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Abstract

The K × 2 and 2× K, Multiple-Input Multiple-Output (MIMO) X channel with constant channel coefficients

available at all transmitters and receivers is considered.A new alignment scheme, namedlayered interference

alignment, is proposed in which both vector and real interference alignment are exploited, in conjunction with joint

processing at receiver sides. Data streams with fractionalmultiplexing gains are sent in the desired directions to align

the interfering signals at receivers. To decode the intended messages at receivers, a joint processing/simultaneous

decoding technique, which exploits the availability of several receive antennas, is proposed. This analysis is subse-

quently backed up by metrical results for systems of linear forms. In particular, for such linear forms, Khintchine–

Groshev type theorems are proved over real and complex numbers. It is observed thatK×2 and 2×K, X channels with

M antennas at all transmitters/receivers enjoy duality in Degrees of Freedom (DoF). It is shown that incorporating

the layered interference alignment is essential to characterize the total DoF of2KM
K+1 in the K × 2 and 2× K, M

antenna X channels.

Index Terms

X Channel, Degrees of Freedom (DoF), Layered Interference Alignment, Diophantine Approximation, Khintchine–

Groshev Type Theorems, Complex Channel Realization.

I. Introduction

Sharing the available wireless medium for higher data transmission has made interference management one of the

most important challenges in wireless networks. However, in dense networks, achieving the optimum throughput
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of the system is not necessarily obtained by orthogonal schemes, making interference management inevitable.

Extensive efforts have been made to characterize the ultimate obstruction that interference imposes on the capacity

of wireless networks. In order to reduce the severe effect of interference for theK > 2 users interference channel,

the use of a new technique known as interference alignment iscrucial.

Interference Alignment was first introduced by Maddah-Ali et al. [21] in the context of Multiple-Input Multiple-

Output (MIMO) X channels. It renders the interference less damaging by merging the communication dimensions

occupied by interfering signals. Interference alignment in n-dimensional Euclidean spaces forn ≥ 2, known as

vector interference alignment, has been studied by severalresearchers, e.g., [4], [5], [17], [21]. In this method, at

each receiver, a subspace is dedicated to interference; then the signaling is designed such that all the interfering

signals are squeezed into the interference subspace. Usingthis method, Cadambe and Jafar [4] showed that aK-

user Gaussian Interference Channel (GIC) with varying channel gains could achieve the total DoF ofK
2 . Since the

assumption of varying channel gains is unrealistic, particularly that all the gains should be known at the transmitters,

the practical application of these important theoretical results is limited.

Motahari et al. [23] settled the problem for the general scenario by proposing a new type of interference alignment

that can achieveK
2 DoF for almost allK-user real GIC with constant coefficients. This result was obtained by

introducing a new type of interference alignment known as real interference alignment. In this technique, tools

from the field of Diophantine approximation in number theoryplay a crucial role, see—Appendix. Studies such as

[4], [23] showed that for aK-userM antenna MIMO interference channel, the total DoF is equal toKM
2 , whether

the channel is constant or time varying/frequency selective.

In [23], a scheme similar to [3] is used where both signal and interference are received in a single communication

dimension, but unlike [3], the signal and interference are not separated based on the received power level. [23]

shows that the properties of real numbers can be exploited toalign signals and achieve the full DoF of time invariant

interference channels.

Although [23] shows that the total DoF of4
3 for the single antenna 2×2, X channel can be achieved, the MIMO

X channel cannot be treated similarly. The MIMO X channel behaves differently compared with theK-user MIMO

GIC. Although in the latter the total DoF is fully characterized for the case of equal number of antennas at all

nodes, the corresponding problem in the former setup is still open. It is observed that neither “vector interference

alignment” nor “real interference alignment”techniques can provide the necessary means to settle the problem

individually. The aim of this paper is to introduce a new typeof interference alignment, calledlayered interference

alignment, in which a similar approach to real interference alignmentis used in conjunction with signal linear

pre-coding (similar to vector alignment) to obtain optimal(in terms of DOF) signaling for the MIMO,K × 2 and

2× K, X channels. Derivations rely on a new number theoretic measure estimates that are proved in this paper.
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II. SystemModel

A. Notation

Throughout this article, boldface upper-case letters, e.g., H, are used to represent matrices. Matrix elements will

be shown in brackets, e.g.,H = [hi, j] for a set of valuesi, j. Vectors are shown using boldface italic lower-case letters,

e.g.,v. Vector elements are shown inside parentheses, e.g.,v = (v1, v2, ..., vi). The transpose and conjugate transpose

of a matrixA will be represented asAt andA†, respectively. In general, the transmitted signal from thekth antenna

of transmitteri, desired to be decoded at receiverj, is represented byxi, j
k . At each antenna of transmitters in the

X channel, a linear combination of all desired messages for different receivers will be transmitted. To simplify the

derivations, with some misuse of notation, we definexi
k =

∑

j β j x
i, j
k , whereβ j is the weight of messagexi, j

k for linear

encoding at transmitteri. The transmitted vector signal at transmitteri will be represented asxi = (xi
1, x

i
2, ..., x

i
k)

t.

We use single superscript labelling for the indices of both transmitters and receivers, for example,zi represents

the noise vector at the receiveri. Single subscripts are used for the antenna labelling unless otherwise stated; for

example,yi
j represents the received signal at thejth antenna of receiveri. The superscript pairi, j represents the

variable from transmitteri to receiver j, and similarly the subscript pairl,n represents the variable from antenna

l to antennan. For example,hi, j
l,n represents the channel gain between thelth antenna of transmitteri and thenth

antenna of the receiverj. We use upper-case calligraphic alphabets to represent theset of constellation points such

asU. The M dimensional ring of integers is represented byZM.

B. K-Transmitter, 2-Receiver, M Antenna X Channel

A constant fully connectedK-transmitter, 2-receiver MIMO Gaussian X channel is considered. This channel

models a communication network withK transmitters and two receivers. Each transmitter is equipped with M

antennas and wishes to communicate with both receivers, transmitting a dedicated message to each of them. Each

of the receivers is also equipped withM antennas. All transmitters share a common bandwidth. The channel outputs

at the receivers are characterized by the following input-output relationship:

yi = H1,i x1 + H2,i x2 + ... + HK,i xK + zi

where i ∈ {1,2} is the receiver index,k ∈ {1,2, ...,K} is the transmitter index,yi = (yi
1, y

i
2, ..., y

i
M)t is the M × 1

output vector signal of theith receiver,x j = (x j
1, x

j
2, ..., x

j
M)t is the M × 1 input vector signal of thejth transmitter,

H j,i = [h j,i
l,n] is the M × M channel matrix between transmitterj and receiveri, whereh j,i

l,n specifies the channel

gain from thelth antenna of thejth transmitter to thenth antenna of theith receiver, andzi = (zi
1, z

i
2, ..., z

i
M)t is

M×1 Additive White Gaussian Noise (AWGN) vector at receiveri. All noise terms are assumed to be independent

and identically distributed (i.i.d.), zero mean, unit variance Gaussian random variables. It is assumed that each
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transmitter is subject to an average power constraintP, i.e.,

E[(x j)†(x j)] ≤ P

whereE[.] represents the expectation. As mentioned earlier, the transmitted signal from thekth antenna of transmitter

i desired to be decoded at receiverj is represented byxi, j
k . At each antenna of each transmitter, a linear combination

of all desired messages for different receivers will be transmitted. Recall thatxi
k =

∑

j β j x
i, j
k , whereβ j is the weight

of messagexi, j
k in the linear combination.

