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Abstract

We consider the K-user Multiple Input Multiple Output (MIMO) Gaussian interference channel with M

antennas at each transmitter and N antennas at each receiver. It is assumed that channel coefficients are constant

and are available at all transmitters and at all receivers. The main objective of this paper is to characterize the

Degrees of Freedom (DoF) for this channel. Using a new interference alignment technique which has been recently

introduced in [19], we show that MN
M+NK degrees of freedom can be achieved for almost all channel realizations.

Also, a new upper-bound on the DoF of this channel is provided. This upper-bound coincides with our achievable

DoF for K ≥ Ku , M+N
gcd(M,N) , where gcd(M,N) denotes the greatest common divisor of M and N . This gives

an exact characterization of DoF for M ×N MIMO Gaussian interference channel in the case of K ≥ Ku.

Financial supports provided by Natural Sciences and Engineering Research Council of Canada (NSERC) and Ontario Ministry of Research

& Innovation (ORF-RE) are gratefully acknowledged.
The material in this paper was presented in part at the IEEE International Symposium on Information Theory (ISIT), Austin, Texas, June

2010.

ar
X

iv
:0

90
9.

46
04

v2
  [

cs
.I

T
] 

 2
1 

Se
p 

20
11



2

I. INTRODUCTION

INTERFERENCE MANAGEMENT is one of the main challenges in wireless networks in which

multiple transmissions occur concurrently over a common medium. Interference is usually handled in

practice either by interference avoidance, in which users coordinate their transmissions by orthogonalizing

their signals in time or in frequency, or by treating-interference-as-noise, in which users adjust their

transmission power and treat each other’s interference as noise. Interference decoding, although more

demanding, is another approach in which interference is decoded along with the desired signal.

During the past three decades, information theorists have made extensive efforts to characterize the

impact of the interference on the capacity of wireless networks. For the two-user Gaussian Interference

Channel (IC), the capacity region has been characterized for some ranges of channel coefficients [2]–[7].

For the general two-user case, a characterization of the capacity region within one bit has been presented

in [8].

By moving from the two-user case to more than two users, the capacity characterization becomes

more challenging. To reduce the severe effect of the interference for K > 2 users, the use of a new

technique known as interference alignment is essential. Interference alignment, which was first introduced

by Maddah-Ali et al. [9], [10] in the context of MIMO X channels, is an elegant technique that reduces the

effect of the aggregated interference from several users to that of a single user . This is accomplished by

assigning a portion of the available time/frequency/space at each receiver to the interference and enforcing

all the interfering terms to be received in that portion. There are two versions of interference alignment in

the literature: signal space alignment and signal scale alignment. In signal space alignment, the transmit

signal of each user is a linear combination of some vectors where data determines the coefficients of

this linear combination. In this approach, interference alignment involves the design of the appropriate

vectors for different users such that: i) the interfering terms at each receiver are squeezed into a subspace

of the available signal space at that receiver, and ii) the interference subspace can be separated from

the desired signal subspace. Signal space alignment is applicable to ICs with multiple antennas or ICs

with time varying/frequency selective channel coefficients. Signal scale alignment, on the other hand, uses

structured coding, e.g., lattice codes, to align interference at the signal level and is particularly useful for

the case of single antenna constant IC (not varying with time/frequency).

For the fully connected K-user Gaussian IC (K > 2), most of the effort has focused on the charac-

terization of the DoF. The DoF for a Gaussian IC shows the growth of the maximum achievable sum

rate in the limit of increasing Signal to Noise Ratio (SNR). In [14], Host-Madsen and Nosratinia showed
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that the DoF of the K-user Gaussian IC is less than or equal to K
2

. They also conjectured that for the

fully connected K-user constant Gaussian IC, the DoF is less than or equal to unity regardless of the

number of users. In [11], for the special cases of many-to-one and one-to-many Gaussian ICs, the authors

have computed the capacity region within constant bits. In their achievability scheme for the many-to-

one Gaussian IC, they introduced the signal scale interference alignment technique. In [12], using the

signal scale interference alignment, the authors reported a class of fully connected real constant K-user

Gaussian ICs with DoF arbitrarily close to K
2

. In [13], using the idea of signal space interference alignment,

Cadambe and Jafar showed that for a fully connected K-user Gaussian IC with time varying or frequency

selective channel coefficients, the DoF is equal to K
2

, i.e., each user can enjoy half of its available DoF

in spite of interfering signals from other users. Etkin and Ordentlich in [15] used some results of additive

combinatorics to show that for a constant fully connected real Gaussian IC, the DoF is very sensitive to

the rationality/irrationality of channel coefficients. They showed that for a fully connected constant real

Gaussian IC with rational channel coefficients, the DoF is strictly less than K
2

. Moreover, they showed

that for a class of measure zero of channel coefficients, the DoF is equal to K
2

. Independently, Motahari

et al. showed in [16] that for a three-user constant symmetric real Gaussian IC with irrational channel

coefficients, the DoF is equal to 3
2
. However, their assumption regarding the channel symmetry restricted

its scope to a subset of measure zero of all possible channel coefficients. For a constant Gaussian IC

with complex channel coefficients, Cadambe et al. in [17] showed that the Host-Madsen and Nosratinia

conjecture is not true. By introducing asymmetric complex signaling, they proved that the K-user complex

Gaussian IC with constant coefficients has at least 1.2 DoF for almost all values of channel coefficients.

Recently, Motahari et al. settled the problem in general case by proposing a new type of signal scale

interference alignment that can achieve K
2

DoF for almost all K-user real Gaussian ICs with constant

coefficients [18], [19]. The essence of this new method, called real alignment, is to align discrete points

along a real axis based on some number-theoretic properties of rational and irrational numbers [19].

It is straightforward to extend the results of [13], [19] to the K-user MIMO interference channel with

the same number of antennas at all nodes. In fact, based on the results of [13], [19], it is not difficult

to see that for a K-user M ×M MIMO Gaussian IC, the DoF is equal to KM
2

whether the channel is

constant or time varying/frequency selective. However, extending this conclusion to the general K-user

M×N MIMO Gaussian IC is not straightforward. In [21], by using signal space alignment in conjunction

with the channel extension in time, the authors obtained a lower-bound on the DoF of the K-user M ×N
time varying/frequency selective Gaussian IC. They also provided an upper-bound on the DoF of this
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channel which is valid for both time/frequency varying and constant channel coefficients. The lower and

the upper-bound in [21] coincide when max(M,N)
min(M,N)

is an integer. Another related work is [22] in which Suh

and Tse considered the problem of interference alignment for cellular networks. Using a method called

subspace interference alignment, they showed that as the number of users in each cell increases, their

achievable DoF also increases and approaches the interference free DoF.

In this paper, we extend the results of [21] in two directions. First, we show that their results can be

extended to constant channels by generalizing the method of [19] to the MIMO case. Second, we improve

their results by introducing a higher achievable DoF and a tighter upper-bound.

This paper is organized as follows: In section II, the system model is introduced. In section III, the

main results are presented, followed by some discussions. In section IV, we present a new upper-bound

on the DoF of a MIMO Gaussian IC. In section V, we demonstrate our achievability result for a three-user

1 × 2 MIMO Gaussian IC and then generalize it to the K-user M × N MIMO Gaussian IC. We will

conclude in section VI.

