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Abstract—In this paper, we investigate the robustness of phoneme

classification to additive noise with hybrid features using support vector
machines (SVMs). In particular, the cepstral features are combined with

short term energy features of acoustic waveform segments to form a

hybrid representation. The energy features are then taken into account

separately in the SVM kernel, and a simple subtraction method allows
them to be adapted effectively in noise. This hybrid representation

contributes significantly to the robustness of phoneme classification and

narrows the performance gap to the ideal baseline of classifiers trained
under matched noise conditions.

Index Terms—Hybrid features, Phoneme classification, Robustness,
Support vector machines

I. INTRODUCTION

Accuracy of automatic speech recognition (ASR) systems rapidly

degrades when operated in adverse acoustical environments. While

language and context modelling are essential for reducing many errors

in speech recognition, accurate recognition of phonemes and the

related problem of classification of isolated phonetic units is a major

step towards achieving robust recognition of continuous speech [1, 2].

Indeed, phoneme classification has been the subject of several recent

studies [3–6].

State-of-the-art ASR systems use cepstral features, normally some

variant of Mel-frequency cepstral coefficients (MFCC) or Perceptual

Linear Prediction (PLP) [7], as their front-end for processing of

speech signals. These representations are derived from the short

term magnitude spectra followed by non-linear transformations to

model the processing of the human auditory system and allow for

more accurate modelling when data is limited. However, due to the

nonlinear processing involved in the feature extraction, even small

amounts of additive noise may cause significant departures from the

distributions learned on noiseless data. Large amount of training

data is required to retrain the system to a new environment. To

make the cepstral representations of speech less sensitive to noise,

several techniques such as cepstral mean and variance normalization

(CMVN) [8] and multi-condition/multi-style training [9, 10] have

been proposed to reduce explicitly the effects of noise on spectral

representations with the aim of approaching the optimal performance

which is achieved when training and testing conditions are matched

[11]. State-of-the-art feature compensation methods for the cepstral

representation of speech include the ETSI advanced front end (AFE)

[12] and vector Taylor series (VTS) [13, 14]. In this work, we propose

that a set of hybrid features, formed by combining the standard

cepstral features (MFCC) with the short term/local energy features

of acoustic waveform segments, can contribute to the robustness of

phoneme classification in noise. This is motivated by the fact that

the local energy features can then be adapted effectively in noise by

taking into account the approximate orthogonality of clean speech

and noise. Note that this work is focused on the task of phoneme

classification using the hybrid features in the presence of additive

noise although we believe the results also have implications for the

construction of continuous speech recognition systems.

The SVM approach to classification of phonemes using error-

correcting output codes (ECOC) [15] is reviewed briefly in Section II.

Section III presents the proposed hybrid features and their adaptation

in the presence of noise. Experimental setup is discussed in Section

IV and classification results in the presence of noise are reported in

Section V. Finally, Section VI draws some conclusions.

II. CLASSIFICATION METHOD

An SVM [16] binary classifier estimates decision surfaces sep-

arating two classes of data. In the simplest case these are linear,

but for most pattern recognition problems one requires nonlinear

decision boundaries. These are constructed using kernels instead of

dot products, implicitly mapping data points to high-dimensional

feature vectors. A kernel-based decision function which classifies an

input vector x is expressed as

h(x) =
X

i

αiyiK(x,xi) + b , (1)

where K is a kernel function, xi, yi = ±1 and αi, respectively, are

the i-th training sample, its class label and its Lagrange multiplier,

and b is the classifier bias determined by the training algorithm. Two

commonly used kernels are the polynomial and radial basis function

(RBF) kernels given by

Kp(x,xi) = (1 + 〈x,xi〉)
Θ . (2)

Kr(x, x̃) = e−Γ‖x−x̃‖2

. (3)

Comparable performance is achieved with both kernels; results are

reported for the polynomial kernel throughout this study.

