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Abstract—A Gaussian interference channel (IC) aided by a half-
duplex relay is considered, in which the relay receives and transmits
in an orthogonal band with respect to the IC. The system thus consists
of two parallel channels, the IC and the channel over which the relay
is active, which is referred to as Out-of-Band Relay Channel(OBRC).
The OBRC is operated by separating a multiple access phase from
the sources to the relay and a broadcast phase from the relay to the
destinations. Conditions under which the optimal operation, in terms
of the sum-capacity, entails eithersignal relaying and/or interference
forwarding by the relay are identified. These conditions also assess
the optimality of either separable or non-separable transmission over
the IC and OBRC. Specifically, the optimality of signal relaying
and separable coding is established for scenarios where therelay-to-
destination channels set the performance bottleneck with respect to
the source-to-relay channels on the OBRC. Optimality of interference
forwarding and non-separable operation is also established in special
cases.

I. I NTRODUCTION

Consider two interfering links, say belonging a Wireless Local
Area Network, that operate over the same bandwidth, i.e., an
interference channel (IC). The corresponding transmitters and
receivers of the IC may be also endowed with a second, shorter-
range, radio interface, such as Bluetooth, that can be used for
communications with an external terminal over an orthogonal
bandwidth, as shown in Fig. 1. This terminal may act as a relayfor
both links, while operating out-of-band with respect to theIC (i.e.,
as an Out-of-Band Relay, or OBR). By this means, communication
takes place effectively over two parallel channels, the IC and
the channel where the relay is active, which is termed as OBR
channel (OBRC). We refer to the overall channel comprising IC
and OBRC as IC-OBR. This scenario was first considered in [1],
where it was assumed that the OBRC is operated via an orthogonal
medium access scheme (e.g., TDMA) that makes the links from
each transmitter to the relay, and from the relay to each receiver,
all orthogonal to one another. In this paper, we study the more
complex situation in which the relay is simply assumed to be
half-duplex, so that the OBRC is operated by allowing the relay
to either transmit or receive at a given time.

The considered model is related to, and inspired by, two recent
lines of work. The first deals withrelaying in interference-limited
systems, where, unlike in the IC-OBR, the relay is assumed to
operate in the same band as the IC [2]-[6][1]. These works
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Institute of NYU. The work of O. Simeone is supported by U.S. NSF grant CCF-
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Fig. 1. Interference Channel (IC) with an out-of-band relay(OBR).

reveal the fact that relaying in interference-limited systems offers
performance benefits not only due tosignal relaying, as for
standard relay channels, but also thanks to the novel idea of
interference forwarding. According to the latter, the relay may
help by reinforcing the interference received at the undesired
destination, so as to facilitate interference stripping, exploiting the
standard technique of rate splitting intoprivate and common mes-
sages (see, e.g., [11]): Private messages are decoded only at the
intended destination, while common messages are decoded also
at the interfered destination (and may benefit from interference
forwarding).

A second related line of work deals with communications over
parallel ICs (albeit the considered OBRC is not a conventional
IC). As shown in [7]-[10], optimal operation over parallel ICs,
unlike scenarios with a single source or destination, typically en-
tails joint, rather thanseparate, coding over the parallel channels.
In other words, the signals sent over the parallel ICs need tobe
generally correlated to achieve optimal performance. The question
arises as to what type of information, either private or common,
should be sent in a correlated fashion over the component ICs. For
instance, the original work [7] derives conditions under which cor-
related transmission of private messages is optimal, [8] considers
the optimality of common information transmission, whereas in
[10] scenarios are found for which sending both correlated private
and common messages is optimal.

In this paper, we study the IC-OBR model and derive condi-
tions under which a separable coding scheme with only signal
relaying is sum-rate optimal, and also conditions under which
a non-separable coding scheme with both signal relaying and
interference forwarding achieve optimal performance. Analytical
results are corroborated by numerical examples.

http://arxiv.org/abs/1005.2251v1
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II. SYSTEM MODEL

The Gaussian IC-OBR model, shown in Fig. 1, consists of two
parallel channels, namely the IC and the OBRC. On the IC, the
signal received by destinationDi at timet = 1, ..., n, is given by

