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Abstract— We consider the Linear Programming (LP) solu-
tion of the Compressed Sensing (CS) problem over reals, also
known as the Basis Pursuit (BasP) algorithm. The BasP allows
interpretation as a channel-coding problem, and it guarantees
error-free reconstruction with a properly chosen measurement
matrix and sufficiently sparse error vectors. In this manuscript,
we examine how the BasP performs on a given measurement
matrix and develop an algorithm to discover the sparsest vectors
for which the BasP fails. The resulting algorithm is a generaliza-
tion of our previous results on finding the most probable error-
patterns degrading performance of a finite size Low-Density
Parity-Check (LDPC) code in the error-floor regime. The BasP
fails when its output is different from the actual error-pat tern.
We design a CS-Instanton Search Algorithm (ISA) generatinga
sparse vector, called a CS-instanton, such that the BasP fails on
the CS-instanton, while the BasP recovery is successful forany
modification of the CS-instanton replacing a nonzero element
by zero. We also prove that, given a sufficiently dense random
input for the error-vector, the CS-ISA converges to an instanton
in a small finite number of steps. The performance of the CS-
ISA is illustrated on a randomly generated 120 × 512 matrix.
For this example, the CS-ISA outputs the shortest instanton
(error vector) pattern of length 11.

I. I NTRODUCTION

A. Background

Compressed sensing (CS) [1] is a computational technique
to recover a sparse signal from a small set of measure-
ments. Given the measurements, described in terms of the
so-called measurement matrix, the ideal CS looks for the
sparsest signal, i.e. minimizing theℓ0-norm, consistent with
the measurements. This ideal formulation is known to be
NP-hard [2], [3]. A key practical observation of the CS
theory came with the Basis Pursuit (BasP) algorithm of
Chen, Donoho and Sanders [4] who suggested relaxing
the difficult ℓ0-norm minimization toℓ1-norm minimization,
which is convex and thus computationally tractable. The
BasP heuristics have shown remarkable performance, that
was theoretically explained in the breakthrough paper of
Candes and Tao [5], stating the CS problem as a linear
channel coding problem involving recovery of an input real
vector from its corrupted image. In [5], it was proved that the
ℓ1 relaxation guarantees perfect recovery of the input vector
for sufficiently sparse error vectors and a properly chosen
measurement matrix. The conditions on the measurement
matrix were expressed in terms of the so-called Restricted
Isometry Property (RIP). It was also shown in [5] that a

measurement matrix drawn from a proper random ensemble
possesses the RIP with high probability.

Estimation of the fraction of tolerable errors for a random
measurement matrix became an important follow up ques-
tion. However, extending the approach of [5] to a given finite
measurement matrix is not easy, as checking if the matrix has
the RIP becomes computationally hard. This aspect of the CS
is reminiscent of similar problem in the so-called expander
graph based analysis [6] of the Low-Density Parity-Check
(LDPC) codes [7]. In fact, expander-based constructions of
CS measurement matrices have been investigated in [8], [9].

The relation between LDPC codes and CS was further
explored in the work of Dimakis and Vontobel [10], who
juxtaposed two linear programs: the BasP of CS which can
be restated as a Linear Program (LP) and the so-called LP-
decoder [11] of a related LDPC code. It was shown in [10]
that a binary matrix which is a good parity check matrix
for LP decoding of the corresponding LDPC code is also a
good zero-one measurement matrix over reals for BasP in
the respective CS problem. The authors of [10] also pointed
out other directions in which the relationship between BasP
and LP-LDPC can be investigated to translate theoretical
guarantees from one field to the other. This challenge, of
extending descriptive results from the LDPC world into the
world of CS reconstruction, has motivated this work.

B. Overview of Results

In this paper, we pose the following question:Given a
measurement matrix good for theℓ1-norm recovery, how
does one find the sparsest vectors for which theℓ1-norm
minimization fails?A similar question arises in decoding of
a finite LDPC code by Belief Propagation [12] or other sub-
optimal decoding algorithms, notably LP decoding, in the so-
called error-floor regime [13], [14], [15]. Roughly speaking,
the error floor is an abrupt degradation of the frame error rate
performance of a code in the high signal-to-noise ratio (SNR)
regime caused by low-weight error patterns not correctable
by the sub-optimal decoder. Algorithms to enumerate such
rare noise configurations (known as instantons, i.e. instances
in the space of noise configurations) are crucial to the design
of better decoders as well as codes. Similar statements can
be made in the CS setting, where identifying sparsest error
vectors for which the BasP fails is important to assess the
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Fig. 1. Fig. (a) shows example of a(15×64) measurement matrix,F , with
orthonormal rows. Fig. (b) shows a sequence of error vectors(e(0) − e