Notation: N, Z+ and Z represent the set of naturals, positive integers and integers, respectively. The

transpose of a vector V is denoted by VT . For a set S and a real number a, we define the set a · S as:

a · S , {a.s : s ∈ S}.

For two sets S1 and S2, the set theoretic difference is denoted by S1 \ S2 = {s ∈ S1 : s /∈ S2}. The union

of two sets S1 and S2 will be denoted by S1

⋃S2. For two positive integers x and y, gcd(x, y) denotes

the greatest common divisor of x and y. In addition, we use the following notations:

K = {1, · · · , K}, N = {1, · · · , N}, M = {1, · · · ,M}, L = {1, · · · , L}.

II. SYSTEM MODEL

We consider a constant fully connected real K-user MIMO Gaussian IC. This channel is used to model

a communication network with K transmitter-receiver pairs. Each transmitter which is equipped with M

antennas wishes to communicate with its corresponding receiver, which is equipped with N antennas. All

transmitters share a common bandwidth and want to have reliable communication at maximum possible

rates. The channel output at the kth receiver is characterized by the following input-output relationship:

Y[k](t) = H[k1]X[1](t) + H[k2]X[2](t) + · · ·+ H[kK]X[K](t) + Z[k](t), (1)

where t is the time index, k ∈ K is the user index, Y[k] = (Y
[k]

1 , · · · , Y [k]
N )T is the N × 1 output signal

vector of the kth receiver, X[j] = (X
[j]
1 , · · · , X [j]

M )T is the M × 1 input signal vector of the jth transmitter,
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H[kj] = [h
[kj]
nm ] is the N ×M channel matrix between transmitter j and receiver k with the (n,m)th entry

specifying the channel gain from the mth antenna of transmitter j to the nth antenna of receiver k, and

Z[k] = (Z
[k]
1 , · · · , Z [k]

N )T is N × 1 additive white Gaussian noise (AWGN) vector at the kth receiver. We

assume all noise terms are i.i.d. zero mean unit variance real Gaussian random variables. It is assumed

that each transmitter is subject to a power constraint P .

For a MIMO Gaussian IC with a power constraint P at each transmitter, a K-tuple of rates R(P ) =

(R1(P ), · · · , RK(P )) is said to be achievable if the transmitters can increase the cardinalities of their

message sets as 2nRi(P ) with block length n and the average probability of error for all transmitters can

be made arbitrarily small when n is sufficiently large. The capacity region of the K-user MIMO Gaussian

IC is the set of all achievable K-tuples R(P ) and is denoted by C (P ). Our primary objective in this

paper is to characterize the sum capacity of this channel as P →∞.

For an achievable rate tuple R(P ) = (R1(P ), · · · , RK(P )), the corresponding achievable sum DoF (or

simply achievable DoF) is defined as:

DoF , lim
P→∞

∑K
k=1Rk(P )

0.5 log(P )
. (2)

The DoF of the channel is defined as the supremum of all achievable DoF. More precisely,

DoF , lim
P→∞

sup
R(P )∈C (P )

∑K
k=1 Rk(P )

0.5 log(P )
. (3)

In other words, DoF represents the maximum achievable sum rate as SNR goes to infinity. For notational

consistency, an upper-bound on DoF will be denoted by DoF.

In the sequel, a (K,M ×N) IC refers to a constant fully connected K-user MIMO Gaussian IC with

M antennas at each transmitter and N antennas at each receiver.

III. MAIN RESULT AND DISCUSSIONS

The main results of the paper are formulated in the following two theorems:

Theorem 1: The DoF of a (K,M ×N) IC is upper-bounded by:

DoF , K min
{

max(M,N)ρ+,min(M,N)(1− ρ−)
}
, (4)

where ρ+ and ρ− are given by:

ρ− = max
n∈K

bnρ0c
n

, ρ+ = min
n∈K

dnρ0e
n

, (5)

and where ρ0 ,
min(M,N)
M+N

and b·c and d·e are respectively the floor and the ceiling functions.

Proof: : See section IV.
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Theorem 2: For a (K,M × N) IC, we can achieve DoF degrees of freedom for almost all channel

realizations where:

DoF =

 K min(M,N) min(1, β
K

), K < β + 1

K MN
M+N

, K ≥ β + 1
, (6)

and where β , max(M,N)
min(M,N)

.

Proof: It is easy to show that in a (K,M ×N) IC, one can always achieve

min {max(M,N), K min(M,N)}

DoF by zero-forcing. In section V, we prove that using real interference alignment, we can almost surely

achieve K MN
M+N

DoF for a (K,M ×N) IC. By combining these two results, we obtain (6).

Remark 1: If K ≥ Ku , M+N
gcd(M,N)

, then we will have ρ− = ρ+ = ρ0 in Theorem 1 and consequently

DoF = K MN
M+N

. On the other hand, since Ku ≥ β + 1, from Theorem 2, we have DoF = K MN
M+N

for

K ≥ Ku. Hence, for K ≥ Ku, the channel DoF is equal to K MN
M+N

.

Remark 2: For K ≤ β + 1, one can easily verify that ρ− = 0 and ρ+ = 1
K

, and therefore, from (4),

the DoF is upper-bounded by:

DoF = K min

{
max(M,N)

K
,min(M,N)

}
= K min(M,N) min(1, β/K).

Combining with Theorem 2, we see that for K < β+ 1, the DoF is equal to K min(M,N) min(1, β/K).

Let us define:

Kl , bβc+ 1.

While our results provide a complete characterization of DoF for K ≥ Ku and K ≤ Kl, this characteri-

zation for the case of Kl < K < Ku seems to be challenging. Our achievable DoF is not generally tight

in this range.

Remark 3: Consider the case that β is an integer. In this case, gcd(M,N) = min(M,N), and hence,

Ku = β + 1. Therefore, according to Remark 1, for K ≥ β + 1, the DoF is equal to K MN
M+N

. On the

other hand, since min(1, β/K) = 1 for K ≤ β, it follows from Remark 2 that DoF = K min(M,N) for

K ≤ β. Hence, we have an exact characterization of DoF when β is an integer.

Remark 4: For K < β+1, the achievable scheme in Theorem 2 is merely based on zero-forcing and no

interference alignment is required. For K ≥ β+1, our achievable scheme is based on the real interference

alignment [19].
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IV. UPPER-BOUND ON THE DOF FOR THE K-USER MIMO INTERFERENCE CHANNEL

In this section, we prove Theorem 1 which provides a new upper-bound on the DoF of the (K,M×N)

Gaussian IC. Our method is based on the averaging argument of [14] which is generalized to the MIMO

case in [21].

