this section has no room for

vector alignment. Above example helps to understand tfferdnce between the real and the layered interference
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alignment. Concretely, the above shortcomings can bevedalsing joint decoding of the received signals by
incorporating a new Khintchine-Groshev type theorem. Tieorem bounds théy,, based on the size of the input
constellation and the number of antennas. These resultsagieed up by Theorem 4, which will be discussed in
detail in sectioii B. To use these mathematical results, am provide an algorithm at receivers for simultaneous
decoding.

1) Joint Processing of Received Data Streariifis operation is composed of the followings:

1. Each receiver first normalizes its received data streanmsder to have the unity céiecient for a specified
favourite message at all receiver antennas.

2. After normalization, each receiver uses the results @ofénm 4 to simultaneously decode each message from
all received streams at each of tMeantennas.

The same procedure will be reapplied for all other desiredsages.

In the multiple access channel example, joint decoding ipleyed at both receiver antennas. Ussrrate is
R =log(2Q - 1). Because of the power constraint, we h&e A>Q?. Applying Theoreni}4 (form = n = 2) and
satisfying the noise removal assumption resulté\in Q°°. Therefore,P ~ Q%. So

- R 2
d = 1M 55logp ~ 3 ©)
Using the above method to decode each of the three messagbsyfewhich has the DoF (g results in the total
DoF of 2, which is the desired result. In the rest of this &figve incorporate layered interference alignment in its
full potential, i.e., having the vector and the real integfece alignment together with joint processing, to achieve
the total DoF for K x 2, M) and (2x K, M) X channels.

2) Complex Caficients: Unlike the MAC, it can be easily seen that the total DoF of thehdnnel with complex
codficients cannot be achieved by pairing|[22]. In this case,quagered interference alignment requires a new
joint processing bound, which will be discussed separatelgection_C. This new theorem leaves the encoding
and decoding methods intact and provides the required toa@salyze the performance of the layered interference
alignment for the constant complex channel gains. It wilobserved that this extension to the layered interference

alignment technique will achieve the total DoF%ﬁ for both K x 2, M) and (2x K, M) X channels with constant

complex channel gains. This is twice the DoF of the same akarwith real channel cdicients.

IV. DoFor (K x 2, M) X CHANNEL WiTH CONSTANT REAL CHANNEL GAINS

In this section, we describe the encoding and decoding puoes which can achieve the total DOF &f X 2,

M) X channel.
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A. Encoding

The ith transmitter sends two sets of messageéss (ul,u,...u\,)! andVv = (V, Vi, ..vy,)\. It is preferable to
decode these at receivers 1 and 2, respectively. The traesiselects its modulation points frofl = A(-Q, Q)z
andV = A(-Q, Q)z for u} andv}, | =1,2,..,M, accordingly.A is a constant factor that controls the minimum
distance of the received constellation.

The transmit directions are first chosen in such a way thaintesfering signals at both receivers are aligned.
To this end, twoM x M matricesl® and|? are fixed at receivers 1 and 2, respectivélyand1? can be used to

design the transmit signals. For instance, itthetransmitter uses the following signal for data transioiss

X = (H?) ™2+ (H V. ©)

B. Decoding
The corresponding receive signals are
yl: ZiK::L(Hi,l)(Hi,Z)—1|2ui + IlZIKleI + Zl (8)
Y= DG HPHD WV + 123K Ul + 2,
wherez! and Z are independent Gaussian random vectors with identityriovee matrices. At théh antenna of

the first receiver,
yi = § § g uj + E milj+2 )
. . . "

Whereg},j is the receive gain (cdicient) for eacru‘j observed at th&h antenna, ang; j is theith row, jth column
component of matrix! and I'; is defined asl“jzzi'il\ﬁj. Similarly, at thelth antenna of the second receiver, we

have
y|2=lZ Z G:JVIJ+Z /ll,j®j+z|2, (10)

wherel?=[1; ;] and ®;=3\; u..