Let P j,i
e denote the probability of error for a message sent by transmitter j to receiveri, i.e.,

P j,i
e = Pr{W j,i

, Ŵ j,i}

whereW j,i is the message sent by transmitterj to receiveri with the rateRj,i andŴ j,i is the corresponding decoded

message.

For a given power constraintP, a rate regionR(P) is determined byRj,i ’s. The closure of the set of all achievable

rate tuples is called the capacity region of the channel withpower constraintP and is denoted byC(P). The notion

of DoF is defined next.

Definition 1: To an achievable rate tupleR(P) ∈ C(P), one can correspond an achievable DoF ofd j,i provided

that

Rj,i =
1
2

d j,i log2(P) + o(log2(P)).

The set of all achievable DoF tuples is called the DoF region and is denoted byD .

Definition 2: The maximum sum rate or sum capacity of theK-transmitter, 2-receiver MIMO X channel is

defined as

C∑(P) = max
Rj,i∈C(P)

2
∑

i=1

K
∑

j=1

Rj,i.

The maximum achievable sum DoF (or simply total DoF) is defined as

D = max
d j,i∈D

2
∑

i=1

K
∑

j=1

d j,i .

In sequel, the notation (K × 2,M) X channel refers toK-transmitter, 2-receiver MIMO X channel withM antennas

at each transmitter/receiver.

C. 2-Transmitter, K-Receiver, M Antenna X Channel

A fully connected 2-transmitter,K-receiver MIMO Gaussian X channel is considered. Transmitters and receivers

are equipped withM antennas (see Figure 2). The channel outputs at the receivers are characterized by the following

input-output relationships:
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Fig. 1. K × 2, M antenna X channel

yi = H1,i x1 + H2,i x2+zi

wherei ∈ {1,2, ...,K} is the receiver index andzi = (zi
1, z

i
2, ..., z

i
M)t is the M × 1 AWGN vector at receiveri. Similar

to the K × 2, MIMO X channel, sum capacity and DoF region for 2× K, MIMO X channels can be defined. In

the sequel, the notation (2× K,M) X channel refers to constant channel gain, 2-transmitter,K-receiver MIMO X

channel withM antennas at each transmitter/receiver.

III. M ain Contributions and Discussion

A. Main Contributions

In this article, the total DoF of the following channels are characterized:

1. (2× K,M) X channel with constant real or complex channel realization.

2. (K × 2,M) X channel with constant real or complex channel realization.

It is observed that the duality/reciprocity holds for the DoF of this class of X channels, i.e., if the role of

transmitters is interchanged with that of receivers, the total DoF will be conserved. The technique used in this article,

named layered interference alignment, benefits from a linear pre-coding similar to vector interference alignment

at transmitters, in conjunction with a number theoretic technique similar to that of real alignment using rational

dimensions at transmitters. A new mathematical tool is introduced to empower the use of joint processing and
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Fig. 2. 2× K, M antenna X channel

mutual decoding among the receiver antennas to achieve the total fractional DoF of each desired message. The

main results can be stated as follows:

Theorem 1: The total DoF of (K × 2, M) X channel is2KM
K+1 for almost all channel realizations.

Theorem 2: The total DoF of the (2× K, M) X channel is2KM
K+1 for almost all channel realizations.

This implies that when the base for comparison is the DoF, (2×K, M) and (K×2, M) X channels are dual/reciprocal.

Theorem 3: The total DoF of the (2× K, M) X channel and its dual, the (K × 2, M) X channel with complex

and time invariant channel coefficients, is4KM
K+1 for almost all channel realizations.

This is twice that of the same channel with real channel gains. Note that the DoF for complex channel realizations

should be defined as half of its value for real channels, sincethe complex case uses two dimensions for each

transmission. This implies that the total DoF per transmit dimension is the same as real channel realization, which

is equal to2KM
K+1 .

A crucial ingredient in proving these theorems is the connection with the ‘size’ estimates of sets of real or complex

numbers having certain approximation properties. Such approximation properties are modelled in the linear forms

setup. The Khintchine–Groshev type theorems play a centralrole in determining the ‘size’ of such sets by means

of convergence or divergence of certain series which entirely depend upon the approximation error of the linear

forms. For such linear forms we establish Khintchine–Groshev type theorems in the Appendix.



7

Before getting into details of layered interference alignment, we need to review some basics of transmit signal

design using rational dimensions and a simple decoder design for the real interference alignment. We will go

through some basic examples that show how the conventional interference alignment techniques fall short in some

simple channels. We will go through the deployment of the layered interference alignment forK × 2 and 2× K X

channels.

B. Interference Alignment

In the following, we will discuss the general encoder and decoder design for aligning interference in X channels.

A single layer constellation is used to modulate data streams at each transmitter. Despite its simplicity, it is powerful

enough to support interference alignment, and achieve the DoF of the X channel. Prior to deriving the main results,

the performance of a typical decoding technique is analysed. Throughout this paper, we will rely on these results,

in conjunction with a special form of Khintchine-Groshev type theorem. It is noteworthy that in [23], the authors

showed for constant real channel gains, the total DoF of4
3 is achievable for a 2× 2, SISO X channel.

C. Transmission using Rational Dimensions

To simplify notations, the desired message for the first receiver is noted asu j=(u j
1,u

j
2, ...,u

j
M)t, and the desired

message for the second receiver is noted asv j = (v j
1, v

j
2, ..., v

j
M)t.

Transmitter j selects two constellations,U j andV j , to send data streamj to both receivers. The corresponding

constellation points are chosen from the set of integers, i.e.,U j ⊂ ZM andV j ⊂ ZM. It is assumed thatU j andV j

are bounded sets. Hence, there is a constantQ such thatU j ⊂ [−Q,Q] andV j ⊂ [−Q,Q] intervals. The maximum

cardinality ofU j andV j , which limits the rate of data streamj, is denoted by|X j | = max{|U j |, |V j |}. This design

corresponds to the case where all integers between−Q and Q are selected, which, in spite of its simplicity, is

capable of achieving the total DoF for several channels.

Having formed the constellation, the transmitter constructs two random codebooks for data streamj with rates

Rj,1 andRj,2 to be received by the first and the second receivers, respectively. This can be accomplished by choosing

a probability distribution on the input alphabets. A uniform distribution is used for the sake of simplicity. Note

that, since the input constellation is symmetrical by assumption, the expectation of the uniform distribution is zero.

The power consumed by the data streamj can be bounded asQ2. Even though this bound is not tight, it does not

decrease the performance of the system as far as the DoF is concerned. The transmit signal at thelth antenna of

transmitter j can be represented as

x j
l = a j

l u
j
l + b j

l v
j
l .

whereu j
l contains the partial information in data streamj that is intended to the first receiver and is being transmitted
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by the lth antenna of transmitterj. Accordingly, v j
l presents the part of the information for data streamj that is

desired at the second receiver and is being transmitted by the lth antenna of transmitterj.