Consider a (W,M ×N) Gaussian IC where W ≤ K is a constant. We divide these W users into two

disjoint sets of size W1 and W2, where W = W1 + W2. Let us assume that the transmitters in each set

are cooperating, and the receivers in each set are cooperating as well. This results in a two-user MIMO

Gaussian IC with W1M , W2M antennas at transmitters and W1N , W2N antennas at their corresponding

receivers. It is proved in [23] that for a two-user MIMO Gaussian IC with M1, M2 antennas at transmitter

1, 2 and N1, N2 antennas at their corresponding receivers, the DoF is equal to:

J(M1,M2, N1, N2) = min{M1 +M2, N1 +N2,max(M1, N2),max(M2, N1)}. (7)

Since cooperation does not reduce the capacity, the DoF of the original W -user interference channel does

not exceed J(W1M,W2M,W1N,W2N). Thus, for any i1, i2, · · · , iW ∈ K, i1 6= i2 6= · · · 6= iW , we have:

di1 + di2 + · · ·+ diW ≤ J(W1M,W2M,W1N,W2N), (8)

where dk denotes the DoF of user k. Adding up all inequalities similar to (8), the DoF of the K-user

Gaussian IC is upper-bounded as:

DoF ≤ K

W
J(W1M,W2M,W1N,W2N). (9)

It is proved in Appendix B that the function J(W1M,W2M,W1N,W2N) can be upper-bounded as:

J(W1M,W2M,W1N,W2N) ≤ max{max(M,N)Wmin,min(M,N)Wmax}, (10)

where Wmax = max(W1,W2) and Wmin = min(W1,W2). Combining (10) and (9), we have:

DoF ≤ KG(ρ), (11)

where ρ , Wmin
W

and

G(ρ) , max{max(M,N)ρ,min(M,N)(1− ρ)}. (12)

A typical plot of G(ρ) is depicted in Fig. 1. To obtain the tightest upper-bound, we need to minimize

G(ρ) over the rational number ρ. However, there are two constraints on ρ:

C1) 0 ≤ ρ ≤ 1
2
,

C2) the denominator of ρ as a rational number in lowest terms can not exceed K.
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Fig. 1. Typical shape of function G(ρ) in (12).

Thus, the goal is to minimize G(ρ) subject to the constraints C1 and C2. It is straightforward to show

that (see also Fig.1) without any constraint on ρ, the function G(ρ) is minimized when:

max(M,N)ρ = min(M,N)(1− ρ). (13)

Equivalently, G(ρ) is minimized at ρ = ρ0, where ρ0 was defined in Theorem 1. Although ρ = ρ0 satisfies

constraint C1, it does not generally satisfy constraint C2 because the denominator of ρ0 in the simplest

form can exceed K. Therefore, to find the optimal ρ that minimizes G(ρ) subject to the constraints C1 and

C2, we need to find the closest rational neighbors of ρ0 with denominator not exceeding K. Let ρ− and ρ+

denote the closest rational neighbors of ρ0 with denominator not exceeding K such that 0 ≤ ρ− ≤ ρ ≤ ρ+.

From (11), for such ρ+ and ρ−, we have:

DoF ≤ K max{max(M,N)ρ+,min(M,N)(1− ρ+)} = K max(M,N)ρ+

DoF ≤ K max{max(M,N)ρ−,min(M,N)(1− ρ−)} = K min(M,N)(1− ρ−)
. (14)

Therefore, the final upper-bound can be expressed as:

DoF ≤ K min
{

max(M,N)ρ+,min(M,N)(1− ρ−)
}
. (15)

The problem of finding the closest rational neighbors of a real number with denominator less than or

equal to K is addressed in the following lemma:
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Lemma 1: Let α ∈ (0, 1) be a real number. Given a positive integer K, the closest rational neighbors

of α (α− ≤ α ≤ α+) with denominator not exceeding K are given by:

α− = max
n∈{1,2,··· ,K}

bnαc
n

, (16)

α+ = min
n∈{1,2,··· ,K}

dnαe
n

. (17)

Proof: See Appendix C.

Now, (5) easily follows from the above lemma and the proof is complete.

The upper-bound in (15) can be pictorially presented in a more elegant way by defining the normalized

degrees of freedom. The normalized DoF of a (K,M ×N) IC is defined as:

DoFnorm ,
DoF

K min(M,N)
. (18)

Note that K min(M,N) is the DoF of a system consisting of K non-interfering M ×N MIMO channels.

Therefore, DoFnorm is always less than unity. Unlike DoF which is a function of three parameters M,N,

and K, the normalized upper-bound DoFnorm is a function of only two parameters K and β. Specifically,

from (4), we have:

DoFnorm = min{βρ+, 1− ρ−}, (19)

where ρ− and ρ+ are obtained from (5) with ρ0 = 1
β+1

. According to Theorem 2, our achievable normalized

DoF can be expressed as:

DoFnorm =

 min(1, β
K

), K < β + 1

β
β+1

, K ≥ β + 1
. (20)

Two examples comparing our achievable result and upper-bound on DoFnorm are depicted in Fig. 2.

V. ACHIEVABILITY SCHEME FOR THEOREM 2

In this section, we prove Theorem 2 and examine the interference alignment method that achieves
MN
M+N

K DoF for almost all channel realizations. To explain the key ideas, we start with the simple

example of a (3, 1× 2) system.

A new method for interference alignment has been recently introduced by Motahari et al. in [19]. By

applying arguments from the field of Diophantine approximation in Number Theory, they showed that

interference alignment can be performed based on the properties of rational and irrational numbers. Using

this new type of alignment, which the authors called real interference alignment, the DoF of the K-user
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Fig. 2. Our achievable and upper-bound on normalized DoF of a (K,M ×N) IC for K = 5 and K = 10.

constant Gaussian IC with single antenna can be achieved for almost all channel realizations. Since our

achievability scheme is based on an extension of real interference alignment, we first review the basic

ideas behind this technique. In our discussions, we follow the footsteps of [19] and [15].

A. Preliminaries on Real Interference Alignment

Real interference alignment essentially mimics, in one dimension, the basic rules of signal-space

interference alignment. In signal space interference alignment, the transmit signal of each user is a

linear combination of some constant vectors in Euclidean space, which hereafter will be called transmit

directions, where data determines the coefficients of this linear combination. In this setup, interference

alignment is realized by simultaneous design of appropriate transmit directions for different users such

that:

i) Interfering signals from other users are received aligned at the intended receiver. In other words, all

interfering terms at each receiver fall into a subspace of the available signal space at that receiver. This

condition will be referred to as alignment condition.

ii) The interference subspace can be separated from the desired signal subspace at each receiver. This

condition will be referred to as separability condition.

Note that transmit directions are selected according to the channel coefficients. In signal space alignment,

when both alignment and separability conditions are satisfied, we can separate the desired signal from

interfering signals by zero-forcing. This is achieved by projecting the received signal onto the subspace

which is orthogonal to the interference subspace.
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Consider a K-user Gaussian IC with a single antenna at all nodes where channel coefficients are all

constant. Since each node relies on a one-dimensional signal space, we are essentially dealing with real

numbers instead of vectors and alignment should happen at the signal level. Recall that the n-dimensional

Euclidean space is a vector space over the field of real numbers. We can similarly consider the field of real

numbers as a vector space over the field of rational numbers. To introduce the counterparts of separability

and alignment conditions in real interference alignment, we need the notion of rationally independence.

