
Security in Distributed Storage Systems
by Communicating a Logarithmic Number of Bits

Theodoros K. Dikaliotis
Department of Electrical Engineering

California Institute of Technology

Email: tdikal@caltech.edu

Alexandros G. Dimakis
Department of Electrical Engineering

University of Southern California

Email: dimakis@usc.edu

Tracey Ho
Department of Electrical Engineering

California Institute of Technology

Email: tho@caltech.edu

Abstract—We investigate the problem of maintaining an en-
coded distributed storage system when some nodes contain
adversarial errors. Using the error-correction capabilities that
are built into the existing redundancy of the system, we propose
a simple linear hashing scheme to detect errors in the storage
nodes. Our main result is that for storing a data object of
total size M using an (n, k) MDS code over a finite field
Fq , up to t1 = �(n − k)/2� errors can be detected, with
probability of failure smaller than 1/M, by communicating only
O(n(n−k) logM) bits to a trusted verifier. Our result constructs
small projections of the data that preserve the errors with high
probability and builds on a pseudorandom generator that fools
linear functions. The transmission rate achieved by our scheme is
asymptotically equal to the min-cut capacity between the source
and any receiver.

I. INTRODUCTION

We study the security and data integrity of distributed

storage systems that use coding for redundancy. It is well

known that maximum distance separable (MDS) codes can

offer maximum reliability for a given storage overhead and

can be used for distributed storage in data centers and peer-to-

peer storage systems like OceanStore [1], Total Recall [2], and

FS2You [3], that use nodes across the Internet for distributed

file storage and sharing. In this paper we are interested

in dealing with errors in the encoded representation. The

errors could be introduced either through (unlikely) hard drive

undetected failures or through a malicious or compromised

server in the storage network.

This second threat is much more eminent when the sys-

tem uses network coding to maintain the redundancy of the

encoded system as proposed recently [4]. To illustrate this

consider a large data object that has size M bits. If this

object is to be stored on n servers, depending on the desired

redundancy, an (n, k) linear MDS code can be used, dividing

the object into k packets of size M/k each, and storing an

encoded packet at each server. Assuming the code is over a

finite field Fq , requiring log q bits to represent each symbol,

each server will also need to keep a header denoting the coding

coefficients of the linear combinations stored on the server (see

section II for the details) and the size of this header is larger

than the size of the useful data if the code is used only once.

0This work has been supported partially by NSF grant CNS-0905615,
partially by the Air Force Office of Scientific Research under grant FA9550-
10-1-0166 and Caltech’s Lee Center for Advanced Networking

Fig. 1. A (4, 2) MDS code along with the repair of the first storage node.
Each node stores two packets and any two nodes contain enough information
to recover all four data packets. In this example the first node leaves the system
and a new node is formed by communicating linear combinations f2, f3, f4

which can be used to solve for x1, x2 at the new node.

For this reason it was proposed that the same code is used

several times [5] by dividing each packet into N symbols of

log q bits and repeating the same code N times. If N >> n
the overhead of storing the coefficients becomes negligible.

We refer to this as the N–extended version of an MDS code,

shown in Figure 2 for the (4, 2) code used in Figure 1.

Observe that in this example, each node is storing two

linear combinations, (rows) as opposed to one. This sub-
packetization is performed to facilitate repair through network

coding as proposed in [4]. The problem of repair consists

of constructing a new encoded node by accessing as little

information from existing encoded nodes. In the example of

Figure 1, we assume that the first storage node failed and

the redundancy of the system needs to be refreshed. This

is achieved by communicating “small” linear combinations

f2, f3, f4 of the encoded packets from nodes 2, 3, and 4 each

of size 1/2 of what each node is storing, which as proven

in [4], is information theoretically minimal. As storage nodes

leave the system and new ones are added, this forms a dynamic

storage network that keeps a fixed redundancy and reliability

by building new encoded packets from already existing ones.

The problem of security should now be clear: even if a single

node in this storage system is compromised and participates

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1948U.S. Government Work Not Protected by U.S. Copyright ISIT 2010

in this repair process, then it can send incorrect linear com-

binations that will create erroneous packets at the new nodes.

All new nodes using these linear equations will have incorrect

data and soon the whole system will be contaminated with

nodes having erroneous data.