The first receiver can decode a message,u%ayrom the receive signals using the following algorithmfilst
normalizes the receive signal to set the fiicents ofu} at all antennas to unity. Next, joint processing is applied
to decodeui. TheorenT# allows the minimum distance to be approximated,py=AQ ¥, see—Remark 1. Hence,
settingA ~ QX is suficient to concludedm, ~ 1, which in turn results in noise removal from the receiveghal.

Putting this together results iR ~ Q21D At the first receiver, one can obtain the following DoF t(ir

dl,l = lim (Rl’l = Iog (2Q - 1)) — 1
P—co 0.5logP K+1

(11)

This technique can be applied to all other partial messag#sedfirst receiver. In the second receiver, the same

method will be applied for aN/j, resulting in the same DoF for the second receiver. Finiillg, possible to decode
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KM different messages at each receiver, which results in the totéloh‘)%. This achieved DoF meets the upper

bound mentioned in_[5].

V. DoF or (2 x K, M) X CHANNEL wiTH CONSTANT REAL CHANNEL GAINS

In the following, we will show that the total DoF of (2 K, M) antenna X channel with constant real channel

gains is the same as the DoF ¢f k 2, M) X channel, which is equal t&.

A. Encoding

The first transmitter sends the messagés (uj,ué,...u,jw)t for j = 1,..,K, and the second transmitter sends the
messages’ = (vj,vé, ...vi,l)t; where it is desired thai! andv! to be decoded at receivgr The transmitter selects
its modulation points fromld = A(-Q, Q)z andV = A(-Q, Q)z for ulj and vlj, I =1,2,..., M, respectively, where
A is a constant factor that controls the minimum distance efréteived constellation.

Similarr to the case of x 2, M) X channel, the transmit directions are first chosen in suetag that the
interfering signals at both receivers are aligned. To tiid, enatriced’, each of dimensioM x M, are fixed at

receiveri, wherel'’s is used to extract the transmit signals from all transavstt The goal at théh receiver is
K

y = HYplu' + H21AV + Z '+ Z. (12)
j=1&i#]
To obtainp and{, the following solution is proposed:
HYpl = H2IZ+Y ¢ {i,i - 1,K}
Hl’ipj — stié‘j*'z J =i-1
HLipl = H2izt j=K&i#l

Hllpl =H%2  j=K&i=1
Using the above signal space design results in

HYpl(ul +vi*1)  j ¢ (i,i— 1K)
HYpl(ul + vit?) j=i-1
HbYplul +v) j=K &i#1
HYplul +v?)  j=K&i=1

B. Decoding

Using this signaling scheme, the received signal atltthe@ntenna of receiver can be expressed as

K M
y = Z a’l,iuij+l Z AV, + Z Zlin+2|j’ (13)

i=1..,M i=1..,M i=1i#j n=1

whereo; and,; are constant cdicients representing the combinefileets of all the channel gains fuﬁ andv‘j,

respectively.
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Now, applying the joint processing technique at each amteresults in receiving the linear combination dfl 2
desired partial messageMl (for u and M for v) added toM(K - 1) interference terms. For any messageat the
ith antenna of receivej, we use the joint processing among all thleantennas. After normalizing, using Theorem

[ this results in
4 lim log(2Q-1) 1

= 14
P— 0.5logP K+1 (14)

The same argument is valid fMJ so it is concluded that the total DoF & is achievable. It is observed
that (2x K, M) and K x 2, M) X channels act reciprogaual in the sense of DOF. Here, for bothxX, M) and
(Kx2, M) X channels the achievability part is proved, since_in [bisishown that the total DoF for both ¥X, M)
and K x 2, M) X channels are upper bounded %% Therefore, it can be concluded that the proposed schemes

achieve the maximum DoF of these channels.

VI. CompLEx CoOEFFICIENTS CASES

Let us consider theK x 2, M) X channel. It is shown in the previous section that the ufgypeemd on the total
DoF of % is achievable for this channel when the channel gains ale Kesdless to say, the result is also
applicable to channels with complex ¢beients. The real and imaginary parts of the input and theutudpn be
paired. This converts the channel t& Zirtual transmitters and 4 receivers. It can be seen thalymgpTheorem
[ does not achieve the upper bound on the DoF in this case.