Yi,t = Xi,t + ajiXj,t + Zi,t, (1)

wherei, j = 1, 2 andi 6= j, Zi,t are independent unit-power white
Gaussian noise sequences, andXi,t are the transmitted sequences
over the IC. Due to the half-duplex constraint, the OBRC is
orthogonalized into two channels, one being a multiple-access
channel (MAC) fromS1 andS2 toR, with fraction of channel uses
ηMAC (relay listening), and the other being a broadcast channel
(BC) from R to D1 andD2, with fraction of channel usesηBC

(relay transmitting). We haveηMAC + ηBC = η, whereη is the
ratio between the bandwidths (and thus the channel uses) of the
OBRC and of the IC. The received signal at the relayR over the
OBRC is given by the MAC relationship

YR,t = b1X1R,t + b2X2R,t + ZR,t (2)

for t = 1, ..., ηMACn
1; and the signal received at destinationDi

over the OBRC is given by the BC relationships

YRi,t = ciXR,t + ZRi,t, (3)

for t = 1, ..., ηBCn, andi = 1, 2. We have the power constraints
1
n

∑n
t=1 E[X2

i,t] ≤ Pi on the IC, and1
n

∑ηMACn
t=1 E[X2

iR,t] ≤ PiR,
1
n

∑ηBCn
t=1 E[X2

R,t] ≤ PR on the OBRC,i = 1, 2. Bandwidth
allocations (ηMAC , ηBC ) will be considered as fixed and given
throughout the paper, except in Sec. VI.

Encoding and decoding functions, probability of error and
achievable rates are defined in the usual way. In particular,en-
coding at the sourceSi produces two sequences2, one transmitted
on the IC,Xn

i , and one on the OBRC,Xn
iR. The relay decides

the transmitted codewordXηBCn
R based on the signal received

from the sources, namelyY ηMACn
R (2). Finally, the destination

Di decodes on the basis of the signals received over the IC,Y n
i

(1), and over the OBRC,Y ηBCn
Ri (3).

III. SCENARIO AND ACHIEVABLE STRATEGIES

The model at hand appears too complicated to hope for general
conclusions regarding the capacity region. In fact, the sources may
employ a number of rate splitting strategies, with independent
or correlated transmission of information over the two parallel
channels, IC and OBRC, and may deploy either structured or un-
structured codes. Moreover, the relay may implement a number of
relaying strategies, encompassing regenerative or non-regenerative
techniques. It is emphasized that, not only the optimal operation on
the IC alone is generally not known [11], but the same also holds
for the operation over the OBRC model alone3. Therefore, in this
paper, we focus on specific channel gain conditions and suitable
achievable strategies. We will show optimality of the considered
techniques in a number of special cases of interest.

In particular, we will consider a scenario in which interference
towards receiverD2 is weak, i.e.,a12 ≤ 1 and the channel from

1We will not denote explicitly the necessary integer rounding-off operation.
2Xn , (X1, ...,Xn).
3A special case of this model is the two-way relay channel, whose capacity is

still generally unknown. Note that the OBRC model is significantly more complex
than the four orthogonal links considered in [1].

the relay to destinationD2 is worse than towards destinationD1,
i.e.,c1 ≥ c2. Under these conditions, we consider the performance
of strategies whereby transmitterS1, interfering onD2 transmits:
(i) on the IC onlyprivate information, which is then treated as
noise byD2; (ii) on the OBRC independent information, thus
usingseparate encoding over IC and OBRC. This choice appears
to be reasonable in light of the channel conditions mentioned
above. In contrast, transmitterS2, whose interference may not
necessarily be weak, transmits: (i) on the IC with both private
and common messages; (ii) on the OBRC with thesame common
message plus an additional independent message. TransmitterS2

thus potentially employs a non-separable coding strategy where
the same (common) message is sent over both IC and OBRC.
Since this message is common, the operation of the OBR can be
classified asinterference forwarding [1][3]: The relay forwards
information about the interference on the IC fromS2 to D1.
Moreover, we assume that the OBR employs Decode-and-Foward
(DF). The main questions of interest are: Under what conditions
is the scheme described above optimal? And, when this is the
case, under what conditions is separable (rather than the general
non-separable) coding at transmitterS2 optimal?

IV. OUTER BOUNDS

In this section, we give a general outer bound on the capacity
region of IC-OBR.