Definition 1 (rationally independence): The real numbers ω1, ω2, · · · , ωm are said to be rationally in-

dependent if whenever integers k1, k2, ..., km satisfy

k1ω1 + k2ω2 + · · ·+ kmωm = 0,

we should have ki = 0 for i = 1, · · · ,m, i.e., the only representation of zero as a linear combination of

ωi , i = 1, · · · ,m is the trivial solution.

If a given set of real numbers ω1, ω2, · · · , ωm are not rationally independent, they can be represented

as rational linear combinations of a minimum number, say n, of some fixed rationally independent real

numbers (n < m). Here n is called the rational dimension of real numbers ωi, i = 1, · · · ,m. The notion

of rational dimension is defined precisely in the following.

Definition 2 (rational dimension): The rational dimension of real numbers ω1, ω2, · · · , ωm is defined

as the smallest natural number n such that all numbers ωi, i = 1, · · · ,m can be represented as rational

linear combinations of n fixed rationally independent real numbers. The rational dimension of a set A of

real numbers will be denoted by dim(A).

Suppose that ω1, ω2, · · · , ωm are rationally independent real numbers. Therefore, for arbitrary integers

k1, k2, ..., km, not all of them equal to zero, we have |k1ω1 + k2ω2 + · · · + kmωm| > 0. The problem

of finding a non-zero lower-bound on the absolute value of an integer linear combination of rationally

independent real numbers is closely related to metric Diophantine approximation in Number Theory [25].

The following theorem which is a special case of Khintchine-Groshev Theorem in metric Diophantine

approximation [25] provides a quantitative lower-bound on the absolute value of a linear combination of

real numbers.

Theorem 3 (Khintchine-Groshev): Assume ε > 0 is an arbitrary positive constant. For almost all l-tuples

ω = (ω1, ω2, · · · , ωl) of real numbers, one can find a constant c such that the inequality

|p+ q1ω1 + q2ω2 + · · ·+ qlωl| >
c

(maxi qi)l
(21)

holds for all p ∈ Z and all q = (q1, q2, · · · , ql) ∈ Zl \ 0.
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It is important to note that the Khintchine-Groshev Theorem is valid for “almost all” real numbers. That is

the Lebesgue measure of those real numbers satisfying the Khintchine-Groshev Theorem is one. It should

be pointed out here that the Khintchine-Groshev Theorem is not valid even for all rationally independent

real numbers.

The real numbers ωi, i = 1, · · · , l, in the Khintchine-Groshev Theorem could be independent quantities

or they can lie on some well-behaved manifold. Specifically, the Khintchine-Groshev Theorem is valid

when all the real numbers ωi, i = 1, · · · , l are different monomials in m < l independent variables [19]

[26].

Consider two sets A and B of real numbers with rational dimensions dim(A) and dim(B), respectively.

We define the alignment index of A and B, which is denoted by χ(A,B), as:

χ(A,B) ,
dim(A⋃B)

max(dim(A), dim(B))
.

It is easy to see that χ(A,A) = 1 for any non-empty set A. Furthermore, one can readily see that

χ(A,B) ≥ 1 for any two non-empty sets A and B. The alignment index of more than two sets is

similarly defined as the ratio of the rational dimension of their union to the maximum of the individual

rational dimensions.

Now, consider two sequences An and Bn of sets where the cardinalities of An and Bn grows to infinity

as n→∞. We define the notion of asymptotic alignment as follows:

Definition 3 (Asymptotic alignment): Two sequencesAn and Bn of sets are called asymptotically aligned

if lim supn→∞ χ(An,Bn) = 1.

The above definition can be generalized to more than two sequences of sets. In other words, S sequences

of sets A[1]
n , · · · ,A[S]

n are call asymptotically aligned if the lim sup of their alignment index goes to unity

as n→∞.

Consider two sequences of discrete random variables Xn and Yn that are uniformly distributed over An
and Bn, respectively. If An and Bn are asymptotically aligned, the random sequences Xn and Yn will be

called asymptotically aligned.

Example 1: Consider the following sequences of sets:

An = {an1
1 a

n2
2 a

n3
3 : ni ∈ {0, 1, · · · , n}} , n = 1, 2, · · ·

where a1, a2, and a3 are selected as three rationally independent real numbers such that for every n all

the elements of An are rationally independent. According to the Khintchine-Groshev theorem, almost all

triples of real numbers satisfy this condition. One can easily confirm that dim(An) = (n + 1)3. Under
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Fig. 3. Real Interference alignment for a (3, 1 × 2) Gaussian IC: the transmit signal of each user is composed of two independent parts

which are depicted here by two adjacent squares. By the real interference alignment, the squares in each column at the receiver side are

approximately aligned.

this condition, the two sequences a1 · An and a2 · An of sets are asymptotically aligned. The reason is

that [a1 · An
⋃
a2 · An] ⊂ An+1 and hence χ(a1 · An, a2 · An) ≤ (n+2)3

(n+1)3
which tends to one as n→∞.

B. Sketch of Proof for a (3, 1× 2) System

In this part, we explain our achievability scheme for a (3, 1 × 2) system. This system is depicted in

Fig. 3. The rigorous proof of our achievability scheme will be provided in the next part.

The transmit signal of each user is a weighted sum of two independent parts: the first part is intended

for the first receive antenna and the second part is intended for the second receive antenna. The weights

are corresponding channel coefficients. That is the transmit signal of user k can be expressed as:

X [k] = h
[kk]
11 X

[k]
1 + h

[kk]
21 X

[k]
2 , k = 1, 2, 3. (22)

As we shall see later in more details, the transmission scheme is such that the following conditions are

satisfied (see Fig. 3):

• At the first receive antenna of user-1:

– signals h[22]
11 X

[2]
1 and h[33]

11 X
[3]
1 are received∗ asymptotically aligned, and

– signals h[11]
21 X

[1]
2 , h

[22]
21 X

[2]
2 and h[33]

21 X
[3]
2 are received∗ asymptotically aligned.

∗after multiplication with the corresponding channel coefficients.
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• At the second receive antenna of user-1:

– signals h[22]
21 X

[2]
2 and h[33]

21 X
[3]
2 are received∗ asymptotically aligned, and

– signals h[11]
11 X

[1]
1 , h

[22]
11 X

[2]
1 and h[33]

11 X
[3]
1 are received∗ asymptotically aligned.

It is obvious that a similar statement is valid for the other users. At the first receive antenna of user-1,

we have the sum of following terms:

• the contribution of h[11]
11 X

[1]
1 ,

• the aligned contribution of {h[22]
11 X

[2]
1 , h

[33]
11 X

[3]
1 }, and

• the aligned contribution of {h[11]
21 X

[1]
2 , h

[22]
21 X

[2]
2 , h

[33]
21 X

[3]
2 }.

Provided that these three parts can be successfully decoded, each of them occupies almost 1
3

of the

available DoF† at the first receive antenna of user-1. Therefore, the desired part, namely h
[11]
11 X

[1]
1 , has a

share of almost 1
3

of the available DoF. Similarly, at the second receive antenna of user-1, the desired

signal h[11]
21 X

[1]
2 has a share of almost 1

3
of the available DoF. Hence, we can achieve the DoF of 2

3
per

user.