SVMs are binary classifiers trained to distinguish between two

groups of classes. For multiclass classification, they can be combined

via predefined discrete error-correcting output codes (ECOC) [15]. To

summarize the procedure briefly, N binary classifiers are trained to

distinguish between M classes using the coding matrix WM×N , with

elements wmn ∈ {0, 1,−1}. Classifier n is trained on data of classes

m for which wmn 6= 0 with sgn(wmn) as the class label; it has

no knowledge about classes m = 1, . . . , M for which wmn = 0.
The class m that one predicts for test input x is then the one

that maximizes the confidence, ρm(x) = −
PN

n=1 χ(wmnhn(x)).
Here χ is some loss function and hn(x) is the output of the nth

classifier. The error-correcting capability of a code is commensurate

to the minimum Hamming distance between pairs of code words

[15]. Therefore, classification performance benefits from using error-

correcting codes with larger Hamming distances between their rows.

However one must also take into account the choice of accurate

binary classifiers and the computational costs associated with such

a code. In our previous work [17] on phoneme classification on a

subset of the TIMIT database, a code formed by the combination

of the one-vs-one (pairwise) and one-vs-all codes was used as this

achieved better classification performance than either of the codes

individually. A similar technique that implicitly combined the two



different coding schemes to form an all-and-one coding strategy

also improved classification performance in another study [18]. The

construction of one-vs-all binary classifiers for a problem with large

datasets is not computationally feasible. For instance, in the simplest

case of equal number of training points per class, the training time

for one-vs-all classifiers scales cubically (O(M3)) whereas for one-
vs-one classifiers, it scales quadratically (O(M2)) with the number

of classes, M . Therefore, only one-vs-one (N = M(M − 1)/2)
classifiers are used in the present study. A number of loss functions

were compared; the hinge loss [χ(z) = (1 − z)+ = max(1 − z, 0)]
performed best and is used throughout this paper.

III. HYBRID FEATURES

One of the reasons for which speech recognition in the cepstral

domains is very sensitive to additive noise is the considerable

distortion of decision boundaries caused by the noise. State-of-

the-art feature compensation methods for most large vocabulary

ASR systems using the cepstral representation as their front-end for

processing speech include the ETSI AFE [12] and vector Taylor

series (VTS) [13, 14]. Additionally, cepstral mean-and-variance nor-

malization (CMVN) [19] is used to standardize the cepstral feature

by limiting the range of deviation in the cepstral features (of both

train and test data). These feature compensation methods contribute

significantly to robustness by alleviating the effects of distortions

caused by additive noise and linear filtering. However, due to the non-

linear transformations in the feature extraction process, the distortion

in the cepstral features caused by additive noise is not merely an

additive bias that can be fully characterized only by noise. Instead,

this bias is jointly determined by speech, noise type and noise level

in a complicated fashion, with the different components difficult to

separate especially in severe noise as detailed in [19].

The evolution of energy in a phoneme strongly correlates with

phoneme identity and is encoded in the cepstral features which is a

linear transform of Mel log powers. It is therefore a useful cue for

accurate phoneme classification however the compensated cepstral

features will still exhibit a significant level of contamination [19]. To

improve robustness, we propose to embed the exact information about

the short term energies of the acoustic waveform segments and treat

them as separate set of features in the evaluation of the SVM kernel.

A straightforward adaptation of these features can then be performed

by taking into account the approximate orthogonality of clean speech

and noise. This adaptation results in the distributions of the local en-

ergy features of noisy speech to be close to those of the clean speech

[20]. To this end, let x ∈ R
D be a D-samples long acoustic waveform

representation of a phoneme, and c be the cepstral representation of

the same phoneme. The fixed length acoustic x is divided into T
non-overlapping segments, xt ∈ R

D/T , t = 1, . . . , T , such that the

centres of frame t and segment xt are aligned as illustrated in Figure

1. Let τ = [τ1, . . . , τT ] denote the local energy features of these

subsegments such that1 τt = log ‖xt‖
2, t = 1, . . . , T . Then, the

cepstral feature vector c is augmented with the local energy feature

vector τ for the evaluation of a hybrid kernel given by

Kc(c, c̃, τ , τ̃ ) = Kp(c, c̃)
T

X

t=1

Kε(τt, τ̃t), (4)

where

Kε(τt, τ̃t) = e−(τt−τ̃t)
2/2a2

, (5)

and a is a parameter that is tuned experimentally. Note that the local

energy feature vector τ is treated as a separate set of features in the

1We consider logarithms to base 10 throughout.