Proposition 1 (Outer Bound for IC-OBR): For an IC-OBR
for a12 ≤ 1 and c1 ≥ c2, with given bandwidth allocation
(ηMAC , ηBC ), the capacity region is included in the following
region

lim
n→∞

closure

( ⋃

p(xn
1
,xn

2
)=p(xn

1
)p(xn

2
),0≤ξ+ξ≤1

{
(R1, R2):

Rj ≤
1

n
I(Xn

j ;Y
n
j ) + ηMACC

(
b21P1R + b22P2R

)
, (4a)

Rj ≤
1

n
I(Xn

j ;Y
n
j |Xn

i ) + ηMACC
(
b2jPjR

)
, j = 1, 2, i 6= j

(4b)

R1 ≤
1

n
I(Xn

1 ;Y
n
1 |Xn

2 ) + ηBCC(c
2
1ξPR) (4c)

R2 ≤
1

n
I(Xn

2 ;Y
n
2 ) + ηBCC

(
c22ξPR

1 + c22ξPR

)})
, (4d)

where the union is taken with respect to multi-letter in-
put distributionsp(xn

1 )p(x
n
2 ) that satisfy the power constraints

1/n
∑n

t=1 E[X2
i,t] ≤ Pi, i = 1, 2, and with respect to parameters

ξ, with 0 ≤ ξ ≤ 1 andξ = 1− ξ.

Proof: Appendix A.

V. CAPACITY RESULTS

In this section, we consider fixed OBRC bandwidth allocation
(ηMAC , ηBC ) and derive two sets of conditions for optimal
operation. Under the first, a special case of the strategy described
in Sec. III, in which separable coding only (at both transmitters)
is employed, is shown to be optimal, while the second set of
conditions provides (asymptotic) optimality of the general non-
separable technique.
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Fig. 2. Illustration of the first OBRC condition leading to the sum-capacity in
Proposition 2.
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Fig. 3. Illustration of the second OBRC condition leading tothe sum-capacity
in Proposition 2.

1) Optimality of Separable Encoding:

Proposition 2: In an IC-OBR with a12 ≤ 1, c1 ≥ c2 and
a21 ≥

√
1+P1

1+a2

12
P1

, the sum-capacity is given by

R1 +R2 ≤ C (P1) + C

(
P2

1 + a212P1

)
+ ηBCC

(
c21PR

)
(5)

if condition ηMACC(b
2
1P1R) ≥ ηBCC(c

2
1PR) holds; and by

R1 +R2 ≤ max
0≤ξ≤1

{
C (P1) + C

(
P2

1 + a212P1

)

+min
{
ηMACC

(
b21P1R

)
, ηBCC

(
c21ξPR

) }

+ ηBCC

(
c22ξPR

1 + c22ξPR

)}
, (6)

if conditions ηMACC(b
2
1P1R) < ηBCC(c

2
1PR) and

ηMACC
(

b2
2
P2R

1+b2
1
P1R

)
≥ ηBCC

(
c2
2
ξ
∗

PR

1+c2
2
ξ∗PR

)
hold, where ξ∗ is

the optimal power allocation that maximizes the sum-rate (6)
with ξ

∗
= 1 − ξ∗. The sum-capacity is achieved by separable

coding on IC and OBRC.
Proof: The converse follows from Proposition 1 and invoking

the worst-case noise result of [12] applied fora12 ≤ 1. For the
achievability, we follow the strategy described in Sec. IIIand we
refer to Appendix B for further details.�

Optimality in Proposition 2 is achieved by using a special case
of the strategy described in Sec. III in which transmitter 1 operates
as prescribed, and transmitter 2 sends only common information
on the IC and transmits independent information over the OBRC
(separable coding). Notice that transmission of only common

information over the IC is justified by the“strong interference”
conditiona21 ≥

√
(1 + P1)/(1 + a212P1). Also, notice that here

the relay performs only signal relaying [1]. To be more specific, we
have two subcases depending on the channel gains of the OBRC.

The first set of conditions (under which the sum-capacity is
(5)) is characterized byηMACC(b

2
1P1R) ≥ ηBCC(c

2
1PR) and

is illustrated in Fig. 2. It corresponds to the case where the
relay-to-destinations BC constitutes thebottleneck with respect
to the sources-to-relay MAC in theS1 −R−D1 communication
path. In this case, the optimal strategy in terms of sum-rateis
for user 1 only to transmit over the OBRC. Notice that this
operating point on the OBRC (see dot in the figure) is sum-rate
optimal if one focuses on the OBRC alone limiting the scope to
DF techniques, since the corresponding achievable rate region is
given by the intersection of the MAC and BC regions in Fig. 2.
Proposition 2 shows that such operating point is also optimal for
communications over the IC-OBR under the given conditions.