To align the signals as described above, we need to further divide each signal X [k]
i , i = 1, 2 into several

components. Further details will be provided in the following.

C. Proof of Theorem 2

Consider a (K,M × N) IC where each user satisfies a power constraint P . For any ε > 0, we will

provide a transmission scheme that achieves
∑K

k=1Rk = KMN
M+N

(1
2
− ε) log2 P − o(log2 P ), showing that

DoF ≥ KMN
M+N

.

In our achievable scheme, each transmitter uses its antennas separately, i.e., there is no cooperation

among transmit antennas of each user. In fact, user k relies on M independent codebooks C[k]
m (P, ε, τ), m =

1, · · · ,M , of block length τ where C[k]
m (P, ε, τ) is associated with its mth transmit antenna. Each codebook

C[k]
m (P, ε, τ), m ∈M, is obtained by a linear combination of N independent sub-codebooks C[k]

mn(P, ε, τ), n =

1, · · · , N . More precisely, the transmit symbol from the mth antenna of user k at time index t can be

expressed as:

X [k]
m (t) =

N∑
n=1

h[kk]
nmX

[k]
mn(t), t = 1, · · · , τ, (23)

where
(
X

[k]
m (1), · · · , X [k]

m (τ)
)
∈ C[k]

m (P, ε, τ) and
(
X

[k]
mn(1), · · · , X [k]

mn(τ)
)
∈ C[k]

mn(P, ε, τ). The sub-codebook

C[k]
mn(P, ε, τ) is intended to be decoded at the nth receive antenna of user k. Each sub-codebook C[k]

mn(P, τ)

∗after multiplication with the corresponding channel coefficients.
†Note that the available DoF at each receiver is equal to 1.
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is in turn obtained by adding L independent sub-sub-codebooks C[k]
mnl(P, ε, τ), l = 1, · · · , L, i.e.,

X [k]
mn(t) =

L∑
l=1

X
[k]
mnl(t), t = 1, · · · , τ, (24)

where
(
X

[k]
mnl(1), · · · , X [k]

mnl(τ)
)
∈ C[k]

mnl(P, ε, τ) and L ∈ N is a design parameter which will be determined

later. Each sub-sub-codebook C[k]
mnl(P, ε, τ) is generated i.i.d. according to a uniform distribution over

Λ
[k]
mnl(P, ε), where:

Λ
[k]
mnl(P, ε) , γP

ν−1+2ε
2(ν+ε) ω

[k]
mnl · {−Q,−Q+ 1, · · · , Q} , (25)

in which:

• Q , bP
1−ε

2(ν+ε) c.
• γ is a normalizing constant selected such that the average transmit power of each user does not

exceed P . In Appendix A, we calculate the normalizing constant γ and show that it is independent

of ν and P .

• ν ∈ N is an important design parameter which controls the cardinality of Λ
[k]
mnl(P, ε) as well as the

magnitude of its elements. Since |Λ[k]
mnl(P, ε)| = 2Q + 1 ≤ 2P

1−ε
2(ν+ε) + 1, we refer to ν as the rate

control parameter.

• ω
[k]
mnl is a real number which should be properly selected according to the channel coefficients for

the purpose of interference alignment.

Since γP
ν−1+2ε
2(ν+ε) does not depend on m,n, and l, the symbol X [k]

mn(t) can be considered as a random

integer linear combination of L real numbers ω[k]
mn1, · · · , ω[k]

mnL multiplied by γP
ν−1+2ε
2(ν+ε) , i.e.,

X [k]
mn(t) = γP

ν−1+2ε
2(ν+ε)

L∑
l=1

B
[k]
mnlω

[k]
mnl, (26)

where B[k]
mnl’s are independently and uniformly distributed over {−Q,−Q + 1, · · · , Q}. Each B

[k]
mnl will

be referred to as a data stream. By substituting (26) in (23), the transmit symbol of user k on its mth

antenna can be reformulated as:

X [k]
m (t) = γP

ν−1+2ε
2(ν+ε)

N∑
n=1

L∑
l=1

B
[k]
mnlh

[kk]
nmω

[k]
mnl. (27)

We observe that X [k]
m (t) is a random integer linear combination of NL real numbers h[kk]

nmω
[k]
mnl, n ∈ N , l ∈

L. The real numbers h[kk]
nmω

[k]
mnl, k ∈ K, m ∈ M, n ∈ N , l ∈ L act like beamforming vectors in signal

space alignment and will be referred to as modulation pseudo-vectors. Let us define Ω
[k]
mn as:

Ω[k]
mn ,

{
ω

[k]
mn1, · · · , ω[k]

mnL

}
. (28)
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Since the NL pseudo-vectors h[kk]
nm ·Ω[k]

mn, n ∈ N carry independent data streams, they are required to be

rationally independent, i.e.,

dim

(
N⋃
n=1

[
h[kk]
nm · Ω[k]

mn

])
= NL, ∀k ∈ K and ∀m ∈M. (29)

Using the above signaling scheme, the received signal at the nth antenna of receiver k at time index t can

be expressed as:

Y [k]
n (t) =

K∑
k′=1

M∑
m=1

h[kk′]
nm X [k′]

m + Z [k]
n (t) = γP

ν−1+2ε
2(ν+ε)

K∑
k′=1

M∑
m=1

N∑
n′=1

L∑
l=1

B
[k′]
mn′lh

[kk′]
nm h

[k′k′]
n′m ω

[k′]
mn′l + Z [k]

n (t) (30)

= γP
ν−1+2ε
2(ν+ε)

[
M∑
m=1

L∑
l=1

B
[k]
mnl (h

[kk]
nm )2 ω

[k]
mnl︸ ︷︷ ︸

desired

+
M∑
m=1

N∑
n′=1
n′ 6=n

L∑
l=1

B
[k]
mn′l h

[kk]
nmh

[kk]
n′m ω

[k]
mn′l

︸ ︷︷ ︸
self-interference

+
K∑
k′=1
k′ 6=k

M∑
m=1

N∑
n′=1

L∑
l=1

B
[k′]
mn′l h

[kk′]
nm h

[k′k′]
n′m ω

[k′]
mn′l

︸ ︷︷ ︸
multi-user interference

]
+ Z [k]

n (t).

(31)

As we see from (30), the modulation pseudo-vectors from different transmit antennas of different users

appear in Y [k]
n (t) after multiplication with the corresponding channel coefficients. For example, the mod-

ulation pseudo-vector h[k′k′]
n′m ω

[k′]
mn′l which is originated from the mth antenna of user k′ appears in Y

[k]
n as

h
[kk′]
nm h

[k′k′]
n′m ω

[k′]
mn′l. We refer to h

[kk′]
nm h

[k′k′]
n′m ω

[k′]
mn′l as a received pseudo-vector in Y

[k]
n (t). According to this

terminology, Y [k]
n (t) is a noisy version of an integer linear combination of LMNK received pseudo-

vectors. Each received pseudo-vector has a data stream as its coefficient. We observe from (31) that three

different components appear in Y [k]
n (t):

• The desired component which contains LM data streams. Each desired data stream in Y
[k]
n (t) (i.e.,

B
[k]
mnl) can be represented by an ordered pair (m, l), m ∈M, l ∈ L.