hybrid SVM kernel Kc (which is a product of two valid kernels) as

defined in (4) rather than fusing the local energy feature vector τ with

the cepstral feature vector c on a frame-by-frame basis. Furthermore,

we sum the exponential terms over T segments rather than using the

standard polynomial or RBF kernels in order to to avoid the local

energy features of certain subsegments dominating the evaluation of

the kernel. Alternatively, the local energy features can be standardized

using CMVN in a manner similar to the cepstral features and then

evaluated using an RBF or polynomial kernel. In this paper, we adopt

the former method as it avoids the additional step of feature standard-

ization however similar classification performance is obtained using

both strategies. Furthermore, non-overlapping segments of speech are

used to extract the local energy features of phonemes in order to avoid

the smoothing of the time-profiles of these features and to make their

evolution more evident.

To investigate the robustness of the hybrid features to additive

noise, we train the classifiers in quiet conditions with cepstral feature

vectors standardized using CMVN [19]. Several noise compensation

methods such as ETSI AFE and VTS followed by feature stan-

dardization using CMVN, are also compared in this study. Further-

more, the classification performance of the hybrid features is also

compared with a multi-condition/multi-style classifier [9, 10] trained

with standard cepstral features. It will be shown that the multi-style

training with cepstral features significantly improves the robustness

however it is highly sensitive to the mismatch between the noise type

contaminating the training and test data.

It is essential that the local energy features are compensated

for environmental distortions in order for the classifiers to perform

effectively. The local energy features τ are compensated for noise

as described next. Let x = s + n, x ∈ R
D be a noise corrupted

waveform, where s and n represent the clean speech and the Gaussian

noise vector, respectively. The energy of the clean speech can then

be approximated as, ‖s‖2 ≈ ‖x‖2 − ‖n‖2 ≈ ‖x‖2 − Dσ2. The

first approximation involved here is that, because speech and noise

are uncorrelated, the vectors s and n are typically orthogonal. More

precisely, 〈s,n〉 is of order D−1/2‖s‖‖n‖ which can be neglected

for large enough D. The second approximation then replaces the

noise energy by its average value which is set by σ2, the noise

variance per sample. We work here and throughout with a default

normalization of waveforms to unit energy per sample, so that 1/σ2

is the SNR. Since σ2 can be estimated during pause intervals (non-

speech activity) between speech signals, we assume that its value is

known. A number of approaches [21–23] have been proposed over

the past years for robust estimation of SNR. Applying these general

arguments to the local energy features, we compensate these in the

presence of noise by subtracting the estimated noise variance of a

subsegment, Dσ2/T from the energies of the noisy subsegments,

i.e. τt = log
˛

˛‖xt‖
2 − Dσ2/T

˛

˛. This will provide an estimate of

the local energies of the subsegments of clean speech. Following the

reasoning above, using local energy features of shorter subsegments

of acoustic waveform (lower D/T ) would make fluctuations away

from the orthogonality of speech and noise more likely, therefore Kε

should be evaluated on the energies of long enough subsegments of

speech. It should be noted that the noise compensation discussed here

is performed only on the test features because training is performed

in quiet conditions; compensation of the local energy features of the

training data is therefore not required.

IV. EXPERIMENTAL SETUP

Experiments are performed on the ’si’ and ’sx’ sentences of

TIMIT. The training set consists of 3696 sentences from 168 different
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Fig. 1. Extraction of segments and frames from a waveform: an acoustic waveform, x ∈ R
D , is divided into T non-overlapping segments, each containing

D/T samples. In addition overlapping frames, each containing R samples, are extracted to obtain the cepstral features, c with an overlap of R − D/T
samples between two consecutive frames so that the frame rate equals the segment rate.

speakers. The core test set is used for testing which consists of 192

sentences from 24 different speakers not included in the training

set. We remove the glottal stops /q/ from the labels and fold certain

allophones into their corresponding phonemes using the standard Kai-

Fu Lee clustering [24], resulting in a total of 48 classes. Among these

classes, there are 7 groups for which the contribution of within-group

confusions towards multiclass error is not counted [24].