The second set of conditions (under which the sum-capacity
is (6)) is given by ηMACC(b

2
1P1R) < ηBCC(c

2
1PR) and

ηMACC
(

b2
2
P2R

1+b2
1
P1R

)
≥ ηBCC

(
c2
2
ξ
∗

PR

1+c2
2
ξ∗PR

)
, and is illustrated in

Fig. 3. Here, the sum-rate optimal operation of the OBRC entails
transmission over the OBRC (of independent information) byboth
sources, not just source 1 as above, at rates given by the operating
point indicated in the figure. This rate pair is characterized
by the power splitξ∗ in Proposition 2. Notice that the same
considerations given above regarding optimality of this point for
the OBRC alone with DF apply here.

2) Optimality of Non-Separable Encoding: In this section,
we discuss conditions under which strategies based on interfer-
ence forwarding, and thus non-separable encoding, are optimal.
In Proposition 2, the “strong interference” conditiona21 ≥√
(1 + P1)/(1 + a212P1) at D1 was instrumental in making inter-

ference forwarding fromS2 to D1 not necessary. Consider then
a more general situation in which this condition is not imposed.
We will see below that, in this case, interference forwarding (and
non-separable coding) is potentially useful. This is shownby first
providing an achievable region for a special case of the scheme
described in Sec. III, which involves interference forwarding, then
establishing its asymptotic optimality under given conditions (that
include the scenario discussed above), and finally discussing some
numerical results.

Proposition 3: In the IC-OBR, the following conditions

R1 ≤ C(P1) + ηMACC(b
2
1P1R) (7a)

R2 ≤ C

(
P2

1 + a212P1

)
+ ηBCC

(
c22ξPR

1 + c22ξPR

)
(7b)

R1 + R2 ≤ C(P1 + a221P2) + ηBCC(c
2
1ξPR)

+ ηBCC

(
c22ξPR

1 + c22ξPR

)
(7c)

R1 + R2 ≤ C(P1 + a221P2) + ηMACC(b
2
1P1R + b22P2R) (7d)

with ξ+ξ ≤ 1, define a rate region achievable with the scheme of
Sec. III. Moreover, fora12 ≤ 1, andb2, c1 → ∞, the sum-capacity
is achieved by this scheme and given by

R1 +R2 ≤ C(P1) + C

(
P2

1 + a212P1

)
+ ηMACC(b

2
1P1R)

+ηBCC(c
2
2PR). (8)
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Fig. 4. Achievable sum-rate and outer bound for an IC-OBR with respect to
R − D1 channel gain,c1 and S2 − D1 channel gaina21 ∈ {0.1, 0.9.1.8}
(a12 = 0.5, b1 = 1, b2 = 10, c2 = 1 and all node powers are equal to 10).

Proof: Appendix B.
The scheme achieving (7a)-(7d) is based onS2 transmitting

common information over the IC, as for Proposition 2, and
both the same common and an independent private message on
the OBRC (non-separable encoding). This scheme is shown in
Proposition 3 to be sum-rate optimal if a very good channel is
available betweenS2 andD1 through the relay, so as to essentially
drive D1 back in the “strong interference regime” thanks to
interference forwarding. It is noted that this condition isrelated
to the “large excess rate” assumption of Theorem 4 in [1] (which
applies to a TDMA-based operation on the OBRC).

To investigate the role of interference forwarding in a non-
asymptotic regime, Fig. 4 shows the sum-rate obtained from (7a)-
(7d), by assuming that source 2 either transmits only an indepen-
dent message on the OBRC (signal relaying, i.e.,R2c′ = 0 in the
achievable region given in Appendix B) or also employs inter-
ference forwarding, and the sum-rate upper bound obtained from
Proposition 1. The OBRC gains are set tob1 = 1, b2 = 10, c2 = 1
and c1 is varied, all node powers are equal to 10 andηMAC =
ηBC = 1. We also havea12 = 0.5 and a21 ∈ {0.1, 0.9.1.8}.
Note that for a21 = 1.8 ≥

√
(1 + P1)/(1 + a212P1) = 1.78

the conditions given in Proposition 2 are satisfied and signal
relaying alone is optimal. Fora21 ∈ {0.1, 0.9} ≤ 1.78, instead,
the advantages of interference forwarding become substantial
with increasingc1, which is due to the fact that theS2 − D1

pair acquires an increasingly better channel through the relay.
Specifically, the asymptotic optimality derived in Proposition 3
is here seen to be in practice attained for finite values ofb2, c1.