To solve the issue, we will make an extension to Thedrem 4darmex channel realizations, which can be used
in characterizing the total DoF of botliK (& 2, M) and (2x K, M) X channels with complex constant channel gains.
This result shows that the layered interference alignmantadmost surely characterize the DoF of these channels.

The proof of this extended theorem is provided in ApperidixT@is theorem (se&l 7) shows that the total
achievable DoF of MIMO X channel with complex channel gain#i e twice that of a similar channel with
constant real gains. This observation can be justified reltyerelying on the fact that for a complex channel,

two dimensions per transmission (real and imaginary) agaired, or by using the modified definition of DoF for

complex channel gains and complex signal transmissioniwisi

d (15)

= lim —.
P- logP
VII. coNcLusioN

In this paper, we introduced a new interference manageno@ht named layered interference alignment. We
proved several metrical theorems in the field of Diophanéipproximation which empowers using joint processing

and simultaneous decoding. It is observed that, unlike Gi@ 81SO X channel, joint processing is required

to characterize the total DoF of MIMO X channels. To this end, incorporated both the vector and the real



15

interference alignment techniques for signal transmissiod relied on joint processing for simultaneous decading
The total DoF of K x 2, M) and (2x K, M) X channels are characterized. It is observed that, for bothplex and

real channel gains, these can achieve the DOF upper bouﬁ@—fof

APPENDIX

We start df with an introduction to the classical metric Diophantingegximation: the branch of number theory
which can roughly be described as answering a simple questmcerning ‘how well a real number can be
approximated by rationals’. In subsequent subsectionspmee the Khintchine—Groshev type theorems for the

particular type of linear forms, that are needed for the Heglénterference alignment.

A. Khintchine—Groshev theorem for linear forms

In what follows, by anapproximating functiorwe mean a decreasing functign: R* — R* such thaty(r) —» 0

asr — co. An mx n matrix X = (x; ;) € R™ is said to bey-approximable if the system of inequalities

laiXei + GeXzi + ... + GmXmill < ¥(dl) (L <i<n) (16)

is satisfied for infinitely many vectorg € Z™\ {0}. Here|| - || means distance to the nearest integer. For clarity,

equation[(I6) may be expressed in the form

O Xy + QX2 + ...+ OmXmi — Pil <y(la) (1 <i<n) (17)

which is satisfied for infinitely many vectorp,@) = (P1,-* - , Pn- G, - » Om) € Z" X Z™\ {0}.
The system

QuX1i + 02Xz + ... + OmXmi (1 <i< n)

of n real linear forms infm variablesqy, . .., qn Will be written more concisely agX, where the matrixX = (x; j)
is regarded as a point iR™. It is easily seen thag-approximability is unffiected under translation by integer
vectors, and we can therefore restrict attention to the auieI™" as

R™= | ] ™ +K).

Kezmn
The y-approximability in the linear forms setup takes its roateni the linear form version of the Dirichlet’s

theorem.
Theorem (Dirichlet for Vectors) 1Let N be a given natural number and kte I™. Then there exists a non-zero

integerq € Z™ with 1 < |g| < N satisfying the system of inequalities

I01Xei + O2Xoi + ... + GmXmill < N7 (1<i<n).
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Corollary 1: For anyX € I™ there exist infinitely many integer vectogse Z™ such that

lldXei + GoXoi + ... + GmXmill <1977 (1 <i<n). (18)

The right-hand side of (18) may be sharpened by a constemn), but the best permissible values fom, n) are
unknown except foc(1, 1) = 1/ V5.
Notation. To simplify notation in the proofs below the Vinogradov symid< and> will be used to indicate an
inequality with an unspecified positive multiplicative atant. Ifa < b anda > b we write a < b, and say that
the quantitiesa andb are comparable. Throughout, for any #efA|, denote thd—dimensional Lebesgue measure
of the setA.

