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Abstract—This paper concerns the construction of tests for
universal hypothesis testing problems, in which the alternate
hypothesis is poorly modeled and the observation space is large.
The mismatched universal test is a feature-based techniquefor
this purpose. In prior work it is shown that its finite-observation
performance can be much better than the (optimal) Hoeffding
test, and good performance depends crucially on the choice of
features. The contributions of this paper include:
(i) We obtain bounds on the number of ε-distinguishable

distributions in an exponential family.
(ii) This motivates a new framework for feature extraction,

cast as a rank-constrained optimization problem.
(iii) We obtain a gradient-based algorithm to solve the rank-

constrained optimization problem and prove its local con-
vergence.

Keywords: Universal test, mismatched universal test, hypothesis
testing, feature extraction, exponential family

I. I NTRODUCTION

A. Universal Hypothesis Testing

In universal hypothesis testing, the problem is to design
a test to decide in favor of either of two hypothesisH0
andH1, under the assumption that we know the probability
distribution π0 underH0, but have uncertainties about the
probability distributionπ1 underH1. One of the applications
that motivates this paper is detecting abnormal behaviors
[1]: In the applications envisioned, the amount of data from
abnormal behavior is limited, while there is a relatively large
amount of data for normal behavior.

To be more specific, we consider the hypothesis test-
ing problem in which a sequence of observationsZn

1 :=
(Z1, . . . , Zn) from a finite observation spaceZ is given, where
n is the number of samples. The sequenceZn

1 is assumed to be
i.i.d. with marginal distributionπi ∈ P(Z) under hypothesis
Hi (i = 0, 1), whereP(Z) is the probability simplex onZ.

Hoeffding [2] introduced a universal test, defined using the
empirical distributions and the Kullback-Leibler divergence.
The empirical distributions{Γn : n ≥ 1} are defined as
elements ofP(Z) via,

Γn(A) =
1

n

n
∑

k=1

I{Zk ∈ A}, A ⊂ Z.

The Kullback-Leibler divergence for two probability distribu-
tionsµ1, µ0 ∈ P(Z) is defined as,

D(µ1‖µ0) = 〈µ1, log(µ1/µ0)〉.

where the notation〈µ, f〉 denotes expectation off under the
distributionµ, i.e., 〈µ, f〉 =

∑

z µ(z)f(z). The Hoeffding test
is the binary sequence,

φHn = I{D(Γn‖π0) ≥ η},

whereη is a nonnegative constant. The test decides in favor
of H1 whenφH = 1.

It was demonstrated in [3] that the performance of the
Hoeffding test is characterized by both its error exponent
and the variance of the test statistics. We summarize this in
Theorem 1.1. The error exponent is defined for a test sequence
φ := {φ1, φ2, . . . } adapted toZn

1 as

J0
φ := lim inf

n→∞
−
1

n
log(π0{φn = 1}),

J1
φ := lim inf

n→∞
−
1

n
log(π1{φn = 0}).

Theorem 1.1: 1) The Hoeffding test achieves the optimal
error exponentJ1

φ among all tests satisfying a given
constant boundη ≥ 0 on the exponentJ0

φ, i.e., J0
φH ≥ η

and
J1
φH = sup{J1

φ : subject to J0
φ ≥ η},

2) The asymptotic variance of the Hoeffding test depends on
the size of the observation space. WhenZn

1 has marginal
π0, we have

lim
n→∞

Var [nD(Γn‖π0)] = 1
2 (|Z| − 1).

Theorem 1.1 is a summary of results from [2], [3]. The
second result can be derived from [4], [5], [6]. It has been
demonstrated in [3] that the variance implies a drawback of
the Hoeffding test, hidden in the analysis of the error exponent:
Although asymptotically optimal, this test is not effective when
the size of the observation space is large compared to the
number of observations.

B. Mismatched Universal Test

It was demonstrated in [3] that the potentially large variance
in the Hoeffding test can be addressed by using a generaliza-
tion of the Hoeffding test called themismatched universal test,
which is based on the relaxation of KL divergence introduced
in [7]. The name of the mismatched divergence comes from
literature on mismatched decoding [8]. The mismatched uni-
versal test enjoys several advantages:

1) It has smaller variance.
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2) It can be designed to be robust to errors in the knowledge
of π0.