Our contribution: Since the problem of repairing a code is

equivalent to wireline network coding [4], existing techniques

for network error correction can be used to detect and correct

the errors [6], [7]. These techniques are designed to work for

general networks and always guarantee a transmission rate of

C−2z, where C is the min-cut capacity from the source to the

destination and z is the number of links contaminated by the

adversary. Our approach, that is creating and communicating

small linear hashes which preserve the structure of the code,

allows the detection of errors and achieves a transmission

rate that can be asymptotically equal to C (by having the

receiver connecting to all the non-erroneous nodes) since it

takes advantage of the specific structure of the network and

the set of links an adversary can contaminate.

To explain our scheme, consider the (4, 2) MDS code of

Figure 1 and assume one of the four nodes contains errors

(say in both rows). A trusted verifier that communicates with

all four nodes can find this error by getting the 8 equations

contained in each of the

(
4
2

)
= 6 node pairs. Since this is

a (4, 2) MDS code, the combinations of equations that come

from error-free nodes will be full rank and give a consistent

solution whereas the other sets will give different solutions

(or might not even be full rank). This is, of course, just

using the error-correction capability of the code to detect an

error. Our contribution involves using this idea to the N -

extended version of a code, by creating a linear projection
(hash) of each row on the same random vector. The key

observation is that if the same random projection is used,

this creates an error-correcting code for the hashes which

can be communicated to the verifier. The benefit is that each

hash has size only 1/N of the data in each row reducing the

amount of communication to the verifier. One complication is

that each node needs to project its data on the same random

vector of length N , which requires N log q bits of common

randomness. Subsequently the problem at the verifier is to

decode an error-correcting code under adversarial errors. This

decoding task can be computationally inefficient but we do not

address this issue here, assuming that the verifier can detect the

errors if they are within the error correcting capabilities of the

code as dictated by the minimum distance (half the minimum

distance). Our analysis investigates under which conditions the

small projected hash code will detect any error in the large

amount of data stored at the nodes. In particular, we prove the

following

Theorem 1: In a distributed storage system storing a total

of M bits, using an N–extended (n, k) MDS code over Fq ,

with the n storage nodes sharing O(M) bits of common

randomness, our random hashing scheme can detect up to

t ≤ t1 ≡ �(n − k)/2� errors by communicating a total of

n(n − k)(logM + log t1) bits to a verifier, with probability

of failure

P[F] ≤ 1
M .

One important weakness of the previous result is the large

common randomness required which is comparable to the total

size of the data object stored (1/k(n − k) fraction of the M
bits). Note that these bits do not have to be a secret, they only

need to be realized after the error has been introduced to the

new disk. Their large number, however, makes it impractical

to generate them at one node and then communicate them to

the others. Our second contribution involves showing how to

use only O(logM) bits of common randomness to achieve

almost the same performance:

Theorem 2: In a distributed storage system storing a total

of M bits, using an N–extended (n, k) MDS code over Fq ,

with the n storage nodes sharing O(logM) bits of common

randomness, our pseudorandom hashing scheme can detect

up to t1 = �(n − k)/2� errors by communicating a total of

O(n(n − k) logM) bits to the verifier, with probability of

failure

P[F ′] ≤ 1
M .

If there is no common randomness, the verifier can generate

the O(logM) random bits and communicate these to all the

nodes requiring a total of O(n logM) extra communicated

bits.

Notice that in this case the total number of bits com-

municated scales only logarithmically in M, to achieve a

probability of failure that scales like 1/M. Our construction

relies on the pseudorandom small-bias generator used in [8]

which can expand log N random symbols of Fq (which require

log N log q random bits to generate), into N pseudorandom

symbols that can “fool” any linear function1. The only modi-

fication to our algorithm is projecting each stored row on this

pseudorandom vector to generate each hash and this induces

only a small addition to the probability of error. Notice that

our work does not rely on any cryptographic assumptions and

guarantees that errors inserted in the distributed storage system

will be detected with high probability if they are within the

capabilities of the code used.

Using the error-correction capability of the code for dis-

tributed storage has been suggested before as a way to detect

errors [10], [11] and identify “free riders” within the network.