The main result in the linear form settings is the KhintchiGeoshev theorem, which gives an elegant answer
to the question of the size of the s@f(m, n;y). The following statement is due to Groshévi[10] and extends
Khintchine’s simultaneous result [18] to the dual form case

Theorem(Khintchine-Groshev) Let ¢ be an approximating function. Then

0 if 3 r™Ly(r) < oo,
W (M, n; ¢) [mn = IS
1 if > r™ly(r) = .

r=1
The proof of the convergence case of the Khintchine—Grosihesrem is easily established by a straightforward
application of the Borel-Cantelli lemma and is free from asgumption ony. The divergence part constitutes the
main substance of the theorem and requires the monotorisiymption on the functiap. For further details and

overview of this result we we refer the readerlto [1],/[16] aeferences therein.

B. A mixed type Diophantine approximation

In this section we provide a set of new tools for decoder desiglayered interference alignment. The tools
needed for the simple decoder design should empower thebpibgsof simultaneously decoding each part of
each message in all antennas of each receiver. In the othédsweonsidering limiting ourself to transmit integer
numbers, we need to find the best estimator function that simate diferent linear forms of rational basis
simultaneously.

Let ¢ be an approximating function and Mz(m, n;y) be the set oK € I™ :=[-1/2,1/2]™" obtained by fixing

the vector py,---, pn) in (I7) as 6,---, p), i.e., the system of equations

[0 Xy + O2X2i + ...+ OmXmi — Pl <¥(gl) 1<i<n (19)

is satisfied for infinitely manyg,--- ,p,qu, -+ ,qm) € Z" x Z™\ {0}.
The setWa(m, n; ¢) is a hybrid of the classical set in which the distance to tharest integer is allowed to vary

from one linear form to the other. In the current situationsithe same for all the linear forms. Sets of similar
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nature has been studied by Hussain and his collaboratof, ifiLél], [15]. We prove the Khintchine—Groshev type
result forWa(m, n; ). The results crucially depend upon the choicesmo@nd n, similar to the above-mentioned
papers and unlike the classical sets.
Theorem 4: Let m+ 1 > n andy be an approximating function; then
0 if 3N < oo
[Wa (M, 1; 4) [mn = =

1 if El Y (r)rm N = oo,
The convergence half follows from the Borel-Cantelli lemima construction of a suitable cover for the set
Wia (m,n;y). It does not rely on the choices ah and n, and it is free from monotonic assumption on the
approximating function. It is worth pointing out that forettapplication purposes the convergence case is all
that matters. By setting = 0 in the above setup, a similar application of the convergdmalf already exists in
achieving MIMO capacity within a constant gap [24]. In fagtparticular form of Theorei 9 can be used to obtain
the complex version of the results obtainedin| [24]. Fisckteal [9] has also used the convergence analogue of the
above theorem fop = 0 and for multiple approximating functions in proving thengerse to linear independence

criterion for several linear forms. It is worth demonsingtithat fory(r) = " rle e > 0,
D=3t < oo if >0
r=1 r=1
From here it should be clear (if not, see Remark 1 below) thahf+ 1 > n ande > 0, the set
(X € Wa (M, ;%) : dmin(X, R) < R *1°¢ for i.m. R € N}jmn = O
1) Proof of Theorerhl4: the Convergence Ca&fine the resonant sets as
Ry={XelI™:gX-p=0}.

Thus, the resonant sets ara<{ 1)n-dimensional hyperplanes passing through the ppinthe setWa(m, n; ) can

be written as a limsup set using the resonant sets in thenfoigpway.

Wa (m m; y) = ﬂU ) B(Rey(laD)

N=1r>NRg:|q|=r

where

)

B (Re-(a)) = {x e I™: dist(X, Ry) < al

Thus, for eactN € N the family{ J B(Rq,w(|q|)) ‘r=N,N+1..}is a cover for the setVa (m, n;y). Now,
Rq:lgl=r

for each resonant s&,, let A(q) be a collection ofmn-dimensional closed hypercub&with disjoint interiors
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Fig. 4. The resonant s&, is a line form= 2 andn = 1. The resonant s&; is a lineq.x+ oy — p = 0, intercepting thex andy axes at