3) It allows us to incorporate into the test partial knowledge
aboutπ1 (see Lemma 2.1), as well as other considerations
such as the heterogeneous cost of incorrect decisions.

The mismatched universal test is based on the following
variational representation of KL divergence,

D(µ‖π) = sup
f

(

〈µ, f〉 − log(〈π, ef 〉)
)

(1)

where the optimization is taken over all functionsf : Z → R.
The supremum is achieved by the log-likelihood ratio.

The mismatched divergence is defined by restricting the
supremum in (1) to a function classF :

DMM
F (µ‖π) := sup

f∈F

(

〈µ, f〉 − log(〈π, ef 〉)
)

. (2)

The associated mismatched universal test is defined as

φMM

n = I{DMM(Γn‖π0) ≥ η}.

In this paper we restrict to the special case of alinear
function class:F =

{

fr :=
∑d

i riψi

}

where{ψi} is a set of
basis functions, andr ranges overRd. We assume throughout
the paper that{ψi} is minimal, i.e., {1, ψ1, . . . , ψd} are
linearly independent. The basis functions can be interpreted
as features for the universal test. In this case, the definition
(2) reduces to the convex program,

DMM(µ‖π) = sup
r∈Rd

(

〈µ, fr〉 − log(〈π, efr 〉).

The asymptotic variance of the mismatched universal test is
proportional to the dimension of the function classd instead
of |Z| − 1 as seen in the Hoeffding test:

lim
n→∞

Var [nDMM(Γn‖π0)] = 1
2d,

whenZn
1 has marginalπ0 [3]. In this way we can expect sub-

stantial variance reduction by choosing a smalld. The function
class also determines how well the mismatched divergence
DMM(π1‖π0) approximates the KL divergenceD(π1‖π0) for
possible alternate distributionsπ1and thus the error exponent
of the mismatched universal test [9]. In sum, the choice of the
basis functions{ψi} is critical for successful implementation
of the mismatched universal test. The goal of this paper is to
construct algorithms to construct a suitable basis.

C. Contributions of this paper

In this paper we propose a framework to design the function
classF , which allows us to make the tradeoff between the er-
ror exponent and variance. One of the motivations comes from
results presented in Section II on the maximum number ofε-
distinguishable distributions in an exponential family, which
suggests that it is possible to use approximatelyd = log(p)
basis functions to design a test that is effective againstp
different distributions. In Section III we cast the featureex-
traction problem as a rank constrained optimization problem,
and propose a gradient-based algorithm with provable local
convergence property to solve it.

The construction of a basis studied in this paper is a par-
ticular case of the feature extraction problems that have been
studied in many other contexts. In particular, the framework in
this paper is connected to the exponential family PCA setting
of [10]. The most significant difference between this work
and the exponential PCA is that our framework finds features
that capture thedifference between distributions, and the latter
finds features that arecommon to the distributions considered.

The mismatched divergence using empirical distributions
can be interpreted as an estimator of KL divergence. To im-
prove upon the Hoeffding test, we may apply other estimators,
such as those using data dependent features [11], [12], or those
motivated by source-coding techniques [13] and others [14].
Our approach is different from them in that we exploit the
limited possibilities of alternate distributions.

II. D ISTINGUISHABLE DISTRIBUTIONS

The quality of the approximation of KL divergence using
the mismatched divergence depends on the dimension of the
function class. The goal of this section is to quantify this
statement.

A. Mismatched Divergence and Exponential Family

We first describe a simple result suggesting how a basis
might be chosen given a finite set of alternate distributions, so
that the mismatched divergence is equal to the KL divergence
for those distributions:

Lemma 2.1: For any p possible alternate distributions
{π1, π2, . . . , πp}, absolutely continuous with respect toπ0,
there existd = p basis functions{ψ1, . . . , ψd} such that
DMM(πi‖π0) = D(πi‖π0) for eachi. These functions can be
chosen to be the log-likelihood ratios{ψi = log(πi/π0)}. ⊓⊔

It is overly pessimistic to say that givenp distributions we
required = p basis functions. In fact, Lemma 2.2 demonstrates
that if all p distributions are in the samed-dimensional
exponential family, then d basis functions suffices. We first
recall the definition of an exponential family: For a function
classF and a distributionν, the exponential familyE(ν,F)
is defined as:

E(ν,F) = {µ : µ(z) =
ν(z)ef(z)

〈ν, ef〉
, f ∈ F}.