A different approach to find errors injected in distributed

storage and content distribution systems is the use of sig-

natures and hash functions. Reference [12] introduced the

use of homomorphic hashing functions that enables a nodes

to perform on-the-fly verification of erasure-encoded blocks.

Gkantsidis et al. [13] used the computationally less expensive

secure random checksums to detect polluted packets in content

distribution system that use network coding while [14], [15]

used a method of subspace signatures based on different

cryptographic primitives. See also [16], [17], [18] for other

related work on security and distributed storage.

1First introduced by Naor and Naor in [9] for linear functions in F2.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1949

Fig. 2. Illustration of the 3–extended version of the (4, 2) MDS code shown in Figure 1. Each of the three columns stored on the source nodes is coded
by repeatedly using the (4, 2) MDS of Figure 1. During verification, each row is projected on the vector rT = (1 1 1) and the corresponding products
S1, . . . , S4 form a codeword of the initial (4, 2) MDS code. For example, the errors at the first row of the first node will not be absorbed by the projection
as long as (e11 e12 e13) ∗ (1 1 1)T �= 0

II. MODEL

As stated, we consider a data object of size M bits that is

divided into k pieces (of size M/k bits each) and these are

coded into n (> k) encoded pieces through a linear (n, k)
maximum distance separable (MDS) code. These encoded

pieces are stored on n distinct storage nodes along with a

header denoting the exact linear combination saved at all the

storage nodes. Since the size of the code (n, k) will be much

smaller than N , the overhead of storing the code description

everywhere (including the verifier) is minimal. This simplifies

the model and we can now assume that the errors occur only

at the data, since an error at the header would be immediately

detected.

We assume that the original information (of size M bits)

is organized into a matrix X with k(n − k) rows and N
columns. The elements of this matrix are elements of the

finite field Fq, i.e., X ∈ Fq
k(n−k)×N where q is a prime or

an integer power of a prime. Each column Xc
i ∈ Fq

k(n−k)×1

(i ∈ {1, . . . , N}) of matrix X will be separately encoded

with the use of an (n, k) MDS code with generator matrix

G ∈ Fq
n(n−k)×k(n−k) and all the columns GXc

i ∈ Fq
n(n−k)×1

derived by this encoding will be stored on the n different

storage nodes of the distributed storage system. We will call

this code applied to the N different columns of matrix X as

the N–extended MDS code. The overall effect that the N–

extended MDS code has upon the information matrix X is

captured by the matrix multiplication GX . Figure 2 shows

such a code for N = 3 where the MDS code used is the same

as the one shown in Figure 1.

The storage nodes of the distributed storage system are

assumed to have limited computational capabilities allowing

them only to perform inexpensive operations over the finite

field Fq . Some of these storage nodes are assumed to store

erroneous information, where these errors might be either

random due to hardware failures or inserted adversarially by

a malicious user. The malicious user can be computationally

unbounded, have knowledge of all the information stored on

the distributed storage system and can insert errors to any t
of the storage nodes.

We assume the existence of a special node called the verifier
that is assigned to check the integrity of the data stored on

different storage nodes. The verifier does not have access to

the initial data object (other than the description of the code)

and therefore has to rely on the communicated information to

check which nodes contain errors.

III. RANDOM HASHES

A. Illustrating example

Assume that in the distributed storage system shown in

Figure 2 with four storage nodes it is known that one of

them (the first in this example) stores erroneous information.

The goal of the verifier that overlooks the state of the whole

system is first to find the erroneous disk with the minimum

data exchange and second to repair it by using the information

stored on the other disks. Since all three columns stored on

the distributed storage system are codewords of a (4, 2) MDS

code with at most one error (some columns might be error

free) and minimum distance d = 3, the naı̈ve approach to

find the erroneous disk is to download all data from different

disks and then by using minimum distance decoding on each

separate column one would be able to find the erroneous disk.