• The self-interference component which contains LM(N − 1) data streams. All data streams in this

component are originated from transmitter k.

• The multi-user interference component which contains LMN(K − 1) data streams. All the data

streams in this component are originated from interfering users.

Let us define Ỹ [k]
n (t) as the noise-free part of Y [k]

n (t). The received pseudo-vectors in Ỹ [k]
n (t) are not neces-

sarily rationally independent and therefore some of them may be expressed as rational linear combinations

of the rest. Let us momentarily assume that Ỹ [k]
n (t) is known at the nth antenna of receiver k. We then

can recover a data stream from Ỹ
[k]
n (t) provided that its corresponding received pseudo-vector can not be

represented as a rational linear combination of the other received pseudo-vectors in Ỹ [k]
n (t). Accordingly,
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all the desired data streams at the nth antenna of receiver k can be obtained from Ỹ
[k]
n (t) if the received

pseudo-vectors (h
[kk]
nm )2ω

[k]
mnl, m ∈ M, l ∈ L can not be expressed as rational linear combinations of

h
[kk′]
nm h

[k′k′]
n′m ω

[k′]
mn′l, k

′ ∈ K, m ∈ M, n′ ∈ N , l ∈ L, (k′, n′) 6= (k, n). This condition will be referred to as

the separability condition for the nth antenna of receiver k, parallel to the separability condition for signal

space alignment. According to this terminology, if the separability condition holds at the nth antenna of

receiver k, all the desired data streams at the nth antenna of receiver k can be uniquely determined from

Ỹ
[k]
n . However, what we have received in the nth antenna of receiver k is Y [k]

n which is a noisy version

of Ỹ [k]
n . Therefore, to recover the desired data streams at the nth antenna of receiver k, we further require

to accurately estimate Ỹ [k]
n from Y

[k]
n . To this aim, let µ[k]

n denote the rational dimension of the received

pseudo-vectors at the nth antenna of receiver k. Apparently, µ[k]
n ≤ LMNK. As we shall see shortly, if

the rate control parameter ν in (25) is selected as:

ν = max
k∈K,n∈N

µ[k]
n , (32)

then we would be able to identify Ỹ [k]
n in Y [k]

n with high probability for all k ∈ K and all n ∈ N .

Each user decodes its data on different receive antennas separately. In other words, there is no coop-

eration among receive antennas of each user. There are ML desired data streams at the signal received

by each antenna of every user. To decode each part, we treat the other parts as well as the interfering

signals as i.i.d. noise and therefore as τ → ∞ the following rate is achievable for data stream (m, l) of

the signal received on the nth antenna of receiver k:

R
[k]
mnl = I(X

[k]
mnl;Y

[k]
n ) = H(X

[k]
mnl)−H(X

[k]
mnl|Y [k]

n ), m ∈M, l ∈ L, (33)

where for the notational simplicity, we omitted the time index t. It is obvious that:

H(X
[k]
mnl) = log2 |Λ[k]

mnl(P, ε)| ≈
(1− ε)
2(ν + ε)

log2 P + 1. (34)

In the following, we prove that if the modulation pseudo-vectors at all transmitters are selected such that

the separability condition holds at all receive antennas of all receivers, then we almost always have:

lim sup
P→∞

H(X
[k]
mnl|Y [k]

n ) ≤ c0, ∀k ∈ K, ∀m ∈M, ∀n ∈ N , ∀l ∈ L, (35)

where c0 is some constant independent of P . Consequently, user k can almost always achieve R[k]
mnl =

(1−ε)
2(ν+ε)

log2 P + o(log2 P ) by decoding the (m, l) data stream of its desired signal component on the nth

receive antenna. Since there are ML desired data streams in the signal received by the nth antenna of
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user k and since ε can be made arbitrarily small, it follows that DoF ≥ LMNK
ν

.

Next, we show that (35) is valid under the above-mentioned conditions. Let

Θ[k]
n (P, ε) ,

{
K∑
k′=1

M∑
m=1

N∑
n′=1

L∑
l=1

h[kk′]
nm h

[k′k′]
n′m λ

[k′]
mn′l : λ

[k′]
mn′l ∈ Λ

[k′]
mn′l(P, ε)

}
, k ∈ K, n ∈ N . (36)

Note that Θ
[k]
n (P, ε) is the support set of the random variable Ỹ [k]

n which is the noise-free part of Y [k]
n . We

can estimate Ỹ [k]
n from Y

[k]
n using the following estimator:

̂̃
Y

[k]
n = argmin

θ∈Θ
[k]
n (P,ε)

|Y [k]
n − θ|. (37)

An error may occur using this estimation whenever the absolute value of the additive Gaussian noise Z [k]
n

is greater than half of the minimum distance of the set Θ
[k]
n (P, ε). That is

Pr{̂̃Y [k]
n 6= Ỹ [k]

n } ≤ Pr

{
|Z [k]

n | ≥
dmin(Θ

[k]
n (P, ε))

2

}
≤ 2 exp

(
−d

2
min(Θ

[k]
n (P, ε))

8

)
, (38)

where the last inequality follows from the properties of Gaussian distribution. As we discussed earlier,

if the separability condition holds at all antennas of all receivers, we can uniquely determine X [k]
mnl from

Ỹ
[k]
n ,∀m ∈M and ∀l ∈ L. Hence, Pr{X̂ [k]

mnl 6= X
[k]
mnl} ≤ Pr{̂̃Y [k]

n 6= Ỹ
[k]
n }. Therefore, we can upper-bound

H(X
[k]
mnl|Y

[k]
n ) using the data processing and Fano’s inequalities [15]:

H(X
[k]
mnl|Y [k]

n ) ≤ H(X
[k]
mnl|X̂

[k]
mnl) ≤ 1 + Pr{X̂ [k]

mnl 6= X
[k]
mnl} log2(|Λ[k]

mnl(P, ε)|)

≤ 1 + 2 exp

(
−d

2
min(Θ

[k]
n (P, ε))

8

)
×
[

(1− ε)
2(ν + ε)

log2 P + 1 + o(1)

]
(39)

Finally, we show that if ν is selected according to (32), then we almost always have dmin(Θ
[k]
n (P, ε)) ≥

%P
ε
2 for some constant %. Accordingly, (35) follows from (39). If we select ν as in (32), then each

θ
[k]
n ∈ Θ

[k]
n (P, ε) is a rational linear combination of at most ν rationally independent real numbers and

therefore it can be expressed as:

θ[k]
n = γP

ν−1+2ε
2(ν+ε)

ν∑
i=1

δ
[k]
ni T

[k]
ni , (40)

where T [k]
ni ’s, i = 1, · · · , ν, represent ν rationally independent received pseudo-vectors∗ at the nth antenna

of receiver k and δ
[k]
ni ’s , i = 1, · · · , ν are the corresponding integer coefficients. Since at most KM

independent data streams may arrive along the same received pseudo-vector T [k]
ni , it follows that |δ[k]

ni | ≤
∗Note that according to the separability condition, out of these ν rationally independent received pseudo-vectors, ML ones are