We will restrict to the case of linear function class, and we
say that the exponential family isd-dimensional if this is the
dimension of the function classF . The following lemma is a
reinterpretation of Lemma 2.1 for the exponential family:

Lemma 2.2: Consider anyp + 1 mutually absolutely con-
tinuous distributions{πi : 0 ≤ i ≤ p}. ThenDMM

F (πi‖πj) =
D(πi‖πj) for all i 6= j if and only if πi ∈ E(π0,F) for all i.

B. Distinguishable Distributions

Except in trivial cases, there are obviously infinitely many
distributions in an exponential family. In order to characterize
the difference between different exponential families of dif-
ferent dimension, we consider a subset of distributions which
we call ε-distinguishable distributions.



The motivation comes from the fact that KL divergences
between two distributions are infinite if neither is absolutely
continuous with respect to the other, in which case we say
they aredistinguishable. When the distributions are distin-
guishable, we can design a test that achieves infinite error
exponent. For example, consider two distributionsπ0, π1 on
Z = {z1, z2, z3}: π0(z1) = π0(z2) = 0.5; π1(z2) = π1(z3) =
0.5. It is easy to see that the two error exponents of the test
φn(Z

n
1 ) = I{Γn(z3) > 0.2} are both infinite. It is then natural

to ask: Givenp distributions that are pairwise distinguishable,
how many basis functions do we need to design a test that is
effective for them?

Distributions in an exponential family must have the same
support. We thus consider distributions that are approximately
distinguishable, which leads to the definitions listed below:
Consider the set-valued functionF ǫ parametrized byǫ > 0,

F ǫ(x) := {z : x(z) ≥ max
z

(x(z))− ǫ}

• Two distributionsπ1, π2 areǫ-distinguishable if F (π1)\
F (π2) 6= ∅ andF (π2) \ F (π1) 6= ∅.

• A distributionπ is calledǫ-extremal if π(F ǫ(π)) ≥ 1−ǫ,
and a set of distributionsA is calledǫ-extremal if every
π ∈ A is ǫ-extremal.

• For an exponential familyE , the integerN(E) is defined
as the maximumN such that there exists anǫ0 > 0 such
that for any0 < ε < ǫ0, there exists anε-extremalA ⊆ E
such that|A| ≥ N and any two distributions inA are
ε-distinguishable.

One interpretation of the final definition is that the test using
a function classF is effective againstN(E) distributions, in
the sense that the error exponents for the mismatched universal
test are the same as for the Hoeffding test, whereE = E(ν,F):

Lemma 2.3: Consider a function classF and its associated
exponential familyE = E(ν,F), whereν has full support,
and defineN = N(E(ν,F)). Then, there exists a sequence
{A(1), A(2), . . . , A(m) : m ≥ 1}, such that for eachk the set
A(k) ⊂ E consists ofN distributions,

DMM
F (π‖π′) = D(π, π′) for any π, π′ ∈ A(k)

and
lim
k→∞

min
π,π′∈A(k)

π 6=π′

DMM
F (π‖π′) = ∞.

⊓⊔
Let P(d) denote the collection of alld-dimensional expo-

nential families. DefineN̄(d) = maxE∈P(d)N(E). In the next
result we give lower and upper bounds onN̄(d), which imply
that N̄(d) depends exponentially ond:

Proposition 2.4: The maximumN̄(d) = maxE N(E) ad-
mits the following lower and upper bounds:

N̄(d) ≥ exp
(

⌊
d

2
⌋[log(|Z|)− log⌊

d

2
⌋ − 1]

)

(3)

N̄(d) ≤ exp
(

(d+ 1)(1 + log(|Z|)− log(d+ 1))
)

(4)

It is important to point out that̄N(d) is exponential ind.
This answers the question asked at the beginning of this sec-
tion: There existp approximately distinguishable distributions
for which we can design an effective mismatched test using
approximatelylog(p) basis functions.