The naı̈ve approach would certainly find the faulty disk but

it would require the transfer of double the size of the file stored

(n
kM bits of information in general). So as the size of the file

increases this approach will become prohibitively expensive in

bandwidth. Instead of transmitting all the information stored

on the distributed storage system, the central node could

choose a vector with each component chosen independently

and uniformly at random from Fq and have each storage node

transmit the inner product (called the hash product) between

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1950

the randomly chosen vector and each of the rows stored at the

disks. In the absence of errors, these hash products will form

a codeword of the MDS code used to encode the different

columns of the information matrix. In case there are errors,

as in the case of the first node in Figure 2, the multiplication

with the random vector will not obscure these errors unless

Sei = 0 ⇔ ei1 + ei2 + ei3 = 0, for i = {1, 2}. The

reason why the chosen vector should be random is so that

the adversary can not deliberately choose the errors to make

them ”disappear” after the vector multiplication.

B. General case

The initial information matrix X ∈ Fq
n(n−k)×N is coded

with the use of an N -extended MDS code with generator ma-

trix G ∈ Fq
n(n−k)×k(n−k). Some of the storage nodes contain

errors and therefore what is actually stored on the distributed

storage system is Y = GX + E where Y, E ∈ Fq
n(n−k)×N

and E is the error matrix. The verifier wants to identify all

erroneous disks by sending hash product requests to all nodes.

Then the following theorem holds:

Proof of Theorem 1: All storage nodes share N log q bits

of common randomness and therefore they can create the same

random vector r ∈ Fq
N×1 with each component of vector r

drawn uniformly at random from Fq . After the random vector

r is computed, each storage node calculates the hash product–

inner product–between the random vector r and its content on

every row. These n(n − k) hash products are equal to:

H = Y r = (GX + E)r ⇔ H = G(Xr) + e (1)

where e = Er ∈ Fq
n(n−k)×1 is a column vector with at most

tm non-zero components representing the erroneous disks

(these non-zero components must correspond to the position of

at most tm storage nodes with errors). The key observation is

that the projection will not identify an error pattern at a specific

row if vector r is orthogonal to that row of E. Intuitively, a

randomly selected r will be non-orthogonal to an arbitrary row

of E with high probability and this is the probability we need

to analyze.

From equation (1) it can be seen that the order of applying

the MDS encoding on the different columns of the information

matrix X and the calculation of the hash products can be

interchanged ((GX)r = G(Xr)) making the process of

identifying the erroneous disks equivalent to finding the error

positions in a regular MDS code that is guaranteed to succeed

if the minimum distance of the code (n−k+1) is larger than

twice the number of errors 2t (that is indeed satisfied by the

assumptions of Theorem 1).

The set of indices that correspond to the components of

vector e that come from disk i is Ri = {(i − 1)(n − k) +
1, . . . , i(n−k)}. We are interested in vector e since this gives

us the positions of the faulty disks. One complication that

might arise is the fact that disk i might contain an error,

meaning that rows {Er
j , j ∈ Ri} of the error matrix E are

not all zero whereas the corresponding components of vector

e ({ej , j ∈ Ri}) turn out to be zero and therefore our scheme

fails to detect that error. Assume that the set of erroneous disks

is W ⊂ {1, 2, . . . , n} and define P[F] to be the probability of

failing to detect some errors. We get

P[F] = P

⎡
⎣ ⋃

i∈W

⎧⎨
⎩

⋂
j∈Ri

(
Er

j r = 0
)
⎫⎬
⎭

⎤
⎦

≤
∑
i∈W

P

⎡
⎣ ⋂

j∈Ri

(Er
j r = 0)

⎤
⎦ ∗≤

∑
i∈W

1
q
≤ �n−k

2 �
q

≡ t1
q

(2)

where inequality (∗) holds due to the fact that the probability

that some storage node with errors produce zero hash products

is less than 1/qf where f is the number of linearly independent

errors rows saved at its disk. So by assuming that the adversary

has produced linearly dependent errors would only increase the

probability of failure.

If the adversary has saved error vectors at storage node i
with rank 1 then the probability P[∩

j∈Ri

(Er
j r = 0)] in equation

(2) reduces to an equation for a single row (assuming row k):

P

⎡
⎣ ∑

ekf �=0

ekf rf = 0

⎤
⎦ = P

⎡
⎣rf = −

∑
ekf′ �=0

ekf ′

ekf
rf ′

⎤
⎦ =

1
q

where we only took the terms with a non-zero error coefficient

ekf . The numbers (ekf ′/ekf) rf ′ (ekf is any non-zero error

element from the kth row) are independent and uniform over

Fq and so is their sum according to Lemma 1. So the last

equality holds since two independent uniformly distributed

over Fq random numbers are equal with probability 1/q.