(h
[kk]
nm )2 ω

[k]
mnl, m ∈M, l ∈ L.
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KMQ. The minimum distance dmin(Θ
[k]
n (P, ε)) is the minimum value of |θ[k]

n − θ′[k]
n |, ∀θ[k]

n ∈ Θ
[k]
n (P, ε),

∀θ′[k]
n ∈ Θ

[k]
n (P, ε) \ θ[k]

n . The quantity |θ[k]
n − θ′[k]

n | can be expressed as:

|θ[k]
n − θ′[k]

n | = γP
ν−1+2ε
2(ν+ε)

∣∣∣∣∣
ν∑
i=1

T
[k]
ni (δ

[k]
ni − δ′[k]

ni )

∣∣∣∣∣ . (41)

According to the Khintchine-Groshev Theorem, for every ε > 0 there exists some constant c1 such that:∣∣∣∣∣
ν∑
i=1

T
[k]
ni (δ

[k]
ni − δ′[k]

ni )

∣∣∣∣∣ ≥ c1

(2KMQ)ν−1+ε
(42)

for almost all received pseudo-vectors T [k]
ni ’s, i = 1, · · · , ν. Therefore, the minimum distance dmin(Θ

[k]
n (P, ε))

is lower-bounded by:

dmin(Θ
[k]
n (P, ε)) ≥ %P

ν−1+2ε
2(ν+ε) P−

(1−ε)(ν−1+ε)
2(ν+ε) = %P

ε
2 (43)

for almost all received pseudo-vectors T [k]
ni ’s, i = 1, · · · , ν, where %′ = c1γ(2KM)−(ν−1+ε) is a constant

independent of P . Since the lower-bound on the minimum distance is obtained using the Khintchine-

Groshev Theorem, we use the term “almost always” in statements concerning our achievability result.

So far, we established that for almost all modulation pseudo-vectors h[kk]
mnω

[k]
mnl, k ∈ K, m ∈ M, n ∈

N , l ∈ L satisfying the separability condition at all antennas of all receivers, the proposed scheme can

achieve LMNK
ν

degrees of freedom where ν represents the maximum number of rationally independent

received pseudo-vectors across all receive antennas of all users. In general, ν can be as large as LMNK

and therefore DoF strongly depends on the value of ν. In the sequel, we show that if the modulation

pseudo-vectors are properly selected according to the channel coefficients, the value of ν can approach

(M + N)L, and consequently, K MN
M+N

degrees of freedom is almost always achievable. As mentioned

earlier, reducing ν by an appropriate selection of modulation pseudo-vectors is counterpart to the alignment

condition in signal space alignment. We define H[k]
m as the set of channel coefficients from the mth antenna

of user k to all receive antennas of different users. That is:

H[k]
m , {h[1k]

1m , h
[1k]
2m , · · · , h[1k]

Nm, h
[2k]
1m , h

[2k]
2m , · · · , h[2k]

Nm, · · · , h
[Kk]
1m , h

[Kk]
2m , · · · , h[Kk]

Nm }.

Note that |H[k]
m | = KN, ∀k ∈ K, ∀m ∈M. For each n ∈ N , we define En as:

En ,
K⋃
k=1

M⋃
m=1

[
h[kk]
nm .(H[k]

m \ h[kk]
nm )

]
. (44)

Note that each element of En is the product of two channel coefficients. That is if e ∈ En, then e can

be represented as h[kk]
nmh

[k′k]
n′m for some k ∈ K, k′ ∈ K, m ∈ M, n′ ∈ N where (k, n) 6= (k′, n′). One



20

can verify that |En| = KM(KN − 1), ∀n ∈ N . For a positive integer Γ and for each m ∈ M, n ∈ N ,

k ∈ K, we select Ω
[k]
mn as:

Ω[k]
mn =


|En|∏
i=1

esii : ei ∈ En, si ∈ {0, 1, · · · , ψ[k]
mn(ei)}

 , (45)

where ψ[k]
mn(·) are functions described by:

ψ[k]
mn(e) =

 Γ− 1, if e ∈ h[kk]
nm .(H[k]

m \ h[kk]
nm )

Γ, Otherwise
. (46)

We claim that if the real numbers ω[k]
mnl are selected from Ω

[k]
mn in (45), then the separability condition holds

at all antennas of all receivers and moreover ν can approach (M +N)L. First, we notice that elements of

Ω
[k]
mn are different monomials in the variables ei’s and therefore they are almost always linearly independent.

From (44), (45), and (46), one can verify that the number of modulation pseudo-vectors, L, which is equal

to the cardinality of Ω
[k]
mn, is given by

L = ΓKN−1(Γ + 1)(KM−1)(KN−1). (47)

Next, consider the received signal at the nth antenna of receiver k at time index t. From (31), we see that:

• Received pseudo-vectors corresponding to the desired component of Y [k]
n (t) are the elements of⋃M

m=1(h
[kk]
nm )2 · Ω[k]

mn.

• Received pseudo-vectors corresponding to the self-interference component of Y [k]
n (t) are the elements

of B[k]
n ,

⋃M
m=1

⋃N
n′=1
n′ 6=n

[
h

[kk]
nmh

[kk]
n′m · Ω

[k]
mn′

]
.

• Received pseudo-vectors corresponding to the multi-user interference component of Y [k]
n (t) are the

elements of G [k]
n ,

⋃K
k′=1
k′ 6=k

⋃M
m=1

⋃N
n′=1

[
h

[kk′]
nm h

[k′k′]
n′m · Ω

[k′]
mn′

]
.

Since (h
[kk]
nm )2 /∈ En, ∀k ∈ K, ∀m ∈ M, ∀n ∈ N , it follows that the received pseudo-vectors

corresponding to the desired component can not be expressed as rational linear combinations of the other

received pseudo-vectors and therefore the separability condition holds at all antennas of all receivers. We

then notice that:

h[kk]
nmh

[kk]
n′m ∈ En′ , ∀m ∈M, n′ 6= n

h[kk′]
nm h

[k′k′]
n′m ∈ En′ , ∀m ∈M, k′ 6= k

. (48)

Since each element of Ω
[k]
mn′ , n

′ 6= n, is a monomial in the variables e′i’s where e′i ∈ En′ , and because

of (48), each element of
⋃M
m=1

[
h

[kk]
nmh

[kk]
n′m · Ω

[k]
mn′

]
is again a monomial in e′i’s with a degree at most Γ

for each variable. Similarly, since each element of Ω
[k′]
mn′ , k

′ 6= k is a monomial in e′i’s where e′i ∈ En′ ,
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and because of (48), each element of
⋃K
k′=1
k′ 6=k

⋃M
m=1

[
h

[kk′]
nm h

[k′k′]
n′m · Ω

[k′]
mn′

]
is again a monomial in e′i’s with a

degree at most Γ for each variable. Hence,

dim(B[k]
n

⋃
G [k]
n ) ≤ N(Γ + 1)KM(KN−1). (49)

Therefore,

µ[k]
n ≤ML+N(Γ + 1)KM(KN−1). (50)

Recall that µ[k]
n is the rational dimension of the received pseudo-vectors at the nth antenna of receiver k.