(3))
representing the ISA for the measurement matrix from (a). The first vector
(with 15 nonzero elements) was selected at random. It takes four iterations
of the ISA (four columns in the Fig. (b)) to reach an instanton, i.e. the
error-pattern for which BasP decoding fails, containing only three nonzero
elements.

quality of a given measurement matrix as well as to guide
the design of better measurement matrices.

The main contribution of this paper is the formulation of
the CS instanton search algorithm (CS-ISA). Our approach
to the problem of identifying instantons for CS consists of
extending and adapting the ISA developed originally in [16],
[17], [18] for analysis of the error-floor of a given LDPC
code, to the problem of the worst configuration recovery in
CS. Given a measurement matrix (e.g. the15 × 64 matrix
shown in Fig. 1(a)), the algorithm starts with a dense error
vector for which the BasP fails and iteratively finds error
vectors with a smallerℓ0 norm that result in BasP failure.
At some point, the algorithm finds an instanton, defined as
a sparse error vector not correctable by BasP such that any
of its further reductions in theℓ0 norm is BasP correctable.
A typical sequence of CS-ISA, described in Section III, is
illustrated in Fig. 1(b).

Initializing ISA with an error vector at random allows us to
sample the space of instantons for a given measurement ma-
trix efficiently. We describe the quality of the measurement

matrix in terms of the distribution of instantons over their
sparsity. (See the bar-diagram of Fig. 2 for an illustration.)
This distribution is the practical tool that we propose to use
as a guide for constructing better measurement matrixes.

Finally, we show that the CS-ISA comes with some
theoretical guarantees. We prove in Section V that for any
sufficiently noisy initialization, the CS-ISA converges ina
finite number of steps, which is significantly smaller than the
measurement matrix size. (Each step of the CS-ISA requires
running a single instance of the BasP algorithm.)

After the submission of the initial version of this
manuscript, we have been made aware of related approach
by Dossal, Peyré and Fadili [19], who proposed a greedy
pursuit algorithm that computes, for a given measurement
matrix, sparse vectors for which the BasP fails.

The rest of the manuscript is organized as follows. Section
II introduces the problem setting and related terminology.
Section III describes the CS-ISA. Section IV illustrates
the performance of the CS-ISA in sampling the space of
instantons of a randomly generated(120×512) measurement
matrix. We present a brief sketch of the theorem, proving
the convergence of the algorithm in a small finite number of
steps in Section V. Section VI is reserved for discussions.

II. COMPRESSEDSENSING PRELIMINARIES: PROBLEM

SETTING

In this Section, we discuss the BasP algorithm adopting
formulation and terminology from [4], [5]. (The interested
reader is referred to [20] for a comprehensive list of ref-
erences on CS.) The problem setting is as follows. An
original real-valued information vectorf ∈ R

n is trans-
formed (coded) into a longer vectorAf ∈ R

m, whereA ∈
R

m×n is a full rank matrix known as the generator matrix.
The result, transmitted over the CS-channel, is received
as y = Af + e, where e ∈ R

m is the unknown error
vector, assumed to be sparse. Recovering the error vector
e is sufficient to reconstruct the information vectorf , as
knowledge ofy along with e givesAf and hencef can be
recovered straightforwardly asA is full rank. Now, consider
a p ×m matrix F such thatFA = 0. F will be called the
measurement matrix. It follows that̃y = Fy = Fe and the
problem of recovering the sparse error vectore is equivalent
to the problem of finding the sparsest vectord subject to
Fd = ỹ. The CS-decoding/reconstruction is successful if
d = e. The sparsest solution to this problem can be found
by solving the following optimization problem (CS-OPT) [5]

min
d∈Rm

‖d‖ℓ0

∣

∣

∣

∣

Fd=Fy

, (1)

where theℓ0 norm of a vectord measures its sparsity, i.e.
the number of nonzero entries,‖d‖ℓ0 = |{i : di 6= 0}|.