When the errors have rank f > 1 then the probability

P[∩
j∈Ri

(Er
j r = 0)] can be evaluated by disregarding the

linearly dependent rows. By looking only at the linearly inde-

pendent ones and by choosing f columns we can formulate an

invertible submatrix Êi ∈ Fq
f×f and similarly to the previous

analysis we have that P[∩
j∈Ri

(Er
j r = 0)] = P[Êi r̂ = b̂] where

r̂, b̂ ∈ F
f×1 where r̂ are the components of the random vector

that correspond to the columns where the submatrix Êi was

formed. Since b̂ is uniformly random, due to the previous

analysis P[Ê r̂ = b] = 1/qf .

Each of the n storage nodes has to convey to the verifier the

result of the hash product from all its (n-k) rows, so that the

total size of the hash communicated is H = n(n − k) log q,

whereas the size of the file M = k(n − k)N log q. By

substituting the field q equal to �n−k
2 �M we conclude the

proof of Theorem 1.

Lemma 1: The sum of any number of independent uni-

formly distributed random variables gives a uniformly dis-

tributed random variable.

Proof: Without loss of generality we will prove Lemma 1

only for the case of two random variables. Assume that

x, y ∈ Fq are two independent and uniformly distributed

random variables. We will prove that x + y is also uniformly

distributed, indeed ∀t1, t2 ∈ Fq:

P[x + y = t1] =
∑

t2∈Fq

P[x = t1 − y|y = t2]P[y = t2]

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1951

(∗)
=

∑
t2∈Fq

P[x = t1 − t2] · 1
q

=
∑

t2∈Fq

1
q
· 1
q

= q · 1
q2

=
1
q

where equality (*) holds due to the independence between x
and y.

Before we continue to prove Theorem 2 we need to give

the following definition (extension of Definition 2.1 in [8] to

non-prime numbers):

Definition 1: a) Let q be a prime or an integer power of

a prime. For a random variable X with values in Fq , let the

bias of X be defined by

bias(X) = (q − 1)P[X = 0] − P[X �= 0]

A random variable X ∈ Fq is ε-biased if |bias(X) ≤ ε|.
b) The sample space S ⊆ Fq

� is ε-biased if for all c ∈ Fq and

each sequence β = (β1, ..., β�) ∈ Fq
n\{0�} the following is

valid: if a sequence X = (x1, . . . , x�) ∈ S is chosen uniformly

at random from S, then the random variable (
∑�

i=1 βixi + c)
is ε-biased.

Proof of Theorem 2: All storage nodes execute the

algorithm described in Proposition 4.12 of [8] and produces

a pseudorandom vector r′ ∈ Fq
N×1 with N components. The

quantity m in the algorithm (and consequently the field size

Fqm too) is chosen so that the bias (q−1)(N−1)/qm is equal

to 1 and therefore qm = (q − 1)(N − 1) or m = O(log N).
The size of the necessary seed that needs to be provided

at all the storage nodes so that they can start the algorithm

is two elements from Fqm chosen uniformly at random or

equivalently 2m log q ≡ O(log N) random bits.

Once all storage nodes have constructed the same pseu-

dorandom vector r′ they compute the inner product between

vector r′ and the content stored on each row of the storage

nodes. These pseudorandom products are all sent to the verifier

to identify the erroneous disks. The whole analysis is identical

to the proof of Theorem 1 with one major difference in the

calculation of failure probability P[F ′]. For the case of a

pseudorandom vector r′, using the same notation as in the

proof of Theorem 1:

P[F ′] = P

⎡
⎣ ⋃

i∈W

⎧⎨
⎩

⋂
j∈Ri

(
Er

j r′ = 0
)
⎫⎬
⎭

⎤
⎦

≤
∑
i∈W

P

⎡
⎣ ⋃

j∈Ri

(
Er

j r′ = 0
)
⎤
⎦ ≤

∑
i∈W

∑
j∈Ri

P
(
Er

j r′ = 0
)

∗≤(n − k)�n − k

2
�2
q
≡ 2(n − k)t1

q

where inequality (∗) holds since P
(
Er

j r′ = 0
)

= 2/q. Indeed

the bias of the space constructed by the pseudorandom proce-

dure is 1 that means:∣∣(q − 1)P
(
Er

j r′ = 0
) − P

(
Er

j r′ �= 0
)∣∣ ≤ 1

⇔ ∣∣(q − 1)P
(
Er

j r′ = 0
) − [

1 − P
(
Er

j r′ = 0
)]∣∣ ≤ 1

2This algorithm is described for q prime but it is readily extensible to q
equal to an integer power of a prime.