In this study, the robustness of phoneme classification is investi-

gated in the presence of additive noise. Experiments are performed

with white, pink, speech-weighted [25], factory floor and tank noises

from the NOISEX-92 database. To test the classification performance

of the cepstral features and acoustic waveforms in noise, each

sentence is normalized to unit energy per sample and then a noise

sequence with variance σ2 (per sample) is added to the entire

sentence. Three train-test scenarios for classification with cepstral

features are considered: i) training SVM classifiers using clean data

with standard noise compensation methods to clean the test features,

ii) training on both clean and noisy data (with different noise levels

and noise types) i.e. multi-style training, and iii) training and testing

under identical noise conditions. The matched condition scenario is

an impractical target; nevertheless, we present the results in matched

training and testing conditions as a reference, since this setup is

considered to give the optimal achievable performance with cepstral

features [11]. It should be noted that the features of both training

and test data are standardized using CMVN for all above-mentioned

scenarios.

For the cepstral (MFCC) representation, c, each sentence is con-

verted into a sequence of 13 dimensional feature vectors, their time

derivatives and second order derivatives which are combined into a

sequence of 39 dimensional feature vectors. Then, T = 10 frames

(with frame duration of 25ms and a frame rate of 100 frames/sec)

closest to the center of a phoneme are concatenated to give a

representation in R
390. Along the same lines, each frame yields 14

AFE features (including log frame energy) and their time derivatives

as defined by the ETSI standard giving a representation in R
420

corresponding to 10 frames closest to the phoneme center. For noise

compensation with vector Taylor series (VTS) [13, 14], a Gaussian

mixture model (GMM) with 64 components was used to learn the

distribution of the clean training data. In order to obtain the local

energy features from the acoustic waveforms, phoneme segments are

extracted from the phonetically hand labelled TIMIT sentences by

applying a 100 ms rectangular window at the center of each phoneme

waveform (of variable length), which at 16 kHz sampling frequency

gives fixed length vectors in R
1600. Each of these vectors is broken

into T = 10 non-overlapping segments of equal length resulting in

T = 10 local energy features per phoneme.

Regarding the SVM classifiers, comparable performance is ob-

tained with Kp and Kr so we use the former as a baseline kernel

and compare its performance with Kc. Initially, we experimented

with different values of the hyperparameters to train the binary SVM

classifiers but decided to use fixed values for all classifiers as they had

a very little impact on the multiclass classification error: the degree

of Kp is set to Θ = 6, the penalty parameter (for slack variables

in the SVM training algorithm) to C = 1 and the value of a in Kε

from (5) is tuned experimentally and set to 0.5. Using this setup, the

results for SVM classification in the cepstral and acoustic waveform

domains with custom-designed kernels, as detailed in section III, are

reported in the next section.

V. RESULTS

In Figure 2, results of SVM phoneme classification with poly-

nomial kernel Kp in the presence of additive white and pink

noise is shown for the MFCC cepstral representation using features

compensation methods, VTS and AFE. For comparison, results are

presented for the matched train and test conditions as well. The results

demonstrate that the SVM classifier trained with the AFE repre-

sentation outperforms MFCC representation for SNR below 18dB.
On the other hand, the VTS-compensated MFCC features perform

even better than the AFE in low noise conditions. However, for

SNR below 0dB, the classification performance of VTS-compensated

MFCC features degrades relatively quickly as compared to the AFE

features. Since the (log) frame energy is included in the AFE features

as defined by the ETSI standard, we only consider a hybrid repre-

sentation formed by the combination of the local energy features and

the VTS-compensated MFCC features with kernel Kc. The results

show that this hybrid representation performs better than both noise

compensation methods through all noise conditions and approaches

the performance achieved under matched conditions. For instance,

the hybrid representation achieves an average improvement of 5.5%
and 5.8% over the standard VTS-compensated MFCC features and

AFE features respectively, across all SNRs in the presence of white

noise as shown in Figure 2(a). Similar conclusions are drawn when

the test data is corrupted by pink noise as shown in Figure 2(b).