2 and 2, respectively. The seB(Rq, w(ld))) is the 2 neighbourhood oR,.

and side length comparable witf(|q|)/|ql and diameter at most(|ql)/|g| such thatC n |J B(Rq,gb(lql)) #0

Rq:lal=r
andB(Rq.u(la)) c U C.
CeA(q)
Then

#A(Q) < ((lal)/Ig)~™n

where # denotes cardinality. Note that

Wamny) < [ ) JaRewan)cl ) J e

r>NRy:[qgl=r r>N A(Q):lgl=r CeA(Q)
Hence,

[Wa (M, N )|y < Z Z Z [Clinn
r>N A(q):|gl=r CeA(q)

- gl
r r

r>N

= Z r™ "y ()"

r>N
Since the sumio) Y(r)"r™" is convergent, which gives zero Lebesgue measure by thd-Bantelli lemma.
r=1
2) Proof of Theorerhl4: the Divergence Cadeor the divergence case the ubiquity theorem [2, Theorens 1] i
used, and to establish ubiquity two technical lemmas (Lefirmad Lemmal2) are needed. The work is similar to

[6]; therefore, we only prove one of them and refer the irdtye@ reader to the aforementioned article [6]. Most of



19

the metric results (Khintchine—Groshev, Jarnik, JarnisiBovitch, and Schmidt theorems) stem from the Dirichlet
type result which is stated and proved below for the curretttrgys. Throughout, we sét = {2! : t € N}.
Lemma 1: For Ng < N, for eachX € I™ there exists a non-zero integer vectpin Z™ andp € Z" with

lal, Ipl < N for Ny large enough such that
IgX = pl < (M+ 2)2N"" 1,

Proof of Lemmdll. For|p| < N and thoseq with non-negative components, there éke+ 1)™N possible vectors

of the formgX — p for which

m+ 2 m+ 2

N<gX-p< N.

Divide the cube with centr® and side lengthno+ 2)N in R" into N™?! smaller cubes of voluman(+ 2)"N"-"-1
and side lengthnf + 2)N1‘WTI. SinceN™ < (N + 1)™, there are at least two vectagsX — p1,q,X — p2, say, in one

small cube. Therefore

|(G1-02)X — (P2 — p2)| < (M+ 2)2N~F+,

Evidently q; — g2 € Z™ and|qy — gz| < N. Also, p1 — p2 € Z and|p; — p2| < N by choices ofp; andp..
Lemma 2: The family Ry := {Ry: q € Z™\ {0}} is locally ubiquitous with respect to the functipn N — R*
where

o(t) = (M+2)2N~"+ *1u(t)

andw(t) is a positive real increasing function such tha#t) — o ast — co. However, it is not very restrictive in
the sense that it can always be assumed as a step functioneand Hoes not appear in the sum condition; for

details seel[6, page 83].

In view of Lemmall, it is natural to consider the following badpproximable set. Let Bad{n) denote the

set of X € I™" for which there exists a consta@(X) > 0 such that
I9X —pl > C(X)gI~F* for all (p.q)eZ™".

More generally, from the convergence part of Theofém 4, then clear that for almost eveby € I™" there

exists a constant(X) > 0 such that

IgX —pl = c(X)y(lq)) for all (p,q) € Z™"\ {0} (20)

and denote the set of all such numbers as 8ad(n) and Uc.oBadC,mn) = I™\ Wa(m n;¥). Now since
[Wa (M, N; ¢) [mn = 0 which implies that Uc.o Bad(c, m, n)|my, = 1. The question of finding the Hausdbdimension
and measure of each Badfn, n) is not dealt here and we leave it for another sitting. Howefoe the set Badt, n)

it is straightforward to establish the following result.
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Theorem 5: Let m+ 1 > n; then

dim Badfn, n) = mn

and form+1<n

[Bad, n)|mn = 1.

Proof of Theorenil5 follows from[[12],[]13] by setting = 1 in those papers. Now, fon+ 1 > n, since
Bad(m, n) C IM"\ Wa(m, n; ¥), therefore|Bad, n)|mn = 0.