⇔ ∣∣q P
(
Er

j r′ = 0
) − 1

∣∣ ≤ 1 ⇒ P
(
Er

j r′ = 0
) ≤ 2

q

By setting q = 2(n − k)t1M we conclude the proof.

We would like to underline here that both theorems above

exhibit the same behavior on the probability. In Theorem 2 the

size of the required common randomness is decreased in the

expense of an increased field size. Moreover the use of pseu-

dorandom generators incurs the additional computational cost

at each storage node of O(Nm2) or O(M logM) operations

in Fq to generate the pseudorandom vector r′.

ACKNOWLEDGMENT

The authors would like to thank Professor Leonard Schul-

man for his insights on pseudorandom generators.

REFERENCES

[1] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz, “Maintenance-free global data storage,” IEEE Internet
Computing, vol. 5, no. 5, pp. 40–49, 2001.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
recall: System support for automated availability management,” in Proc.
of the Network Systems Design and Implementation, 2004, pp. 337–350.

[3] Y. Sun, F. Liu, B. Li, Li, B. Li, and X. Zhang, “Fs2you: Peer-assisted
semi-persistent online storage at a large scale,” in Proc. of the IEEE
Conference on Computer Communications, April 2009.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” Submitted
for journal publication. Preliminary version appeared in Infocom 2007.

[5] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc.
of 41st Annual Allerton Conference on Communication, Control, and
Computing, 2003.

[6] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Médard,
“Resilient network coding in the presence of byzantine adversaries,” in
Proc. IEEE INFOCOM 2007, Anchorage, AK, May 2007.

[7] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,” IEEE Transactions on Information Theory,
2007, submitted.

[8] C. Bertram-Kretzberg and H. Lefmann, “MODp-tests, almost indepen-
dence and small probability spaces,” Random Structures & Algorithms,
vol. 16, no. 4, pp. 293–313, 2000.

[9] J. Naor and M. Naor, “Small-bias probability spaces: Efficient construc-
tions and applications,” SIAM Journal on Computing, vol. 22, pp. 838–
856, 1993.

[10] T. S. J. Schwarz and E. L. Miller, “Store, forget, and check: Using
algebraic signatures to check remotely administered storage,” in Proc.
of ICDCS, 2006.

[11] W. Litwin and T. Schwarz, “Algebraic signatures for scalable distributed
data structures,” in Proc. of the IEEE International Conference on Data
Engineering (ICDE 04, 2002, pp. 412–423.

[12] M. Krohn, M. Freedman, and D. Mazieres, “On-the-fly verification of
rateless erasure codes for efficient content distribution,” in Proc. of the
IEEE Symposium on Security and Privacy, May 2004, pp. 226–240.

[13] C. Gkantsidis and P. Rodriguez, “Cooperative security for network
coding file distribution,” in Proc. of IEEE International Conference on
Computer Communications, April 2006, pp. 1–13.

[14] F. Zhao, T. Kalker, M. Médard, and K. J. Han, “Signatures for content
distribution with network coding,” in Proc. of the IEEE International
Symposium on Information Theory (ISIT), 2007.

[15] D. Charles, K. Jain, and K. Lauter, “Signatures for network coding,” in
Annual Conference on Information Sciences and Systems, March 2006,
pp. 857–863.

[16] J. P. Vilela, L. Lima, and J. Barros, “Lightweight security for network
coding,” in Proc. of the IEEE International Conference on Communica-
tions, May 2008.

[17] E. Kehdi and B. Li, “Null keys: Limiting malicious attacks via null
space properties of network coding,” in Proc. of the IEEE Conference
on Computer Communications, April 2009.

[18] A. Le and A. Markopoulou, “Locating byzantine attackers in intra-
session network coding using spacemac,” in Proc. of NetCod, June 2010.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1952