Real numbersa j
l and b j

l are rationally independent, i.e., the equationa j
l x1 + b j

l x2 = 0 has no rational solutions

for each j ∈ {1,2, ...,K} and l ∈ {1,2, ...,M}. This independence is because a unique map from constellation points

to the message sets is required. Reliance on this independence means that any real numberx j
l belonging to the

set of constellation points is uniquely decomposable asx j
l = a j

l u
j
l + b j

l v
j
l . Observe that if there is another possible

decompositionx j
l = â j

l u
j
l + b̂ j

l v
j
l , then it forces ˆa j

l and b̂ j
l to be rationally dependent.

With the above method, each transmitter forms its transmit data stream̂x j = (a j
l u

j
l + b j

l v
j
l ) for l = 1,2, ...,M. To

adjust the power, the transmit signal is multiplied by a constant A, i.e., the transmit signal isx j = A x̂ j .

D. Recovering the Mixed Signal in Rational Dimensions

After rearrangement of the interfering term, the received signal can be represented as

y = ĝ0u0 + ĝ1I1 + . . . + ĝmIm + z. (1)

Hereafter, we consider ˆg0 = g0 to unify the notation. Next, the decoding scheme used to decode u0 from y is

explained. It is worth noting that if the receiver is interested in more than one data stream, then it performs the

same decoding procedure for each data stream.

At the receiver, the received signal is first passed through ahard decoder. The hard decoder maps the received

point Û = g0U0+ ĝ1I1 + . . .+ ĝmIm to the nearest point in the constellation. This changes the continuous channel

to a discrete-input, discrete-output channel in which the input symbols are from the transmit constellationU0 and

the output symbols are from the received constellation.

Note thatI j is the constellation due to single or multiple data streams.Since it is assumed that in the latter case

there is a linear combination of multiple data streams with integer coefficients, it can be concluded thatI j ⊂ Z for

j ∈ {1,2, . . . ,m}.

To bound the performance of the decoder, it is assumed that the received constellation has the property that there

is a many-to-one map from̂U toU0. This in fact implies that if there is no additive noise in thechannel, then the

receiver can decode the data stream with zero error probability. This property is called propertyΓ. It is assumed

that this property holds for all received constellations. To satisfy this requirement at all receivers, usually a careful

transmit constellation design is needed at all transmitters, which will be explained next.

Let dmin denote the minimum distance in the received constellation.Having propertyΓ, the receiver passes the

output of the hard decoder through the many-to-one mapping from Û to U0. The output is called ˆu0. Now, a

joint-typical decoder can be used to decode the data stream from a block ofû0. To calculate the achievable rate,
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Fig. 3. SIMO multiple access channel

the error probability, i.e.,Pe = Pr{Û0
, U0}, is bounded as

Pe ≤ Q
(

dmin
2σ

)

≤ exp
(

−d2
min

8σ2

)

. (2)

Definition 3 (Noise Removal):A receiver can completely remove the noise if the minimum distance between the

received constellation points is greater than
√

N, whereN is the noise variance [23].

Now Pe can be used to lower bound the achievable rate. Etkin and Ordentlich [8] used Fano’s inequality to

obtain a lower bound on the achievable rate, which is tight inhigh Signal-to-Noise Ratio (SNR) regimes. Following

similar steps, one obtains

R = I (û0,u0)

= H(u0) − H(u0|û0)

a
≥ H(u0) − 1− Pe log |U0|
b
≥ log |U0| − 1− Pe log |U0| (3)

where (a) follows from Fano’s inequality and (b) follows from the fact thatu0 has uniform distribution. To have a

multiplexing gain of at leastd, |U0| needs to scale as SNRd. Moreover, if Pe scales as exp
(

SNR−ǫ
)

for an ǫ > 0,

then it can be shown that R
log SNR approachesd at high SNR regimes.

E. Main Ideas and Basic Examples

Single-Input Multiple-Output (SIMO) Multiple Access Channel: A Multiple Access Channel (MAC) with three

single antenna users and a 2-antenna receiver is shown in Figure 3. The channel can be modelled as






















y1
1= x1 + ax2 + bx3 + z1

y1
2= x1 + âx2 + b̂x3 + z2

(4)
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where all channel gains are constant, real numbers.

Since the capacity region of this channel is fully characterized, it can be easily shown that the total DoF is 2.

Vector interference alignment falls short of achieving this DoF, as transmitters are equipped with a single antenna.

The naive application of real interference alignment results in a similar shortcoming. To see this, let us assume

that all three users communicate with the receiver using a single data stream. The data streams are modulated by

the constellationU = A(−Q,Q)Z = {all integers between−Q andQ}, whereA is a factor controlling the minimum

distance of the received constellation.

The received constellation, which is a set of points in a two-dimensional space, consists of points (v, v̂) such that

v = A(u1 + au2 + bu3) and v̂ = A(u1 + âu2 + b̂u3), whereui ’s are members ofU. Let us choose two sets of distinct

points (v1, v̂1) and (v2, v̂2) in the received constellation. The Khintchine-Groshev theorem provides a lower bound

on any linear combination of integers. It also provides somebound on the distance between any integer vector and

the linear combination of rationally independent vectors.Using the Khintchine–Groshev theorem (Theorem 1 in

§A of appendix)form = 2,n = 1, one can obtaindmin ≈ A
Q2 , wheredmin is the minimum distance in the received

constellation, for precise calculation of min distance we refer to [23, §A].

By using the noise removal definition (Def. 3) and assuming unit variance for the Gaussian noise, the noise can

be removed ifdmin = 1. Hence, it is sufficient to haveA ≈ Q2. In a noise-free environment, each receiver antenna

can decode the three messages if there is a one-to-one mapping from the received constellation to the transmit

constellations. Mathematically, one can satisfy the separability condition by enforcing the following: Each received

antenna is able to decode all three messages if the channel coefficients associated with that antenna are rationally

independent. In the above multiple access channel, for instance, the receiver can decode all messages by using the

signal from the first antenna ifu1 + au2 + bu3 = 0 has no non-trivial solution in integers foru1, u2 andu3.

User i’s rate is equal toRi = log(2Q− 1). Because of the power constraint,P = A2Q2. It was shown earlier that

A ≈ Q2. Therefore,P ≈ Q6. Hence,

di = lim
P→∞

Ri

0.5 logP
=

1
3
. (5)

If all three messages are decoded, the achievable DoF for this channel would be 1, while the total DoF is proved

to be 2. In [23], authors deployed the real interference alignment technique to achieve the total DoF for the SISO

multiple access channel, but this scheme falls short for thegeneral MIMO channel.

Motivated by above shortcomings, a new alignment scheme called layered interference alignment is proposed

to achieve the total DoF of this channel and a class of MIMO channels. This technique, in general, combines

vector and real interference alignment techniques in a subtle way to enjoy the benefits of multiple antennas at

both transmit and receive sides. The SIMO multiple access channel considered in this section has no room for

vector alignment. Above example helps to understand the difference between the real and the layered interference
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alignment. Concretely, the above shortcomings can be resolved using joint decoding of the received signals by

incorporating a new Khintchine-Groshev type theorem. Thistheorem bounds thedmin based on the size of the input

constellation and the number of antennas. These results arebacked up by Theorem 4, which will be discussed in

detail in section B. To use these mathematical results, one must provide an algorithm at receivers for simultaneous

decoding.