VI. SOME RESULTS FOROBRC VARIABLE BANDWIDTH

ALLOCATION

We now investigate the effect of being able to optimize the
bandwidth allocation (ηMAC , ηBC ) via numerical results. We
consider a scenario witha12 = 0.5, a21 = 1.8, c1 ≥ c2,
and all powers are set to10, which satisfies the conditions of
Prop. 2, except the ones that depend on the bandwidth allocation
(ηMAC , ηBC ), which is not specified a priori here. We compare
the performance of the achievable scheme of Prop. 2 (separable
transmission) with a sum-rate outer bound obtained from Prop. 1.
In both cases, the bandwidth allocation (ηMAC , ηBC) is optimized
to maximize the sum-rate. In Fig. 5 (upper part), the sum-rate
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Fig. 5. Achievable sum-rate (from Proposition 2, (5)) with signal relaying and
upper bound of Proposition 1 and optimal parameters (ηMAC , ηBC , ξ) for an
IC-OBR with respect toS1 − R channel gainb1 (b2 = 2, c1 = 2, c2 = 0.3,
η = 1, all node powers are equal to10, a21 = 1.8, a12 = 0.5).

discussed above are shown for variableS1 −R gain, b1, and the
other channel gains are set tob2 = 2, c1 = 2, c2 = 0.3 andη = 1.
We know from the first part of Prop. 2 that ifb1 is sufficiently
larger thanc1, for fixed bandwidth allocation, the rate (5) where
the relay helps theS1 − D1 pair only, is optimal. Observing
the corresponding optimal bandwidth and power allocationsfor
the achievable sum-rate as shown in Fig. 5, a similar conclusion
is drawn here forb1 ≥ 2 where the achievable sum-rate and
outer bound coincide. Moreover, the total bandwidth is balanced
between theS1 −R andR−D1 channels.

VII. C ONCLUDING REMARKS

Operation over parallel radio interfaces is bound to become
increasingly common in wireless networks due to the large num-
ber of multistandard terminals. This enables cooperation among
terminals across different bandwidths and possibly standards. In
this paper, we have studied one such scenario where two source-
destination pairs, interfering over a given bandwidth, cooperate
with a relay over an orthogonal spectral resource (out-of-band
relaying, OBR). We have derived analytical conditions under
which either signal relaying or interference forwarding are op-
timal. These conditions have also been related to the problem of
assessing optimality of either separable or non-separabletransmis-
sion over parallel interference channels.
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APPENDIX

A. PROOF OFPROPOSITION1

Bounds (4b) follow from cut-set arguments, while (4a) follows
as

nR1 ≤ H(W1) (9a)

≤ I(W1;Y
n
1 , Y ηBCn

R1 ) +H(W1|Y
n
1 , Y ηBCn

R1 ) (9b)

≤ I(W1;Y
n
1 , Y ηBCn

R1 ) + nǫn (9c)

≤ I(Xn
1 ;Y

n
1 ) + h(Y ηMACn

R )− h(ZηMACn
R ) + nǫn (9d)

≤ I(Xn
1 ;Y

n
1 ) + ηMACnC

(
b21P1R + b22P2R

)
+ nǫn (9e)

from Fano’s inequality, and from the Markov relationsW1 →
Y ηMACn
R , Y n

1 → Y ηBCn
R1 and W1 → Xn

1 → Y n
1 . Here ǫn → 0

as n → ∞. We now focus on the remaining two bound (4c)-
(4d), which follow from considerations similar to the Gaussian
BC. Proceeding as above, we have

nR2 ≤ I(Xn
2 ;Y

n
2 ) + h(Y ηBCn

R2 )

−h(c2X
ηBCn
R + ZηBCn

R2 |Y n
2 ,W2) + nǫn. (10)

Now, consider the following

h(ZηBCn
R2 ) ≤ h(c2X

ηBCn
R + ZηBCn

R2 |Y n
2 ,W2)