III. F EATURE EXTRACTION VIA

RANK -CONSTRAINED OPTIMIZATION

Suppose that it is known that the alternate distributions can
take onp possible values, denoted byπ1, π2, . . . , πp. Our goal
is to choose the function classF of dimensiond so that the
mismatched divergence approximates the KL divergence for
these alternate distributions, while at the same time keeping the
variance small in the associated universal test. The choiceof
d gives the tradeoff between the quality of the approximation
and the variance in the mismatched universal test. We assume
that 0 < D(πi‖π0) <∞ for all i.1

We propose to use the solution to the following problem as
the function class:

max
F

{
1

p

p
∑

i=1

γiDMM
F (πi‖π0) : dim(F) ≤ d} (5)

wheredimF is the dimension of the function classF . The
weights {γi} can be chosen to reflect the importance of
different alternate distributions. This can be rewritten as the
following rank-constrained optimization problem:

max 1
p

∑p
i=1 γ

i
(

〈πi, Xi〉 − log(〈π0, eXi〉
)

subject to rank (X) ≤ d
(6)

where the optimization variableX is ap×|Z| matrix, andXi

is the ith row ofX , interpreted as a function onZ. Given an
optimizerX∗, we choose{ψi} to be the set of right singular
vectors ofX∗ corresponding to nonzero singular values.

A. Algorithm

The optimization problem in (6) is not a convex problem
since it has a rank constraint. It is generally very difficult
to design an algorithm that is guaranteed to find a global
maximum. The algorithm proposed in this paper is a gener-
alization of the Singular Value Projection (SVP) algorithmof
[15] designed to solve a low-rank matrix completion problem.
It is globally convergent under certain conditions valid for
matrix completion problems. However, in this prior work the
objective function is quadratic; we are not aware of any prior
work generalizing these algorithms to the case of a general
convex objective function.

Let h(X) denote the objective function of (6). LetS denote
the set of matrices satisfyingrank (X) ≤ d. Let PS denote
the projection ontoS:

PS(Y ) = argmin{‖Y −X‖ : rank (X) ≤ d}.

1In practice the possible alternate distributions will likely take on a
continuum of possible values. It is our wishful thinking that we can choose
a finite approximation withp distributions, and choosed much smaller than
p, and the resulting mismatched universal test will be effective against all
alternate distributions. Validation of this optimism willbe left to future work.



where we use‖·‖ to denote the Frobenius norm. The algorithm
proposed here is defined as the following iterative gradient
projection:

1) Y k+1 = Xk + αk∇h(Xk).
2) Xk+1 = PS(Y

k+1).
The projection step is solved by keeping only thed largest
singular values ofY k+1. The iteration is initialized with some
arbitraryX0 and is stopped when the‖Xk+1 −Xk‖ ≤ ǫ for
some smallǫ > 0.

B. Convergence Result

We can establish local convergence:
Proposition 3.1: SupposeX̄ satisfiesrank (X̄) = d and is a

local maximum, i.e. there existsδ > 0 such that for any matrix
X ∈ S satisfying‖X − X̄‖ ≤ δ, we haveh(X̄) > h(X).
Chooseαk = α for all k where0 < α < 2/( 1p maxi γ

i). Then
there exists aδ′ > 0 such that ifX0 satisfies‖X0 − X̄‖ ≤ δ′

andrank (X0) ≤ d, thenXk → X̄ ask → ∞. Moreover, the
convergence is geometric. ⊓⊔

Let H denote the hyperplaneH = {X̄W1 +W2X̄ : W1 ∈
R

n×n,W2 ∈ R
p×p}. The main idea of the proof is that near

X̄ the setS can be approximated by this hyperplaneH, as
demonstrated in Lemma 3.2.

Lemma 3.2: There existδ > 0 andM > 0 such that: 1) for
anyX ∈ S satisfying‖X− X̄‖ ≤ δ, there existsZ ∈ H such
that ‖Z −X‖ ≤ M‖X − X̄‖2; 2) for anyZ ∈ H satisfying
‖Z − X̄‖ ≤ δ, there existsX ∈ S satisfying‖X − Z‖ ≤
M‖Z − X̄‖2.

Let Zk = PH(Y k), i.e., the projection ofY k onto H. We
obtain from Lemma 3.2 thatZk is close toXk as follows:

Lemma 3.3: Consider anyX̄ satisfying rank (X̄) = d.
There existδ > 0 andM > 0 such that if‖Zk − X̄‖ ≤ δ,
then‖Zk −Xk‖ ≤M‖Y k − X̄‖

3
2 .