1) Joint Processing of Received Data Streams:This operation is composed of the followings:

1. Each receiver first normalizes its received data streams in order to have the unity coefficient for a specified

favourite message at all receiver antennas.

2. After normalization, each receiver uses the results of Theorem 4 to simultaneously decode each message from

all received streams at each of theM antennas.

The same procedure will be reapplied for all other desired messages.

In the multiple access channel example, joint decoding is employed at both receiver antennas. Useri’s rate is

Ri = log(2Q− 1). Because of the power constraint, we haveP = A2Q2. Applying Theorem 4 (form= n = 2) and

satisfying the noise removal assumption results inA ≈ Q0.5. Therefore,P ≈ Q3. So

di = lim
P→∞

Ri

0.5 logP
=

2
3
. (6)

Using the above method to decode each of the three messages, each of which has the DoF of23, results in the total

DoF of 2, which is the desired result. In the rest of this article, we incorporate layered interference alignment in its

full potential, i.e., having the vector and the real interference alignment together with joint processing, to achieve

the total DoF for (K × 2,M) and (2× K,M) X channels.

2) Complex Coefficients: Unlike the MAC, it can be easily seen that the total DoF of the Xchannel with complex

coefficients cannot be achieved by pairing [22]. In this case, using layered interference alignment requires a new

joint processing bound, which will be discussed separatelyin Section C. This new theorem leaves the encoding

and decoding methods intact and provides the required toolsto analyze the performance of the layered interference

alignment for the constant complex channel gains. It will beobserved that this extension to the layered interference

alignment technique will achieve the total DoF of4KM
K+1 for both (K×2,M) and (2×K,M) X channels with constant

complex channel gains. This is twice the DoF of the same channels with real channel coefficients.

IV. DoF of (K × 2, M) X Channel with Constant Real Channel Gains

In this section, we describe the encoding and decoding procedures which can achieve the total DOF of (K × 2,

M) X channel.
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A. Encoding

The ith transmitter sends two sets of messages,ui = (ui
1,u

i
2, ...u

i
M)t and vi = (vi

1, v
i
2, ...v

i
M)t. It is preferable to

decode these at receivers 1 and 2, respectively. The transmitter selects its modulation points fromU = A(−Q,Q)Z

andV = A(−Q,Q)Z for ui
l and vi

l , l = 1,2, ..,M, accordingly.A is a constant factor that controls the minimum

distance of the received constellation.

The transmit directions are first chosen in such a way that theinterfering signals at both receivers are aligned.

To this end, twoM × M matricesI1 and I2 are fixed at receivers 1 and 2, respectively.I1 and I2 can be used to

design the transmit signals. For instance, theith transmitter uses the following signal for data transmission:

xi = (H i,2)−1I2ui + (H i,1)−1I1vi . (7)

B. Decoding

The corresponding receive signals are






















y1=
∑K

i=1(H
i,1)(H i,2)−1I2ui + I1 ∑K

i=1 vi + z1

y2=
∑K

i=1(H
i,2)(H i,1)−1I1vi + I2 ∑K

i=1 ui + z2,
(8)

where z1 and z2 are independent Gaussian random vectors with identity covariance matrices. At thelth antenna of

the first receiver,

y1
l =

∑

i=1,...,K

∑

j=1,...,M

gi
l, ju

i
j +

∑

j=1,...,M

ηl jΓ j + z1
l (9)

wheregi
l, j is the receive gain (coefficient) for eachui

j observed at thelth antenna, andηi, j is the ith row, jth column

component of matrixI1 andΓ j is defined asΓ j=
∑K

i=1 vi
j. Similarly, at thelth antenna of the second receiver, we

have

y2
l =

∑

i=1,...,K

∑

j=1,...,M

ĝi
l, jv

i
j +

∑

j=1,...,M

λl, jΘ j + z2
l , (10)

whereI2=[λi, j ] andΘ j=
∑k

i=1 ui
j.

The first receiver can decode a message, sayu1
1, from the receive signals using the following algorithm. Itfirst

normalizes the receive signal to set the coefficients ofu1
1 at all antennas to unity. Next, joint processing is applied

to decodeu1
1. Theorem 4 allows the minimum distance to be approximated bydmin=AQ−k, see–Remark 1. Hence,

settingA ≈ Qk is sufficient to concludedmin ≈ 1, which in turn results in noise removal from the received signal.

Putting this together results inP ≈ Q2(k+1). At the first receiver, one can obtain the following DoF foru1
1:

d1,1 = lim
P→∞

(R1,1 = log (2Q− 1))
0.5 logP

=
1

K + 1
. (11)

This technique can be applied to all other partial messages at the first receiver. In the second receiver, the same

method will be applied for allvi
j, resulting in the same DoF for the second receiver. Finally,it is possible to decode



13

KM different messages at each receiver, which results in the total DoF of 2KM
K+1 . This achieved DoF meets the upper

bound mentioned in [5].

V. DoF of (2× K,M) X Channel with Constant Real Channel Gains

In the following, we will show that the total DoF of (2× K,M) antenna X channel with constant real channel

gains is the same as the DoF of (K × 2,M) X channel, which is equal to2KM
K+1 .

A. Encoding

The first transmitter sends the messagesu j = (u j
1,u

j
2, ...u

j
M)t for j = 1, ..,K, and the second transmitter sends the

messagesv j = (v j
1, v

j
2, ...v

j
M)t; where it is desired thatu j andv j to be decoded at receiverj. The transmitter selects

its modulation points fromU = A(−Q,Q)Z andV = A(−Q,Q)Z for u j
l and v j

l , l = 1,2, ...,M, respectively, where

A is a constant factor that controls the minimum distance of the received constellation.

Similarr to the case of (K × 2, M) X channel, the transmit directions are first chosen in such away that the

interfering signals at both receivers are aligned. To this end, matricesI i , each of dimensionM × M, are fixed at

receiveri, whereI i ’s is used to extract the transmit signals from all transmitters. The goal at theith receiver is

yi = H1,iρiui + H2,iζ ivi +

K
∑

j=1&i, j

I i + zi . (12)

To obtainρ andζ, the following solution is proposed:






















































H1,iρ j = H2,iζ j+1 j < {i, i − 1,K}

H1,iρ j = H2,iζ j+2 j = i − 1

H1,iρ j = H2,iζ1 j = K & i , 1

H1,iρ j = H2,iζ2 j = K & i = 1.

Using the above signal space design results in

I j =























































H1,iρ j(u j + v j+1) j < {i, i − 1,K}

H1,iρ j(u j + v j+2) j = i − 1

H1,iρ j(u j + v1) j = K & i , 1

H1,iρ j(u j + v2) j = K & i = 1.