≤ h(c2X
ηBCn
R + ZηBCn

R2 ) ≤
ηBCn

2
log(2πe(1 + c22PR)),

so that, without loss of generality, one can define

h(Y ηBCn
R2 |Y n

2 ,W2) =
ηBCn

2
log(2πe(1 + c22ξPR)),

for some0 ≤ ξ ≤ 1. Then, (10) becomes

nR2 ≤ I(Xn
2 ;Y

n
2 ) + ηBCnC

(
c22ξPR

1 + c22ξPR

)
+ nǫn,

where we have used the maximum entropy theorem. Now, consider

nR1 ≤ I(W1;Y
n
1 , Y ηBCn

R1 |W2) + nǫn (11a)

≤ I(Xn
1 ;Y

n
1 |Xn

2 ) + I(W1;Y
ηBCn
R1 |Y n

1 ,W2) + nǫn(11b)

= I(Xn
1 ;Y

n
1 |Xn

2 ) + I(W1;
c2
c1

Y ηBCn
R1 |Y n

1 ,W2) + nǫn.

(11c)

Since the capacity region of BC depends on the conditional
marginal distributions and noting thatc1 ≥ c2, we can write
Y ηBCn
R2 = c2

c1
Y ηBCn
R1 + ẐηBCn

R where ẐηBCn
R is a Gaussian

noise with variance1− c2
2

c2
1

. From the conditional Entropy Power
Inequality, we now have

2
2

ηBCn
h(Y

ηBCn

R2
|Y n

1
,W2) ≥ 2

2

ηBCn
h
(

c2
c1

Y
ηBCn

R1
|Y n

1
,W2

)

(12)

+2
2

ηBCn
h(ẐηBCn

R
|Y n

1
,W2).

Also, given thata12 ≤ 1, we have,

h(Y ηBCn
R2 |Y n

1 ,W2) = h(Y ηBCn
R2 |Xn

1 + Zn
1 ,W2) (13a)

= h(Y ηBCn
R2 |Xn

1 + Zn
2 ,W2) (13b)

≤ h(Y ηBCn
R2 |a12X

n
1 + Zn

2 ,W2) (13c)

= h(Y ηBCn
R2 |Y n

2 ,W2) (13d)

=
ηBCn

2
log(2πe(1 + c22ξPR)) (13e)

due to the Markov chaina12Xn
1 +Zn

2 → Xn
1 +Zn

2 ,W2 → Y ηBCn
R2 .

The proof is concluded with standard steps.

B. PROOF OFPROPOSITION2 AND 3

The achievable region of Prop. 3 is obtained following
Sec. III. S1 transmits a private messageW1p over the IC,
Xn

1 (W1) = Xn
1p(W1p), and an independent private messageW1R

over the OBRC via standard ”Gaussian codebooks”.S2 trans-
mits common messages(W2c′ ,W2c′′) over the IC (Xn

2 (W2) =
Xn

2c(W2c′ ,W2c′′)), and an independent private messageW2R,
along withW2c′ (interference forwarding), on the OBRC. Then,
the following conditions are easily seen to provide an achievable
region

R1p ≤ C(P1) (14a)

R2c′′ +R1p ≤ C(P1 + a221P2) (14b)

R2c ≤ C

(
P2

1 + a212P1

)
(14c)

R1R ≤ ηMACC(b
2
1P1R) (14d)

R2c′ +R2R ≤ ηMACC(b
2
2P2R) (14e)

R1R +R2c′ +R2R ≤ ηMACC(b
2
1P1R + b22P2R) (14f)

R2c′ +R1R ≤ ηBCC(c
2
1ξPR) (14g)

R2R ≤ ηBCC

(
c22ξPR

1 + c22ξPR

)
(14h)

Using Fourier-Motzkin elimination method, with the fact that
R1 = R1p + R1R, R2c = R2c′ + R2c′′ , andR2 = R2c + R2R,
the achievable region in Proposition 3 can be obtained. Now,for
b2, c1 → ∞, the achievable region becomes

R1 ≤ C(P1) + ηMACC(b
2
1P1R) (15)

R2 ≤ C

(
P2

1 + a212P1

)
+ ηBCC

(
c22PR

)
(16)

since the overall region is maximized forξ = 0 for b2, c1 → ∞.
The converse of Prop. 3 is again obtained from Prop. 1, similar
to Prop. 2.
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