As stated in Eq. (1) the problem is NP hard [2], [3] (of
exponential complexity inm) and [4] suggested a relaxed
(weaker but tractable) version of the CS-decoding, coined
Basis Pursuit (BasP):

min
d∈Rm

‖d‖ℓ1

∣

∣

∣

∣

Fd=ỹ=Fe

, (2)



where ℓ0-norm is replaced by theℓ1-norm, ‖d‖ℓ1 =
∑m

i=1 |di|. Eq. (2) can also be recast as an LP.

As shown in [5], the BasP is capable of exact reconstruc-
tion, i.e.d = e, under the conditions that (1) the measurement
matrix has RIP, and (2)e is sufficiently sparse. Formally,
[5] states that if the RIP constantsδS , θS and θS,2S satisfy
δS + θS + θS,2S < 1, then for any error vectore with
‖e‖ℓ0 ≤ S, e is the unique solution of both Eq. (1) and
Eq. (2). However, finding the maximum value ofS for which
the conditionδS + θS + θS,2S < 1 holds is, in general, a
difficult problem and the most recent state-of-the-art results
provide only an estimate forS/m in the asymptotic limit
of large samples [5]. Moreover, these estimates for the RIP-
constants are normally very loose and cannot be used to
evaluate the quality of reconstruction of practically important
small-to-moderate sized matrices.

On the other hand, brute force search techniques for find-
ing sparse vectors that lead to BasP failures are prohibitively
expensive. In fact, BasP with a well-tuned measurement
matrix performs on typical instances of the error-vector
really well. Thus, using standard (Monte Carlo) sampling
techniques will typically not deliver a failure. Hence, there
is a need to develop smart techniques sampling the space of
failures (called instantons) of the given measurement matrix.

III. I NSTANTON SEARCH ALGORITHM FOR BASP

In this Section, we provide a formal description of the CS-
ISA. We say that the BasP fails on a vectore if e 6= d, where
d solves Eq. (2). We start with the following two definitions.

Definition 1 (Instanton):Let e be ak-sparse vector (i.e.
the number of nonzero entries ine is equal tok). Consider
an error-vectore′, derived frome by replacing one of its
nonzero component by zero (thuse′ is (k − 1)-sparse).e is
an instanton if the BasP fails one while it succeeds on any
e′ derived frome.

Definition 2 (Median):Let e be a vector and lett denote
the smallest number such that the sum of thet largest entries
(in absolute value) ofe is at least equal to‖e‖ℓ1/2. Let
T = {i1, i2, . . . , it} denote indices of thet largest entries of
e. Then, the median ofe is the vector̂e with supportT and
êi = ei for i ∈ T .

Fact 1: If e is a vector such thatFe = 0, then BasP
fails on ê. To see this, observe that‖e − ê‖ℓ1 ≤ ‖ê‖ℓ1 and
‖e− ê‖ℓ0 ≥ ‖ê‖ℓ0 .

Now we are ready to describe theInstanton Search
Algorithm :

• Initialization (l = 0) step: Initialize the algorithm to a
vector e(0) of length m with a sufficient number of
errors such that BasP fails one(0), i.e. applied toe(0)

BasP produces another vectorē(0) 6= e(0).
• l ≥ 1 step:Consider the vector̃e(l−1) = e(l−1)− ē(l−1),

where ē(l−1) denotes the output of BasP acting on
e(l−1). Let ê(l−1) denote the median of̃e(l−1). Only
two cases arise (see Lemma 1):
(i) If ‖ê(l−1)‖ℓ0 < ‖e(l−1)‖ℓ0 , thene(l) = ê(l−1) is the

l-th step output/(l+1)-th step input. (Note that by Fact
1, BasP fails one(l))
(ii) If ‖ê(l−1)‖ℓ0 = ‖e(l−1)‖ℓ0 , define L =
{i1, i2, . . . , ikl

} as the support of̂e(l−1). LetLit = L\it
for someit ∈ L. Let rit be a vector such thatritj =

ê
(l−1)
j , j ∈ Lit and contains zero elements elsewhere.

Apply BasP to allrit and denote theit output byr̄it . If
r̄it = rit for all it, then ê(l−1) is the desired instanton
and the algorithm halts. Else,e(l) is set torit for some
it for which r̄it 6= rit .

Starting with some random non-sparse initialization of the
error vector for which BasP fails, the algorithm aims to get
iteratively as close as possible to the zero error vector while
keeping the failed status for BasP when it acts on the current
vector. In the ISA (which should in fact, for the sake of
accuracy, be called ISA for thel0-norm channel), this aim
is achieved by alternating the BasP- and the median- steps.
The logic behind the alternation is obvious: when BasP fails
we apply the median-step to reduce the size ofẽ, defined as
the difference between the originale and ē.