B. Decoding

Using this signaling scheme, the received signal at thelth antenna of receiverj can be expressed as

y j
l =

∑

i=1,...,M

σl,iu
i
j +

∑

i=1,...,M

λl,iv
i
j +

K
∑

i=1,i, j

M
∑

n=1

I i
n + zj

l , (13)

whereσl,i andλl,i are constant coefficients representing the combined effects of all the channel gains forui
j andvi

j,

respectively.
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Now, applying the joint processing technique at each antenna, results in receiving the linear combination of 2M

desired partial messages (M for u and M for v) added toM(K − 1) interference terms. For any messageui
j at the

ith antenna of receiverj, we use the joint processing among all theM antennas. After normalizing, using Theorem

4, this results in

di, j = lim
P→∞

log (2Q− 1)
0.5 logP

=
1

K + 1
(14)

The same argument is valid forvi
j, so it is concluded that the total DoF of2KM

K+1 is achievable. It is observed

that (2× K,M) and (K × 2,M) X channels act reciprocal/dual in the sense of DOF. Here, for both (2× K,M) and

(K×2,M) X channels the achievability part is proved, since in [5], it is shown that the total DoF for both (2×K,M)

and (K × 2,M) X channels are upper bounded by2KM
K+1 . Therefore, it can be concluded that the proposed schemes

achieve the maximum DoF of these channels.

VI. Complex Coefficients Cases

Let us consider the (K × 2,M) X channel. It is shown in the previous section that the upperbound on the total

DoF of 2KM
K+1 is achievable for this channel when the channel gains are real. Needless to say, the result is also

applicable to channels with complex coefficients. The real and imaginary parts of the input and the output can be

paired. This converts the channel to 2K virtual transmitters and 4 receivers. It can be seen that applying Theorem

4 does not achieve the upper bound on the DoF in this case.

To solve the issue, we will make an extension to Theorem 4 for complex channel realizations, which can be used

in characterizing the total DoF of both (K ×2,M) and (2×K,M) X channels with complex constant channel gains.

This result shows that the layered interference alignment can almost surely characterize the DoF of these channels.

The proof of this extended theorem is provided in Appendix C.This theorem (see 7) shows that the total

achievable DoF of MIMO X channel with complex channel gains will be twice that of a similar channel with

constant real gains. This observation can be justified either by relying on the fact that for a complex channel,

two dimensions per transmission (real and imaginary) are required, or by using the modified definition of DoF for

complex channel gains and complex signal transmission, which is

di = lim
P→∞

Ri

logP
. (15)

VII. conclusion

In this paper, we introduced a new interference management tool, named layered interference alignment. We

proved several metrical theorems in the field of Diophantineapproximation which empowers using joint processing

and simultaneous decoding. It is observed that, unlike GIC and SISO X channel, joint processing is required

to characterize the total DoF of MIMO X channels. To this end,we incorporated both the vector and the real
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interference alignment techniques for signal transmission, and relied on joint processing for simultaneous decoding.

The total DoF of (K ×2,M) and (2×K,M) X channels are characterized. It is observed that, for bothcomplex and

real channel gains, these can achieve the DOF upper bound of2KM
K+1 .

Appendix

We start off with an introduction to the classical metric Diophantine approximation: the branch of number theory

which can roughly be described as answering a simple question concerning ‘how well a real number can be

approximated by rationals’. In subsequent subsections, weprove the Khintchine–Groshev type theorems for the

particular type of linear forms, that are needed for the layered interference alignment.

A. Khintchine–Groshev theorem for linear forms

In what follows, by anapproximating functionwe mean a decreasing functionψ : R+ → R+ such thatψ(r)→ 0

as r → ∞. An m× n matrix X = (xi, j) ∈ Rmn is said to beψ-approximable if the system of inequalities

‖q1x1,i + q2x2,i + . . . + qmxm,i‖ < ψ(|q|) (1 ≤ i ≤ n) (16)

is satisfied for infinitely many vectorsq ∈ Zm \ {0}. Here ‖ · ‖ means distance to the nearest integer. For clarity,

equation (16) may be expressed in the form

|q1x1,i + q2x2,i + . . . + qmxm,i − pi | < ψ(|q|) (1 ≤ i ≤ n) (17)

which is satisfied for infinitely many vectors (p,q) = (p1, · · · , pn,q1, · · · ,qm) ∈ Zn × Zm \ {0}.

The system

q1x1,i + q2x2,i + . . . + qmxm,i (1 ≤ i ≤ n)

of n real linear forms inm variablesq1, . . . ,qm will be written more concisely asqX, where the matrixX = (xi, j)

is regarded as a point inRmn. It is easily seen thatψ-approximability is unaffected under translation by integer

vectors, and we can therefore restrict attention to the unitcubeImn as

R
mn =

⋃

K∈Zmn

(Imn+ K ) .

The ψ-approximability in the linear forms setup takes its roots from the linear form version of the Dirichlet’s

theorem.

Theorem (Dirichlet for Vectors) 1:Let N be a given natural number and letX ∈ Imn. Then there exists a non-zero

integerq ∈ Zm with 1 ≤ |q| ≤ N satisfying the system of inequalities

‖q1x1,i + q2x2,i + . . . + qmxm,i‖ < N−
m
n (1 ≤ i ≤ n) .
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Corollary 1: For anyX ∈ Imn there exist infinitely many integer vectorsq ∈ Zm such that

‖q1x1,i + q2x2,i + . . . + qmxm,i‖ < |q|−
m
n (1 ≤ i ≤ n) . (18)

The right-hand side of (18) may be sharpened by a constantc(m,n), but the best permissible values forc(m,n) are

unknown except forc(1,1) = 1/
√

5.

Notation. To simplify notation in the proofs below the Vinogradov symbols≪ and≫ will be used to indicate an

inequality with an unspecified positive multiplicative constant. If a ≪ b and a ≫ b we write a ≍ b, and say that

the quantitiesa andb are comparable. Throughout, for any setA, |A|l denote thel–dimensional Lebesgue measure

of the setA.

The main result in the linear form settings is the Khintchine–Groshev theorem, which gives an elegant answer

to the question of the size of the setW(m,n;ψ). The following statement is due to Groshev [10] and extends

Khintchine’s simultaneous result [18] to the dual form case.

Theorem(Khintchine-Groshev) 1:Let ψ be an approximating function. Then

|W (m,n;ψ) |mn =



























0 if
∞
∑

r=1
rm−1ψn(r) < ∞,

1 if
∞
∑

r=1
rm−1ψn(r) = ∞.

The proof of the convergence case of the Khintchine–Groshevtheorem is easily established by a straightforward

application of the Borel–Cantelli lemma and is free from anyassumption onψ. The divergence part constitutes the

main substance of the theorem and requires the monotonicityassumption on the functionψ. For further details and

overview of this result we we refer the reader to [1], [16] andreferences therein.

B. A mixed type Diophantine approximation

In this section we provide a set of new tools for decoder design of layered interference alignment. The tools

needed for the simple decoder design should empower the possibility of simultaneously decoding each part of

each message in all antennas of each receiver. In the other words, considering limiting ourself to transmit integer

numbers, we need to find the best estimator function that can estimate different linear forms of rational basis

simultaneously.

Let ψ be an approximating function and letWA(m,n;ψ) be the set ofX ∈ Imn := [−1/2,1/2]mn obtained by fixing

the vector (p1, · · · , pn) in (17) as (p, · · · , p), i.e., the system of equations

|q1x1,i + q2x2,i + . . . + qmxm,i − p| < ψ(|q|) 1 ≤ i ≤ n (19)

is satisfied for infinitely many (p, · · · , p,q1, · · · ,qm) ∈ Zn × Zm \ {0}.