Another well known approach to make the cepstral features robust

to additive noise is the multi-condition training setup. Here, the

classifiers are trained on clean data as well as data corrupted by

noise of different types and strengths. This style of training the

classifiers contributes significantly towards the robustness of the

cepstral features. In Figure 3(a), the multi-condition classifier is

trained on clean data as well as data corrupted by white Gaussian

noise i.e. 3 random noise contaminated versions of each feature

vector in the training set, each corrupted with a different noise

level ranging from 18dB to -18dB SNR, are added to the training

set so that the size of the training set is 4 times larger than the

original training set. When tested with data corrupted with the same

noise type, the classification performance approaches that obtained
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Fig. 2. SVM classification in the presence of (a) white noise (b) pink noise, using the MFCC representation with standard kernel Kp and the hybrid kernel
Kc. Curves correspond to different training and testing conditions and feature compensation methods for kernels Kp and Kc.

with matched train/test conditions. However, the performance of this

classifier significantly degrades when the test data is corrupted with

pink noise from NOISEX-92 as shown in Figure 3(b). In this case,

the classifier trained with hybrid VTS-compensated MFCC features

using kernel Kc in quiet condition achieves significantly better

performance that the multi-condition trained classifier. Analyzing the

results presented in Figures 3(a) and 3(b) together provides results for

another interesting case of a partial mismatch between train and test

noise types. In this case, the multi-style classifier is trained on data

corrupted by white noise but tested under both pink and white noise

conditions. It is evident that the hybrid VTS-compensated MFCC

features outperform the multi-condition classifier for this case of

partial mismatch.

Next, we present results of the multi-style classification with a

complete mistmatch of noise types of training and test data. In Figure

3(c), results are reported using a multi-condition classifier that is

trained on clean data as well as data corrupted by white, speech-

weighted and pink noise from NOISEX-92 database i.e. 3 random

noise contaminated versions of each feature vector in the training set,

each corrupted with a different noise type and level, are added in the

clean training set. Again, the size of the training set is 4 times larger

than the original training set. Unlike the previous multi-condition

training scenario, the training set contains the clean data as well as

data corrupted by a mixture of 3 different noise types. The test data is

corrupted by tank and factory floor noises from NOISEX-92. In this

case, a clear improvement over the multi-condition trained classifier

is obtained by classifier trained in quiet condition with the hybrid

features e.g. 7.4% and 6.3% average improvements over the multi-

condition trained classifier are achieved in the presence of factory

floor and tank noise, respectively.

In Table I, results of some recent experiments on the TIMIT

phoneme classification task in quiet condition are presented and

compared with the results reported in this paper. We also present

results obtained using SVM classifier trained with hybrid PLP

cepstral representation with kernel Kc as described in Section III

which resulted in better classification performance in quiet conditions.

Note that these benchmarks use cepstral representations that encode

information from the entire variable length phoneme and our result of

20.1% improves on all benchmarks except [26] even though we use

a fixed length cepstral representation. Further improvements can be

achieved by including all frames within a variable length phoneme

TABLE I
RESULTS OF RECENTLY REPORTED EXPERIMENTS ON THE TASK OF

PHONEME CLASSIFICATION OF THE TIMIT CORE TEST SET IN QUIET

CONDITION.

METHOD ERROR [%]

HMMs (THMM-2) [28] 30.4
SVMs (MFCC) [27] 22.4
Large Margin GMM (LMGMM) [5] 21.1
Hierarchical GMM [29] 21.0
RLS2 [6] 20.9
Hidden CRF [30] 20.8
Hierarchical LMGMM H(2,4) [26] 18.7
Committee Hierarchical LMGMM H(2,4) [26] 16.7

SVMs - Hybrid Features (MFCC + VTS) 22.7
SVMs - Hybrid Features (PLP) 20.1

and its the transition regions, following the encoding method con-

sidered by Clarkson et al. [27]. Moreover, results presented in this

paper significantly outperform the error reported by Rifkin et al.

[6] (77.8%) at 0dB SNR in pink noise. In the same conditions, the

hybrid classifier proposed in this paper achieves an error of 53.5%
as reported in Figure 2(b).

VI. CONCLUSIONS

Hybrid representations that combine the cepstral features with the

local energy features are shown to contribute to the robustness of

phoneme classification with SVMs. The approximate orthogonality of

speech and noise is taken into account for an effective compensation

of the local energy features which are taken into account separately

in the evaluation of the hybrid SVM kernel. The proposed method

significantly reduces the classification error in noise and narrows

the performance gap to the classifiers trained under matched noise

conditions.
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