We then have:

ν ≤ML+N(Γ + 1)KM(KN−1). (51)

Therefore, from (47) and (51) the achievable DoF is given by:

DoF =
KMNΓKN−1(Γ + 1)(KM−1)(KN−1)

MΓKN−1(Γ + 1)(KM−1)(KN−1) +N(Γ + 1)KM(KN−1)
.

Noting that Γ is an arbitrary integer, as Γ→∞, the achievable DoF tends to K MN
M+N

.

VI. CONCLUSIONS

In this paper, we obtained new results for the DoF of the fully connected constant MIMO interference

channel. We showed how real interference alignment can be used to achieve a higher DoF for MIMO

interference channel. We also introduced a new upper-bound on the DoF for a MIMO interference channel,

which coincides with our achievable DoF when the number of users is larger than some threshold, which

depends on the number of transmit and receive antennas.

APPENDIX A

CALCULATING THE NORMALIZING CONSTANT γ IN (25)

The average transmit power of user k can be calculated as follows:
M∑
m=1

E
[
(X [k]

m )2
]

=
M∑
m=1

N∑
n=1

(h[kk]
nm )2E

[
(X [k]

mn)2
]

=
M∑
m=1

N∑
n=1

L∑
l=1

(h[kk]
nm )2E

[
(X

[k]
mnl)

2
]
. (52)

On the other hand, since X [k]
mnl is uniformly distributed over Λ

[k]
mnl(P, ε), it follows that

E
[
(X

[k]
mnl)

2
]

=
1

|Λ[k]
mnl(P, ε)|

∑
x∈Λ

[k]
mnl(P,ε)

x2, (53)
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where |Λ[k]
mnl(P, ε)| denotes the size of the set Λ

[k]
mnl(P, ε) which is equal to 2Q+ 1. Therefore,

E
[
(X

[k]
mnl)

2
]

=
γ2P

ν−1+2ε
ν+ε

(
ω

[k]
mnl

)2

2Q+ 1

Q∑
q=−Q

q2 = γ2P
ν−1+2ε
ν+ε

(
ω

[k]
mnl

)2 Q(Q+ 1)

3
. (54)

Substituting (54) in (52) and noting that Q(Q+ 1) ≈ P
1−ε
ν+ε for large values of P , we obtain:

M∑
m=1

E
[
(X [k]

m )2
]
≈ 1

3
γ2P

M∑
m=1

N∑
n=1

L∑
l=1

(h[kk]
nmω

[k]
mnl)

2. (55)

Therefore, the power constraint P at all transmitters is satisfied if

γ2 = min
k∈K

3∑M
m=1

∑N
n=1

∑L
l=1(h

[kk]
nmω

[k]
mnl)

2
.

APPENDIX B

PROOF OF (10)

In this appendix, we prove that

J(W1M,W2M,W1N,W2N) ≤ max{max(M,N)Wmin,min(M,N)Wmax}, (56)

where Wmin = min(W1,W2) and Wmax = max(W1,W2). First, note that

J(W1M,W2M,W1N,W2N) = min{WM,WN,max(W1M,W2N),max(W2M,W1N)}
≤ min{max(W1M,W2N),max(W2M,W1N)}.

(57)

Due to the symmetry, without loss of generality, we prove (56) for the case of M ≥ N . We consider two

cases:

1) W1 ≥ W2

In this case, max(W1M,W2N) = W1M . To evaluate (57), we differentiate between two cases:

• W1N ≥ W2M

In this case, max(W2M,W1N) = W1N . Therefore, (57) reduces to:

J(W1M,W2M,W1N,W2N) ≤ min{W1M,W1N} = W1N

= max{W1N,W2M} = max{WmaxN,WminM}.

• W1N < W2M

In this case max(W2M,W1N) = W2M . Therefore, (57) reduces to:

J(W1M,W2M,W1N,W2N) ≤ min{W1M,W2M} = W2M

= max{W1N,W2M} = max{WmaxN,WminM}.
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2) W1 < W2

In this case, max(W2M,W1N) = W2M . To evaluate (57), we again differentiate between two cases:

• W1M ≥ W2N

In this case, max(W1M,W2N) = W1M . Therefore, (57) reduces to:

J(W1M,W2M,W1N,W2N) ≤ min{W1M,W2M} = W1M

= max{W1M,W2N} = max{WmaxN,WminM}.

• W1M < W2N

In this case, max(W1M,W2N) = W2N . Therefore, (57) reduces to:

J(W1M,W2M,W1N,W2N) ≤ min{W2N,W2M} = W2N

= max{W1M,W2N} = max{WmaxN,WminM}.

This completes the proof.

APPENDIX C

THE CLOSEST RATIONAL NEIGHBORS OF A REAL NUMBER WITH DENOMINATOR AT MOST K

In this appendix, we study how closely a real number can be approximated by rational numbers that

have a given bound on the size of their denominators. Specifically, for a real number α and a positive

integer K, we are looking for two rational numbers α− and α+ such that α− ≤ α ≤ α+ and moreover

α− and α+ are closer to α than any other rational number with denominator at most K. Given α and K,

there is an elegant method to find the rationals α− and α+ using the so called Farey sequence [24]. A

Farey sequence of order N consists of all irreducible fractions from [0, 1] with denominator not exceeding

N , arranged in order of increasing magnitude. The Farey sequence of order N will be denoted by FN .

For example F5 = {0
1
, 1

5
, 1

4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 4

5
, 1

1
}.

Suppose that α ∈ [0, 1) is a given real number, and the goal is to calculate the closest rational neighbors

of α with denominator not exceeding a given positive integer K. To do this, we need to find the place of

α in the sequence FK . If α ∈ Fk, then α− = α+ = α. If α /∈ Fk, then we can find its closest rationals

α− and α+ by:

α− = max
q∈FK
q<α

q, α+ = min
q∈FK
q>α

q. (58)

For example, the closest rational neighbors of α =
√

2− 1 with denominator not exceeding 5 are α− = 2
5

and α+ = 1
2
. In this method, for a given K, we first need to construct the sequence FK and then solve
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the optimization problem in (58). Lemma 1 provides an alternative approach to find the closest rational

neighbors of a given real number α with denominator at most K without the help of Farey sequence.

Proof of Lemma 1: To prove (16), let us assume that maxn∈{1,··· ,K}
bnαc
n

= bn0αc
n0

for some n0 ∈
{1, · · · , K}. Note that bn0αc

n0
≤ α and bn0αc

n0
∈ FK . We claim that among all fractions in FK that are less

than α, the fraction bn0αc
n0

is the closest to α. We prove our claim by contradiction. Assume we can find

a fraction p
q
, (p, q) = 1 such that p

q
∈ FK and bn0αc

n0
< p

q
≤ α. It then follows that:

p ≤ qα. (59)

On the other hand, since q ≤ K, it follows that bqαc
q
≤ bn0αc

n0
and since bn0αc

n0
< p

q
it follows that

p > bqαc. (60)

Combining (59) and (60), we have bqαc < p ≤ qα which is a contradiction because p is an integer. We

can prove (16) by a similar argument.
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