The setWA(m,n;ψ) is a hybrid of the classical set in which the distance to the nearest integer is allowed to vary

from one linear form to the other. In the current situation itis the same for all the linear forms. Sets of similar
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nature has been studied by Hussain and his collaborators in [6], [14], [15]. We prove the Khintchine–Groshev type

result for WA(m,n;ψ). The results crucially depend upon the choices ofm and n, similar to the above-mentioned

papers and unlike the classical sets.

Theorem 4: Let m+ 1 > n andψ be an approximating function; then

|WA (m,n;ψ) |mn =



























0 if
∞
∑

r=1
ψn(r)rm−n < ∞

1 if
∞
∑

r=1
ψn(r)rm−n = ∞.

The convergence half follows from the Borel–Cantelli lemmaby construction of a suitable cover for the set

WA (m,n;ψ). It does not rely on the choices ofm and n, and it is free from monotonic assumption on the

approximating function. It is worth pointing out that for the application purposes the convergence case is all

that matters. By settingp = 0 in the above setup, a similar application of the convergence half already exists in

achieving MIMO capacity within a constant gap [24]. In fact,a particular form of Theorem 9 can be used to obtain

the complex version of the results obtained in [24]. Fischler et al [9] has also used the convergence analogue of the

above theorem forp = 0 and for multiple approximating functions in proving the converse to linear independence

criterion for several linear forms. It is worth demonstrating that forψ(r) = r−
m+1

n +1−ǫ , ǫ > 0,

∞
∑

r=1

ψ(r)nrm−n =

∞
∑

r=1

r−1−ǫ < ∞ if ǫ > 0

= ∞ if ǫ ≤ 0.

From here it should be clear (if not, see Remark 1 below) that for m+ 1 > n and ǫ > 0, the set

|{X ∈WA (m,n;ψ) : dmin(X,R) ≤ R−
m+1

n +1−ǫ for i.m. R ∈ N}|mn = 0.

1) Proof of Theorem 4: the Convergence Case:Define the resonant sets as

Rq = {X ∈ Imn : qX − p = 0} .

Thus, the resonant sets are (m− 1)n-dimensional hyperplanes passing through the pointp. The setWA(m,n;ψ) can

be written as a lim sup set using the resonant sets in the following way.

WA (m,n;ψ) =
∞
⋂

N=1

⋃

r>N

⋃

Rq:|q|=r

B
(

Rq, ψ(|q|)
)

where

B
(

Rq, ψ(|q|)
)

=

{

X ∈ Imn : dist
(

X,Rq

)

≤ ψ(|q|)
|q|

}

.

Thus, for eachN ∈ N the family















⋃

Rq:|q|=r
B

(

Rq, ψ(|q|)
)

: r = N,N + 1, ...















is a cover for the setWA (m,n;ψ). Now,

for each resonant setRq, let ∆(q) be a collection ofmn-dimensional closed hypercubesC with disjoint interiors
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I
2

Rq

B(Rq, ψ(|q|))

q = (q1,q2)

x

y

(1
2,0)(−1

2,0)

p
q2

p
q1

(0, 1
2)

(0,−1
2)

Fig. 4. The resonant setRq is a line form= 2 andn = 1. The resonant setRq is a lineq1x+ q2y− p = 0, intercepting thex andy axes at
p

q1
and p

q2
, respectively. The setB

(

Rq, ψ(|q|)
)

is the ψ(|q|)
|q| neighbourhood ofRq.

and side length comparable withψ(|q|)/|q| and diameter at mostψ(|q|)/|q| such thatC ∩ ⋃

Rq:|q|=r
B

(

Rq, ψ(|q|)
)

, ∅

and B
(

Rq, ψ(|q|)
)

⊂ ⋃

C∈∆(q)
C.

Then

#∆(q) ≪ (ψ(|q|)/|q|)−(m−1)n

where # denotes cardinality. Note that

WA (m,n;ψ) ⊂
⋃

r>N

⋃

Rq:|q|=r

∆
(

Rq,Ψ(|q|)
)

⊂
⋃

r>N

⋃

∆(q):|q|=r

⋃

C∈∆(q)

C.

Hence,

|WA (m,n;ψ)|mn ≤
∑

r>N

∑

∆(q):|q|=r

∑

C∈∆(q)

|C|mn

≪
∑

r>N

rm

(

ψ(r)
r

)mn(
ψ(r)

r

)−(m−1)n

=
∑

r>N

rm−nψ(r)n.

Since the sum
∞
∑

r=1
ψ(r)nrm−n is convergent, which gives zero Lebesgue measure by the Borel–Cantelli lemma.

2) Proof of Theorem 4: the Divergence Case:For the divergence case the ubiquity theorem [2, Theorem 1] is

used, and to establish ubiquity two technical lemmas (Lemma1 and Lemma 2) are needed. The work is similar to

[6]; therefore, we only prove one of them and refer the interested reader to the aforementioned article [6]. Most of
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the metric results (Khintchine–Groshev, Jarnik, Jarnik–Besicovitch, and Schmidt theorems) stem from the Dirichlet

type result which is stated and proved below for the current settings. Throughout, we setN = {2t : t ∈ N}.

Lemma 1: For N0 < N, for eachX ∈ Imn there exists a non-zero integer vectorq in Zm and p ∈ Zn with

|q|, |p| ≤ N for N0 large enough such that

|qX − p| < (m+ 2)2N−
m+1

n +1.

Proof of Lemma1. For |p| < N and thoseq with non-negative components, there are(N + 1)m N possible vectors

of the formqX − p for which

−m+ 2
2

N ≤ qX − p ≤ m+ 2
2

N.

Divide the cube with centre0 and side length (m+2)N in Rn into Nm+1 smaller cubes of volume (m+2)nNn−m−1

and side length (m+ 2)N1−m+1
n . SinceNm < (N + 1)m, there are at least two vectorsq1X − p1,q2X − p2, say, in one

small cube. Therefore
∣

∣

∣(q1−q2)X − (p1 − p2)
∣

∣

∣ < (m+ 2)2N−
m+1

n +1.

Evidently q1 − q2 ∈ Zm and |q1 − q2| ≤ N. Also, p1 − p2 ∈ Z and |p1 − p2| ≤ N by choices ofp1 andp2.

Lemma 2: The familyRq := {Rq : q ∈ Zm \ {0}} is locally ubiquitous with respect to the functionρ : N → R+

where

ρ(t) = (m+ 2)2N−
m+1

n +1ω(t)

andω(t) is a positive real increasing function such thatω(t)→ ∞ as t → ∞. However, it is not very restrictive in

the sense that it can always be assumed as a step function and hence does not appear in the sum condition; for

details see [6, page 83].

In view of Lemma 1, it is natural to consider the following badly approximable set. Let Bad(m,n) denote the

set ofX ∈ Imn for which there exists a constantC(X) > 0 such that

|qX − p| > C(X)|q|−m+1
n +1 for all (p,q) ∈ Zm+n.

More generally, from the convergence part of Theorem 4, it isthen clear that for almost everyX ∈ Imn there

exists a constantC(X) > 0 such that

|qX − p| ≥ c(X)ψ(|q|) for all (p,q) ∈ Zm+n \ {0} (20)

and denote the set of all such numbers as Bad(c,m,n) and ∪c>0Bad(c,m,n) = Imn \ WA (m,n;ψ). Now since

|WA (m,n;ψ) |mn = 0 which implies that| ∪c>0 Bad(c,m,n)|mn = 1. The question of finding the Hausdorff dimension

and measure of each Bad(c,m,n) is not dealt here and we leave it for another sitting. However, for the set Bad(m,n)

it is straightforward to establish the following result.
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Theorem 5: Let m+ 1 > n; then

dim Bad(m,n) = mn

and form+ 1 ≤ n

|Bad(m,n)|mn = 1.