Lemma 3.4: Gradients ofh(X) are Lipschitz with constant
L = 1

p maxi γ
i, i.e. ‖∇h(X1)−∇h(X2)‖ ≤ L‖X1 −X2‖.

Lemma 3.5: SupposeX̄ is a local maximum inS and
rank (X̄) = d. ThenX̄ is also a local maximum inH.

Outline of Proof of Proposition 3.1: Using standard
results form optimization theory, we can prove that for any
small enoughδ > 0, if ‖Xk − X̄‖ ≤ δ and α < 2

L , then
‖Zk+1 − X̄‖ ≤ q‖Xk − X̄‖ for someq < 1 whereq could
depend onδ, and‖Y k+1 − X̄‖ ≤ ‖Xk − X̄‖. Thus, we can
choose aδ small enough so thatMδ

1
2 ≤ 1−q

2 . With this choice,
we have

‖Xk+1 − X̄‖ ≤ ‖Zk+1 − X̄‖+ ‖Zk+1 −Xk+1‖

≤ ‖Zk+1 − X̄‖+Mδ
1
2 ‖Y k+1 − X̄‖

≤ (q + 1
2 (1− q))‖Xk − X̄‖.

Proposition 3.1 then follows from induction.

IV. SIMULATIONS

We consider probability distributions in an exponen-
tial family of the form πi(z) = exp{

∑q
k=1 θi,kψi(z) +

∑q′

i=k θ
′
i,kψ

′
i(z)}. We first randomly generate{ψi} and{ψ′

i}
to fix the model. A distribution is obtained by randomly
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Fig. 1: Dashed curve: average ofDMM (µi‖π0)/D(µi‖π0). Solid curve:
average ofDMM (πi‖π0)/D(πi‖π0)

generating{θi,k} and{θ′i,k} according to uniform distributions
on [−1, 1] and [−0.1, 0.1], respectively. In application of the
algorithm presented in Section III-A, the bases{ψi} and{ψ′

i}
are not given. This model can be interpreted as a perturbation
to q-dimensional exponential family with basis{ψi}.

In the experiment we have two phases: In the feature extrac-
tion (training) phase, we randomly generatep+1 distributions,
taken asπ0, . . . , πp. We then use our techniques in (5) with the
proposed algorithm to find the function classF . The weights
γi are chosen asγi = 1/D(πi‖π0) so that the objective value
is no larger than1. In the testing phase, we randomly generate
t distributions, denoted byµ1, . . . , µt. We then compute the
average ofDMM(µi‖π0)/D(µi‖π0).

For the experimental results shown in Figure 1, the param-
eters are chosen asq = 8, q′ = 5, andt = 500. Shown in the
figure is an average ofDMM(πi‖π0)/D(πi‖π0) (for training)
as well asDMM(µi‖π0)/D(µi‖π0) (for testing) for two cases:
p = 50 andp = 500. We observe the following:

1) The objective value increases gracefully asd increases.
For d ≥ 7, the values are close to 1.

2) The curve for training and testing are closer whenp is
larger, which is expected.

V. CONCLUSIONS

The main contribution of this paper is a framework to
address the feature extraction problem for universal hypothesis
testing, cast as a rank-constrained optimization problem.This
is motivated by results on the number of easily distinguishable
distributions, which demonstrates that it is possible to use a
small number of features to design effective universal tests
for a large number of possible distributions. We propose a
gradient-based algorithm to solve the rank-constrained opti-
mization problem, and the algorithm is proved to converge
locally. Directions considered in current research include:
applying the nuclear-norm heuristic [16] to solve the optimiza-
tion problem (5), applying this framework to real-world data,
and extension of this framework to incorporate other form of
partial information.

APPENDIX

A. Proof of the lower bound in Proposition 2.4

We give a constructive proof of the lower bound (3) by
combining ideas in Lemma A.1 and A.2.

Lemma A.1: N̄(2) ≥ |Z|.