Remark 1: It should be clear from Theorehi 5 that the minimum distandevéengX and the nearest integer
vector (p,---,p) is at IeastC(X)|q|‘””Tl+1, whereC(X) > 0 is a constant. Loosely speaking, Baxlf) consists
of all those points that stay clear ah{ 1)n-dimensional hyperplanes having diameters proportiom\sjadﬂrWT1+1
centered at the hyperplanBs. Note that if the exponenfem*T1 + 1 is replaced by—m’fT1 +1—¢€ for € > 0, then the
set Bad(n, n) is of full Lebesgue measure. It is very pleasing and aligwé&t our applications.

Remark 2: In the casem+ 1 < n, the setWa(m, n;¢) is over determined and lies in a subset of strictly lower
dimension tharmn To see this, consider the cage= n and deX # 0. This would imply that the defining

inequalities [(IP) take the form
19 - pX7! < CX)y(lal),

which is obviously not true for dficiently largeq.

The same logic extends to all other cases. For @achn matrix X € R™ with column vectorsx®, ... x™
defineX to be themx (n—1) matrix with column vectorg®@, ..., x™. The seflr c R™ is the set ofX € R™ such
that the determinant of eachx m minor of X is zero.

Then it can be easily proved th#ia(m, n;w) c T whenm+ 1 < n, which will lead to further investigations of
metric theory for the casas + 1 < n. However, this is not within the scope of the present papkerdfore, we
will not address it any further and refer the interested eedad (6], [15], which comprehensively discusses such

cases.

C. Metric Diophantine Approximation over Complex Numbé&tassical Setup

Most of the complex Diophantine approximation theory islagaus to what we have discussed in the previous
sections. Surprisingly, analogues of Khintchine—Groghewrems for systems of linear forms for complex numbers
is not proved todate. We prove them here alongwith the ana®gesults for mixed type linear forms. To keep the
acquisition compact and the length of the paper under clonts state only the important changes.

In the 19th century, Hermite and Hurwitz studied the appr@tion of complex numbers by the ratios of Gaussian

integers, a natural analogue of approximation of real numbg rationals,

Z[i] ={p1+ip2€C: p1, p2 € Z}.
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However, complex Diophantine approximation appears to beerdificult than the real case. For example, continued
fractions, so simple andfective for real numbers, are not so straightforward for cempumbers. In other words,
the best possible analogue of Dirichlet’'s theorem cannaoddrézed by means of a continued fraction expansion
approach.

We will discuss the problem for the linear form setup and iislithe recent developments so far for the particular
cases. Let¥ be an approximating function satisfying step function i€.) = y([r]), where f] is the integer part

of r. An mx n matrix Z = (z,;) € C™ is said to be¥-approximable if the system of inequalities

0121, + Q2o + -+ + OmZmj — Pjl < P(ldl2) (1< j<n) (21)

is satisfied for infinitely many vectogsx q € Z"[i] x Z™[i] \ {0}. Throughout, the systerh (1) will be written more
concisely agjZ. Here|ql, = max|dulz, - . |dmlz}, Where forg = g, + ik, € Z[i], [tz = itk + 0k, I2-

As in the real case, the stemming point of such approximatioperties is the Dirichlet theorem. A short and
more direct geometry of numbers proof of the complex vergibirichlet’'s theorem is given below. Although
the constant here is not best possible, the result is allishateded to prove the complex analogue of Khintchine—
Groshev and Schmidt type theorems without recourse to tperbyplic space framework.

Theorem 6: Given anyZ € C™ andN € N, there exist Gaussian integgrs Z"[i] and non-zeray € Z™[i] with

0 < gl, < N such that

C
IgZ —p| < N (22)

wherec > 0 is an appropriate constant. Moreover, there are infinitedyy @, q) € Z"[i] x Z™i] \ {0} such that