Proof of Theorem 5 follows from [12], [13] by settingu = 1 in those papers. Now, form + 1 > n, since

Bad(m,n) ⊆ Imn \WA(m,n;ψ), therefore|Bad(m,n)|mn = 0.

Remark 1: It should be clear from Theorem 5 that the minimum distance betweenqX and the nearest integer

vector (p, · · · , p) is at leastC(X)|q|−m+1
n +1, whereC(X) > 0 is a constant. Loosely speaking, Bad(m,n) consists

of all those points that stay clear of (m− 1)n-dimensional hyperplanes having diameters proportional to |q|−m+1
n +1

centered at the hyperplanesRq. Note that if the exponent−m+1
n + 1 is replaced by−m+1

n + 1− ǫ for ǫ > 0, then the

set Bad(m,n) is of full Lebesgue measure. It is very pleasing and alignedwith our applications.

Remark 2: In the casem+ 1 ≤ n, the setWA(m,n;ψ) is over determined and lies in a subset of strictly lower

dimension thanmn. To see this, consider the casem = n and detX , 0. This would imply that the defining

inequalities (19) take the form

|q − pX−1| ≤ C(X)ψ(|q|),

which is obviously not true for sufficiently largeq.

The same logic extends to all other cases. For eachm× n matrix X ∈ Rmn with column vectorsx(1), . . . , x(n)

defineX̃ to be them× (n−1) matrix with column vectorsx(2), . . . , x(n). The setΓ ⊂ Rmn is the set ofX ∈ Rmn such

that the determinant of eachm×m minor of X̃ is zero.

Then it can be easily proved thatWA(m,n;ψ) ⊂ Γ when m+ 1 ≤ n, which will lead to further investigations of

metric theory for the casesm+ 1 ≤ n. However, this is not within the scope of the present paper. Therefore, we

will not address it any further and refer the interested reader to [6], [15], which comprehensively discusses such

cases.

C. Metric Diophantine Approximation over Complex Numbers:Classical Setup

Most of the complex Diophantine approximation theory is analogous to what we have discussed in the previous

sections. Surprisingly, analogues of Khintchine–Groshevtheorems for systems of linear forms for complex numbers

is not proved todate. We prove them here alongwith the analogous results for mixed type linear forms. To keep the

acquisition compact and the length of the paper under control, we state only the important changes.

In the 19th century, Hermite and Hurwitz studied the approximation of complex numbers by the ratios of Gaussian

integers, a natural analogue of approximation of real numbers by rationals,

Z[i] = {p1 + ip2 ∈ C : p1, p2 ∈ Z}.
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However, complex Diophantine approximation appears to be more difficult than the real case. For example, continued

fractions, so simple and effective for real numbers, are not so straightforward for complex numbers. In other words,

the best possible analogue of Dirichlet’s theorem cannot bederived by means of a continued fraction expansion

approach.

We will discuss the problem for the linear form setup and willlist the recent developments so far for the particular

cases. LetΨ be an approximating function satisfying step function i.e.ψ(r) = ψ([r]), where [r] is the integer part

of r. An m× n matrix Z = (zi, j) ∈ Cmn is said to beΨ-approximable if the system of inequalities

|q1z1, j + q2z2, j + · · · + qmzm, j − p j | < Ψ(|q|2) (1 ≤ j ≤ n) (21)

is satisfied for infinitely many vectorsp × q ∈ Zn[i] ×Zm[i] \ {0}. Throughout, the system (21) will be written more

concisely asqZ. Here |q|2 = max{|q1|2, · · · , |qm|2}, where forqk = qk1 + iqk2 ∈ Z[i], |qk|2 =
√

|qk1 |2 + |qk2 |2.

As in the real case, the stemming point of such approximationproperties is the Dirichlet theorem. A short and

more direct geometry of numbers proof of the complex versionof Dirichlet’s theorem is given below. Although

the constant here is not best possible, the result is all thatis needed to prove the complex analogue of Khintchine–

Groshev and Schmidt type theorems without recourse to the hyperbolic space framework.

Theorem 6: Given anyZ ∈ Cmn andN ∈ N, there exist Gaussian integersp ∈ Zn[i] and non-zeroq ∈ Zm[i] with

0 < |q|2 ≤ N such that

|qZ − p| < c

Nm/n
(22)

wherec > 0 is an appropriate constant. Moreover, there are infinitelymany (p,q) ∈ Zn[i] × Zm[i] \ {0} such that

|qZ − p| < c

|q|m/n2

.

Proof of Theorem6. For clarity we prove the theorem form = 2,n = 1. The proof of the casem= n = 1 can be

found in [7]. Let Z = (x1 + iy1, x2 + iy2),q = (q1,1 + iq1,2,q2,1 + iq2,2), and p = (p1 + ip2). Then

|qZ − p| = |q1,1x1 + q2,1x2 − q1,2y1 − q2,2y2 − p1 + i(q1,2x1 + q2,2x2 + q1,1y1 + q2,1y2 − p2)|.

Consider the convex body

B =
{

(q1,1,q1,2,q2,1,q2,2, p1, p2) : max{q2
1,1 + q2

1,2,q
2
2,1 + q2

2,2} ≤ N2,∆ ≤ R2
}

where

∆ =
(

q1,1x1 + q2,1x2 − q1,2y1 − q2,2y2 − p1
)2
+

(

q1,2x1 + q2,2x2 + q1,1y1 + q2,1y2 − p2
)2
.
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Then

|B| =
∫

max{q2
1,1+q2

1,2, q2
2,1+q2

2,2}≤N2

∫

∆≤R2
dq1,1dq1,2dq2,1dq2,2dp1dp2

=

∫

max{q2
1,1+q2

1,2, q2
2,1+q2

2,2}≤N2
πR2dq1,1dq1,2dq2,1dq2,2

= π3R2N4 ≥ 26,

if R> 23

π3/4N2 . Hence, by Minkowski’s theorem [11], equation (22) has a non-zero integer solution with 0< |q|2 ≤ N.

This result should be compared with the real Dirichlet’s theorem in §1 form = 4,n = 2. The complex points

for which Theorem 6 cannot be improved by an arbitrary constant are called badly approximable. That is, a point

Z ∈ Cmn is said to be badly approximable if there exists a constantC(Z) > 0 such that

|qZ − p| > C(Z)|q|−
m
n

2

for all (p,q) ∈ Zn[i] × Zm[i]. Let BadC(m,n) denote the set of badly approximable points inCmn.

The Hausdorff dimension of the setBadC(1,1) has been studied by various authors in different frameworks; see,

for instance, [19, §5.3] in which authors determined the Hausdorff dimension forBadC(1,n), i.e.,

dimBadC(1,n) = n.