We will prove in Section V that the ISA algorithm defined
above outputs an instanton in a small number of steps. How-
ever, prior to that we illustrate the algorithm performanceon
an example in the next Section.

IV. EXAMPLE OF THE ERROR-SURFACE EXPLORATION

In this Section, we first consider a15× 64 measurement
matrix, used to show the performance of the ISA in Fig. 1.
This toy example, described in details in the next paragraph,
while not useful in practice, allows a reasonable visualization
and thus serves us mainly for illustration purposes. After-
wards, and focused on a tour-de-force demonstration, we
discuss a more realistic120× 512 example.

The 15 × 64 measurement matrix, shown in Fig. 1(a),
is built by first creating a15 × 64 matrix H with i.i.d.
Gaussian entries and then finding the orthonormal basis of
the space spanned by the columns ofH . The dynamics
of the ISA is illustrated in Fig. 1(b). The error vector
initialization is random and it happens to be with support
of size 15 for the illustrative example. For this example
locations of the nonzero components of the initialization
are, [1 5 8 12 19 31 34 35 37 43 45 51 57 59 62],
and their respective values are,
[1.1738 0.6554 − 2.2990 − 0.1783 − 1.1907 − 0.4254
− 0.4768 2.0385 − 0.0695 0.6997 0.4137 2.9185 0.6545
1.1149 0.6789]. BasP fails on this error pattern producing the
output ē0. In step1, we compute the median of̂e0 resulting
in a vector with support[1 19 35 51 56 62] and components
[1.1738 − 1.1907 1.1590 1.3883 1.0888 0.6789]. Next,
we set e(1) = ê(0). In step 2, we compute the median
of ê(1) resulting in a vector with support[1 19 51 56]
and components[1.1738 − 1.1907 1.0843 1.0888].
Hence, we sete(2) = ê(1). In step 3, we computeê(2)

yielding the vector with support[1 19 56] and components
[1.1738 − 1.1907 1.0888], thus resulting ine(3) = ê(2).
In step4, the median of̃e(3) generates vector with support
[1 19 56] and components[1.1738 − 1.1907 1.0138].
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Fig. 2. Bar-diagram showing number of instance per recordedinstanton
length found in the result of5000 trial runs of the ISA on a random
measurement matrix of size(120 × 512) and with random initializations
of the sparsity (ℓ0-norm) 40.

Since,‖ê(3)‖ℓ0 = ‖e(3)‖ℓ0, we consider all the error vectors
derived from ê(3) by replacing one (of the three) nonzero
components by zero. BasP applied to these newly derived
vectors decodes correctly, and thusê(3) is declared an
instanton of the measurement matrix.

In order to illustrate the effectiveness of the ISA in
sampling the space of instantons, we consider a random
sample of(120× 512) measurement matrix with orthogonal
rows. We run the ISA5000 times, generating initialization
for the error-vector always with40 initial errors and record
the length of the instanton found for each trial. (40 is a suf-
ficiently large integer chosen to guarantee that the majority
of random error-vector initializations leads to BasP failure
and to an instanton configuration consequently, while only a
small portion of initializations of theℓ0-norm40 are decoded
correctly by BasP, and these rare and not interesting instances
are simply ignored. Note that lowering the initialization
sparsity will lead to wasting a lot of initializations as these
would be typically decoded by BasP without an error.) The
resulting distribution of the instanton lengths is shown in
Fig. 2. The smallest length instanton discovered by the ISA
for this example is11. Note that it is still possible that there
exist instantons of length less than11.

The ISA was implemented in MATLAB and the BasP step
in the algorithm was solved using the “l1-magic” package
from [21]. For the aforementioned measurement matrix of
size (120× 512) and the initial error-vector of theℓ0-norm
40, the average time of the BasP and the ISA runs were0.2
seconds and4.2 seconds respectively on a (laptop) Intel core
duo 2GHz processor.

V. PROOF OF THECS-IS ALGORITHM CORRECTNESS

In this Section, we establish correctness of the CS-ISA and
prove that the ISA outputs an instanton in a finite number
of steps.