Proof: We pick the following two basis functionsψ1, ψ2:

ψ1 = [|Z| − 1, |Z| − 2, . . . , 0],

andψ2 = [1, 1.5,

2
∑

j=0

2−j , . . . ,

|Z|−1
∑

j=0

2−j ].
(7)

For 1 ≤ k ≤ |Z|, define uk as uk = ψ1 + 2k−0.5ψ2.
Assuming without loss of generality thatZ = {1, . . . , |Z|},
we haveargmaxz u

k(z) = k .
Now, for anyβ > 0, 1 ≤ k ≤ |Z|, define the distribution

πk,β(z) = C exp{βuk(z)}.

whereC is a normalizing constant. Since there are only finite
choices ofk, for any small enoughǫ, there existsβ0 such that
for β ≥ β0, {πk,β , 1 ≤ k ≤ |Z|} are ǫ-extremal and any two
distributions in{πk,β , 1 ≤ k ≤ |Z|} are ǫ-distinguishable.

Lemma A.2: N̄(d) ≥
(

d
⌊d/2⌋

)

Proof: Takeψk(z) = I{z = k} for 1 ≤ k ≤ d.
Outline of proof of the lower bound: The basis functions

used in the construction are the Kronecker products of basis
functions used for Lemma A.2 and Lemma A.1.

Let J = ⌊|Z|/⌊ 1
2d⌋⌋. Let ψ̄1, ψ̄2 denote the basis function

defined in (7) with|Z| replaced byJ . The basis functions used
for the lower bound are given by

ψk(i + jJ) = I{j = k − 1}ψ̄1(i), for 1 ≤ k ≤ ⌊ 1
2d⌋,

ψk+⌊d/2⌋(i + jJ) = I{j = k − 1}ψ̄2(i), for 1 ≤ k ≤ ⌊ 1
2d⌋.

B. Proof of the upper bound in Proposition 2.4

The main idea of the proof of (4) is to relate this bound to
VC dimension. We first obtain an elementary upper bound.

Lemma A.3: N(E) ≤ N̂(E), where

N̂(E) = |{F ǫ(
∑

l

rlψl) : r ∈ R
d, ǫ > 0}|.

Proof: By definition if a subsetA of E is ǫ-extremal, and
any two distributions inA are ǫ-distinguishable, then for any
two distributionsπi, πj ∈ A, there existsǫ1, ǫ2 > 0 such that
F ǫ1(log(π1)) 6= F ǫ2(log(π2)).

Let H denote the set of all the half space inRd, and let
VC (H) denote the VC dimension ofH. It is known that
VC (H) = d+ 1 [17, Corollary of Theorem 1].

For any finite subsetB of Rd, defineτ(B) = |{h∩B : h ∈
H}|. In other words,τ(B) is the number of subsets one can
obtain by intersectingB with half-spaces fromH. A bound
on τ(B) is given by Sauer’s lemma:

Lemma A.4 (Sauer’s Lemma): The following bound holds
whenever|B| ≥ VC (H):

τ(B) ≤ (
e|B|

VC (H)
)VC (H).

Consider anyd-dimensional exponential familyE with basis
{ψl, 1 ≤ l ≤ d}. Define a set of function{yi} ⊂ R

d via,

yij = ψj(i), 1 ≤ i ≤ |Z|, 1 ≤ j ≤ d.

In other words, if we stack{ψl} into a matrix so that each
ψl is a row, then{yi} are the columns of this matrix. Let

B(E) = {yi, 1 ≤ i ≤ |Z|}. The following lemma connects
τ(B(E)) to N̂(E).

Lemma A.5: N̂(E) ≤ τ(B(E)).
Proof: For given r ∈ R

d and ǫ > 0, denote I =
F ǫ(

∑

l rlψl). By the definition ofF ǫ we haveI = {i :
rTyi ≥ supz(

∑

l rlψl(z))− ǫ}. Therefore, there existsb such
that rTyi ≥ b for all i ∈ I, andrTyi < b for all i /∈ I. That is,
I is the subset of{yi} that lies in the half space{y : rTy ≥ b}.
Thus,{yi : i ∈ I} ∈ {h ∩ B(E) : h ∈ H}. Since this holds
for any element in{F ǫ(

∑

l rlψl) : r ∈ R
d, ǫ > 0}, we obtain

the result.
Proof of the upper bound: We obtain (4) on combining

Lemma A.3, Lemma A.4 and Lemma A.5, together with the
identity VC (H) = d+ 1.
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