In fact, as a consequence of the general framework in their paper, they proved the Hausdorff dimension to be

maximal in the weighted analogue ofBadC intersected with any compact subset ofCn. There framework can

not be applied for the dual setup at work. However, it is reasonable to suspect that the Hausdorff dimension for

BadC(m,n) is maximal or more generally for any compact subsetK ⊂ Cmn,

Conjecture A 1:dimBadC(m,n) ∩ K = dimK

The treatment required to deal with this problem needs delicate number theoretic tools which would put this paper

out of focus. Therefore, we will not deal with it any further.

From now onwards we restrict ourselves to themn-dimensional unit discD := (C ∩Ω)mn, whereΩ = {a+ ib :

0 ≤ a,b < 1}, instead of considering the full spaceCmn. The reason behind this restriction is that it is convenient

to work in the unit discs, and the approximable properties (both well and bad) are invariant under the translation

by the Gaussian integers. LetWC(m,n;Ψ) denote the set ofΨ-approximable points inD i.e.

WC(m,n;Ψ) := {Z ∈ D : |qZ − p| < Ψ(|q|2) for i.m. (p,q) ∈ Zn[i] × Zm[i] \ {0}} .

1) Khintchine–Groshev Theorem for complex numbers:The aim here is to prove the complex version of the

Khintchine–Groshev theorem

Theorem 7: Let Ψ be an approximating function. Then
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|WC (m,n;Ψ) |mn =























0 if
∞
∑

r=1
r2m−1Ψ2n(r) < ∞

Full if
∑∞

r=1 r2m−1Ψ2n(r) = ∞.

Here |WC (m,n;Ψ) |mn denotes the complexmn-dimensional Lebesgue measure of the setWC (m,n;Ψ) . For m =

n = 1, Theorem 7 was proved in 1952 by LeVeque [20], who combined Khintchine’s continued fraction approach

with ideas from hyperbolic geometry. In 1982, Sullivan [25]used Bianchi groups and some powerful hyperbolic

geometry arguments to prove more general Khintchine theorems for real and for complex numbers. In the latter

case, the result includes approximation of complex numbersby ratios p/q of integersp,q from the imaginary

quadratic fieldsR(i
√

d), whered is a square-free natural number. The cased = 1 corresponds to the Picard group

and approximation by Gaussian rationals. The result was also derived by Beresnevich et al. as a consequence of

ubiquity framework in [1, Theorem 7].

2) Proof of the Convergence Case of Theorem 7:As before, Theorem 7 is proved for the casem = 2,n = 1,

leaving behind the obvious modifications to deal with the higher dimensions. First, the convergence case is dealt

with. The resonant set is defined as

Cq := {Z ∈ D : |qZ − p| = 0}

=
{

(x1 + iy1, x2 + iy2) ∈ D : |(q1,1 + iq1,2,q2,1 + iq2,2) · (x1 + iy1, x2 + iy2) − (p1 + ip2)| = 0
}

=























(x1 + iy1, x2 + iy2) ∈ D :
q1,1x1 + q2,1x2 − q1,2y1 − q2,2y2 = p1 and

q1,2x1 + q2,2x2 + q1,1y1 + q2,1y2 = p2























.

The setWC (2,1;Ψ) can be written using the resonant sets

WC (2,1;Ψ) =
∞
⋂

N=1

⋃

r>N

⋃

Cq:|p|2<|q|2=r

B
(

Cq,Ψ(|q|2)
)

where

B
(

Cq,Ψ(|q|2)
)

=

{

Z ∈ D : dist
(

Z,Cq

)

≤ Ψ(|q|2)
|q|2

}

.

It follows that

WC (2,1;Ψ) ⊆
⋃

r>N

⋃

Cq:|p|2<|q|2=r

B
(

Cq,Ψ(|q|2)
)

.

In other words,WC (2,1;Ψ) has a natural coverC =
{

B
(

Cq,Ψ(|q|2)
)

: |q|2 > N
}

for eachN = 1,2, · · · . It can further

be covered by a collection of 4-dimensional hypercubes withdisjoint interior and side length comparable with
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Ψ(|q|2)/|q|2. The number of such hypercubes is clearly≪ (Ψ(|q|2)/|q|2)−2. Thus,

|WC (2,1;Ψ)|2 ≤
∞
∑

r=N

∞
∑

Cq:|p|2<|q|2=r

∣

∣

∣

∣

B
(

Cq,Ψ(|q|2)
)

∣

∣

∣

∣

2

≪
∞
∑

r=N

∑

r<|q|2<r+1

(Ψ(|q|2)/|q|2)−2 (Ψ(|q|2)/|q|2)4

=

∞
∑

r=N

(Ψ(r)/r)2
∑

r<|q|2<r+1

1. (23)

Now it remains to count
∑

r<|q|2<r+1
1. An argument from [7, p. 328] or [11, Th. 386] is followed to conclude that

∑

r<|q|2<r+1 1≪ r5. Thus, (23) becomes

|WC (2,1;Ψ)|2 ≪
∞
∑

r=N

r3Ψ(r)2.

Now, since the sum
∑∞

r=N r3Ψ(r)2 < ∞, the tail of the series can be made arbitrarily small. Hence,by the Borel–

Cantelli lemma,|WC (2,1;Ψ)|2 = 0.

The divergence case of the above theorem can be similarly proved by following the similar arguments as in the

real case. Precisely, one would need to utilize the ubiquityframework to extend [1, Th. 7] for the linear forms setup.

The Dirichlet theorem 6 would again be used to prove the ubiquity lemma. The details are left for the interested

reader.

3) A Complex Hybrid Setup:As in the previous section, letΨ be an approximating function satisfying the step

function. An m× n matrix Z ∈ Cmn is said to beΨ-approximable if the system of inequalities

|q1z1, j + q2z2, j + · · · + qmzm, j − p| < Ψ(|q|2) (1 ≤ j ≤ n) (24)

is satisfied for infinitely many vectors (p, · · · , p,q1, · · · ,qm) ∈ Zn[i]×Zm[i] \ {0}. That is, the system (24) is obtained

by keeping the nearest integer vector (p, · · · , p) the same for all the linear forms. Since the results are verysimilar

to WA(m,n;Ψ) and can be proved analogously, they are only stated here with obvious modifications. The first one

is the Dirichlet type theorem, and rest of the results stem from it. It also serves the purpose of finding the minimum

distance betweenqZ andp.

Theorem 8: Given anyZ ∈ Cmn and N ∈ N, there exist Gaussian integersp = (p1 + ip2, · · · , p1 + ip2) ∈ Zn[i]

and non-zeroq = (q11+ iq12, · · · ,qm1 + iqm2) ∈ Zm[i] with 0 < |q|2 ≤ N such that

|qZ − p| < c

N
m+1

n −1

wherec > 0 is an appropriate constant. Moreover, there are infinitelymany (p,q) ∈ Zn[i] × Zm[i] \ {0} such that

|qZ − p| < c|q|−
m+1

n +1
2 .
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Let WCA(m,n;Ψ) denote the set ofΨ-approximable points inD, i.e., the set of points that satisfy the system (24).

Then, one has the analogue of the Khintchine–Groshev theorem for this setup.

Theorem 9: Let Ψ be an approximating function and letm+ 1 > n. Then

|WCA (m,n;Ψ) |mn =























0 if
∞
∑

r=1
(rm−nΨn(r))2

< ∞

Full if
∑∞

r=1 (rm−nΨn(r))2
= ∞.

The proof of this theorem is again similar to that of Theorem 7. The details are left for the interested reader.
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