Lemma 1:Let e be a vector and let̄e denote the output
of BasP one. Further, letẽ = e − ē and denote the median
of ẽ by ê. Then,

‖ê‖ℓ0 ≤ ‖e‖ℓ0

Proof: Let S1 denote the support ofe and J denote
the support of̄e. Sinceē is the BasP output fore, we have

‖e‖ℓ1 ≥ ‖ē‖ℓ1

Or stating it differently,
∑

i∈S1

|ei| ≥
∑

j∈J

|ēj | (3)

⇒
∑

i∈S1

(|ei| − |ēi|) ≥
∑

j∈J\S1

|ēj | (4)

Now consider,
∑

i∈S1
|ẽi|. We have

∑

i∈S1

|ẽi| =
∑

i∈S1

|ei − ēi| ≥
∑

i∈S1

(|ei| − |ēi|) ≥
∑

j∈J\S1

|ēj |

=
∑

j∈J\S1

|ej − ēj | =
∑

j∈J\S1

|ẽj | (5)

Eq. (5) implies that the sum of entries ofẽ in S1 is at least
equal to the sum of entries of̃e over the remaining entries.
This implies that theℓ0 norm of the median of̃e cannot
exceed|S1| = ‖e‖ℓ0.

Corollary 1: The ISA converges to an instanton in a finite
number of steps.

Proof: At every stepl of the ISA, we have‖e(l)‖ℓ0 <
‖e(l−1)‖ℓ0. By construction, the output of the ISA is an
instanton.

VI. D ISCUSSION ANDFUTURE WORK

We envision further development of the Instanton Search
technique along the following lines.

• Sampling of the instanton space provided by the ISA is not
uniform. An important future task is to design a uniform-
sampling modification of the ISA.

• Studying how ISA complexity scales with the measure-
ment matrix size constitutes another important problem. ISA
outputs an instanton in a linear (in the number of columns
of measurement matrix) number of steps in the worst case.
However, it is still not clear how many instances of the ISA
should be executed till the smallest instanton is found. While
the answer clearly depends on the particular measurement
matrix, to answer this question for an average case would
also be of interest.

• If the error-vector is almost sparse, or alternatively if the
measurements are noisy, the problem of exact CS recon-
struction is replaced by an approximate reconstruction. One
possible modification of the BasP algorithm, the so-called
Lasso algorithm [22], consists in adding to theℓ1-norm of
the signal (the original BasP) a part linear in theℓ2-norm
of the noise. With a proper (soft) definition of failure, one
should be able to extend the ISA approach to finding the
worst (highest probability) configurations leading to Lasso’s
failures.



• The ISA technique allows adaptation to the problem of
Matrix Completion via the computationally tractable min-
imization of the matrix nuclear norm (replacing exact but
not tractable minimization of the matrix rank) [23], [24]. In
this setting, a sparse and properly conditioned matrix (which
one aims to reconstruct) is fixed and the question becomes
exploring the set of measurements required for the nuclear-
norm minimization to succeed. The desired modification of
the ISA should be capable of sampling the most dangerous
configurations of measurement, for example defined as a
set of measurements such that their nuclear-norm based
decoding leads to a failure, while addition of any single non-
zero measurements results in a successful decoding.

• We can also adapt the ISA algorithm to the sequential
compressed sensing formulation of Maloutovet al [25]. In
fact, the modification is rather straightforward as it only
replaces BasP, as a sub-step of the ISA, by its sequen-
tial implementation (also imitating the order in which the
measurements are received). A similar modification can be
implemented for any other LP-based modification of BasP,
such as the Subspace Pursuit algorithm discussed in [26].
Note that this streamlining of BasP is somehow similar to
the adaptive realization of the LP decoding of LDPC codes
suggested in [27].

• However successful the BasP algorithm is, it is still
suboptimal with respect to the exactℓ0-norm minimization.
It will thus be important to study the gap between exact and
suboptimal decodings, in particular constructing a sequence
of convex optimizations improving the performance of BasP
gradually. This sequence may be designed along the lines
of discussion in [10], illustrated on example of the0 − 1
measurement matrix and error-vector that the LP-LDPC is
stronger than the respective BasP. The ISA-approach can be
easily adapted to such convex improvements over BasP.

• We envision that the most interesting (but also the most
challenging) application of this Instanton Search approach
will be in designing a good measurement matrix, in the spirit
of how one may think about using the instanton search for
selecting a good LDPC-parity check matrix (say picked from
given random ensemble optimized with respect to its water-
fall behavior) with the lowest error-floor.
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