IgZ —pl <

m/n°

lal,
Proof of TheoremlG. For clarity we prove the theorem fon = 2,n = 1. The proof of the casmm=n =1 can be

found in [7]. LetZ = (Xg +iy1, X2 +1iy2),d = (11 + iQ1.2, 021 + i022), and p = (p1 + ip2). Then
10Z = pl = 1011%1 + 021X — G1.2Y1 — G22Y2 — P1 + i(Gu2Xe + Ge2X2 + Ouay1 + G212 — Pa)l-
Consider the convex body
B= {(qu, 012, 02,1, 02,2, P1, P2) maX{Qil + qiz, qil + q%,z} <N? A< R2}

where

A = (QuiXe + Q21X — Qr2Y1 — G22Y2 — P1)° + (GuaXa + O22% + i1y + G2ay2 — P2)°.
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Then

B dop1don 2dep 1dp 2d prd pp

jr;ax{qiﬁqiz, q§1+q§2}s N2 JA<R?

f mRedop, 10y 2dp 1A
maxX(af 1 +0F 5. 0 1+03,}<N?

= mR2N* > 26,

if R> ﬂg/zT?’NZ Hence, by Minkowski's theorem [11], equatidn22) has a mers integer solution with & |g]> < N.

This result should be compared with the real Dirichlet'sotieen in § form = 4,n = 2. The complex points
for which Theoreni 6 cannot be improved by an arbitrary corisdae called badly approximable. That is, a point

Z € C""js said to be badly approximable if there exists a const{@f) > 0 such that

EIE]

19Z - pl > C(2)lal,

for all (p,q) € Z"[i] x Z™[i]. Let Bad=(m,n) denote the set of badly approximable pointsCiR".
The Hausddf dimension of the saBadc(1, 1) has been studied by various authors ifiedent frameworks; see,

for instance,[[19, 85.3] in which authors determined the sdiauf dimension forBad:(1,n), i.e.,
dimBadc(1,n) = n.

In fact, as a consequence of the general framework in thgiempahey proved the Hausdbdimension to be
maximal in the weighted analogue &@ad- intersected with any compact subset@f. There framework can
not be applied for the dual setup at work. However, it is reabte to suspect that the Hausfliatimension for
Bad:(m, n) is maximal or more generally for any compact subi§éet C™,

Conjecture A 1:dimBad-(m,n) N K = dimK
The treatment required to deal with this problem needs afioumber theoretic tools which would put this paper

out of focus. Therefore, we will not deal with it any further.

From now onwards we restrict ourselves to the-dimensional unit dis® := (Cn Q)™ whereQ = {a+ib :
0 < a,b < 1}, instead of considering the full spa€®™. The reason behind this restriction is that it is convenient
to work in the unit discs, and the approximable propertiagh(lwell and bad) are invariant under the translation

by the Gaussian integers. Lé{-(m, n; %) denote the set oa¥-approximable points i i.e.
We(m n; ¥) := {Z € D :|qZ - p| < ¥(lqlz) for i.m. (p,q) € Z"[i] x Z"[i] \ {O}}.

1) Khintchine—Groshev Theorem for complex numbérse aim here is to prove the complex version of the
Khintchine—Groshev theorem

Theorem 7: Let ¥ be an approximating function. Then
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0 if Y () < oo
IWe (M, n; W) nn = r=1
Full if Yoy Ay = oo
Here W (m, n; ¥) |nn denotes the complemndimensional Lebesgue measure of the \8et(m, n; ¥). For m =
n =1, Theoreni 7 was proved in 1952 by LeVeque! [20], who combinbohi€hine’s continued fraction approach
with ideas from hyperbolic geometry. In 1982, Sullivan![28ed Bianchi groups and some powerful hyperbolic
geometry arguments to prove more general Khintchine tmesrf®r real and for complex numbers. In the latter
case, the result includes approximation of complex numbegrsatios p/q of integersp,q from the imaginary
quadratic fieldR(i Vd), whered is a square-free natural number. The cdsel corresponds to the Picard group
and approximation by Gaussian rationals. The result was ddsived by Beresnevich et al. as a consequence of
ubiquity framework in[[1, Theorem 7].
2) Proof of the Convergence Case of TheolémAs: before, Theorernl 7 is proved for the case= 2,n = 1,

leaving behind the obvious maodifications to deal with thehkigdimensions. First, the convergence case is dealt

with. The resonant set is defined as

Cq = {ZeD:lgZ-pl=0}
= {(X1+1iys, X2 +1y2) € D 1 |[(Ou1 + 1012, 021 + 1022) - (X1 + iy1, X2 + 1y2) — (p1 + ip2)| = O}
. . OuiX1 + 021X — O12Y1 — Op2Y2 = P and
= (X + iy, Xo +iy2) e D :
Or2X1 + O22X2 + Q11Y1 + 0212 = P2
The setW: (2, 1;¥) can be written using the resonant sets
w1 =) | B(Cqo¥(ak)
N=1r>NCq:Ipl2<Iql2=r

where

q’(lle)}
lal. |-

B(Cq. ¥(ldl2)) = {z e D :dist(Z,Cq) <

It follows that

weeuwcl ) | B(Ce¥aR).
r>NCq:lpl2<lgl2=r

In other words\Wc (2, 1;¥) has a natural cove® = {B(Cq,‘P(lq|2)) gl > N} for eachN = 1,2, ---. It can further

be covered by a collection of 4-dimensional hypercubes witfjoint interior and side length comparable with
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¥(lql.)/lalz. The number of such hypercubes is cleagy(¥(/ql2)/lal.) 2. Thus,

8

[e]

W-2 1), < ;c-lp;m r|B(cq,\P(|q|2))|2

< > D, (Bd/lal) (¥(al)/al)

r=Nr<|qlo<r+1

= i(‘}’(r)/r)z >t (23)
r=N

r<|gla<r+1

Now it remains to count Y 1. An argument from[][7, p. 328] of [11, Th. 386] is followed tonclude that

r<|gla<r+1

Zr<|q|2<r+l 1< r>. Thus, [28) becomes

(&9

We (2,1l < > r39(r)2.
r=N

Now, since the suny2, r3¥(r)? < oo, the tail of the series can be made arbitrarily small. Hehgethe Borel—
Cantelli lemma W (2, 1;¥)|, = O.

The divergence case of the above theorem can be similarle@rby following the similar arguments as in the
real case. Precisely, one would need to utilize the ubidudtpework to extend |1, Th. 7] for the linear forms setup.
The Dirichlet theoreni]6 would again be used to prove the utyideamma. The details are left for the interested
reader.

3) A Complex Hybrid SetupAs in the previous section, |&f be an approximating function satisfying the step

function. Anmx n matrix Z € C™ is said to be?-approximable if the system of inequalities

0120, + Q2o + -+ + OmZmj — P <P(g2) (1< j<n) (24)

is satisfied for infinitely many vectorp(--- , p,qs, - ,qm) € Z"i] xZ™[i] \ {0}. That is, the systeni (24) is obtained
by keeping the nearest integer vectpr-( - , p) the same for all the linear forms. Since the results are simjlar
to Wa(m, n; ¥) and can be proved analogously, they are only stated heheolitious modifications. The first one
is the Dirichlet type theorem, and rest of the results stamfit. It also serves the purpose of finding the minimum
distance betweeqZ andp.

Theorem 8: Given anyZ € C™ and N € N, there exist Gaussian integgrs= (py + ip2,--- , P1 + ip2) € Z"[i]

and non-zera@ = (g1 + 912, - - , Oz + IQm2) € Z™M[i] with 0 < |gl2 < N such that

c
19z - pl < NES

n

-1

wherec > 0 is an appropriate constant. Moreover, there are infinitedyy @, q) € Z"[i] x Z™[i] \ {0} such that

_mil g
laZ -pl<clgl, " .
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Let We,(m, n; W) denote the set dP-approximable points iD, i.e., the set of points that satisfy the systéml (24).
Then, one has the analogue of the Khintchine—Groshev thetethis setup.

Theorem 9: Let ¥ be an approximating function and let+ 1 > n. Then

0 if X (™)< oo
IWe, (M ;) [nn = r=1
Full if 22, (F™MYN(r))? = oo

The proof of this theorem is again similar to that of TheofénThe details are left for the interested reader.
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