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Abstract—This paper concerns the construction of tests for where the notatiorfy, f) denotes expectation gf under the
universal hypothesis testing problems, in which the alterate distributiony, i.e., {(u, £y =, u(2) f(2). The Hoeffding test
hypothesis is poorly modeled and the observation space isr¢ge. is the binary sequence
The mismatched universal test is a feature-based techniquier ’
this purpose. In prior work it is shown that its finite-observation H _ n|0
performance can be much better than the (optimal) Hoeffding O ={DI"|77) 2 n},

test, and good performance depends crucially on the choicef o where is a nonnegative constant. The test decides in favor
features. The contributions of this paper include: of H1 whengH = 1

(i) We obtain bounds on the number of e-distinguishable It was demonstrated in[3] that the performance of the
distributions in an exponential family.

(i) This motivates a new framework for feature extraction, Hoeffding tgst is characterized _by_ both its error proner!t
cast as a rank-constrained optimization problem. and the variance of the test statistics. We summarize this in
(iii) We obtain a gradient-based algorithm to solve the rank Theoreni_ I1l. The error exponent is defined for a test sequence

constrained optimization problem and prove its local con- ¢ .= {¢1,d2,...} adapted taZ} as
vergence. .
_ _ _ _ J9 :=liminf — = log(n°{¢, = 1}),
Keywords: Universal test, mismatched universal test, hypitesis n—oo N
i i i i 1
testing, feature extraction, exponential family J¢1> — liminf —— log(w1{¢n — o).
n—r oo n

. INTRODUCTION . . .
Theorem 1.1: 1) The Hoeffding test achieves the optimal

A. Universal Hypothes's Testing error exponent/} among all tests satisfying a given
In universal hypothesis testing, the problem is to design constant boundy > 0 on the exponenﬂg, i.e., JgH >n

a test to decide in favor of either of two hypothedi) and

and H1, under the assumption that we know the probability Jjn =sup{J} : Subject to JJ > n},

distribution 7° under H0, but have uncertainties about the
probability distributions® underH1. One of the applications
that motivates this paper is detecting abnormal behaviors
[1]: In the applications envisioned, the amount of data from
abnormal behavior is limited, while there is a relativelygia lim Var [nD(I"|7%)] = 1(]z| - 1).
amount of data for normal behavior. n—eo
To be more specific, we consider the hypothesis testheorem[ 11l is a summary of results from [2]] [3]. The
ing problem in which a sequence of observatiafis := second result can be derived from [4]] [S]] [6]. It has been
(Zy,...,Zy,) from a finite observation spaeis given, where demonstrated in_[3] that the variance implies a drawback of
n is the number of samples. The sequefeis assumed to be the Hoeffding test, hidden in the analysis of the error exgmin
i.i.d. with marginal distributiont® € P(Z) under hypothesis Although asymptotically optimal, this test is not effeetiwhen
Hi (i = 0,1), whereP(Z) is the probability simplex orZ. the size of the observation space is large compared to the
Hoeffding [2] introduced a universal test, defined using theumber of observations.
empirical distributions and the Kullback-Leibler diverge.
The empirical distributions{I'™ : n > 1} are defined as

2) The asymptotic variance of the Hoeffding test depends on
the size of the observation space. WHg&h has marginal
7%, we have

B. Mismatched Universal Test

elements ofP(Z) via, It was demonstrated i3] that the potentially large vazin
n in the Hoeffding test can be addressed by using a generaliza-
I (A) = l Z]I{Zk € A}, AcZ tior_1 of _the Hoeffding test callepl thaismatched univers_al test,
ni— which is based on the relaxation of KL divergence introduced

in [[7]. The name of the mismatched divergence comes from
literature on mismatched decodirid [8]. The mismatched uni-
versal test enjoys several advantages:

D@t |p®) = (u*,log(p' /). 1) It has smaller variance.

The Kullback-Leibler divergence for two probability diftn-
tions u!, u® € P(Z) is defined as,
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2) It can be designed to be robust to errors in the knowledgeThe construction of a basis studied in this paper is a par-
of 70, ticular case of the feature extraction problems that haes be

3) It allows us to incorporate into the test partial knowledgstudied in many other contexts. In particular, the framdwvior
aboutr! (see Lemmf2]1), as well as other consideratiotisis paper is connected to the exponential family PCA sgttin
such as the heterogeneous cost of incorrect decisionsof [L0]. The most significant difference between this work

The mismatched universal test is based on the followirgd the exponential PCA is that our framework finds features

variational representation of KL divergence, that capture thelifference between distributions, and the latter
f finds features that ammmon to the distributions considered.
D(pl|m) :SI;P(<H7JC> —log((m,e’))) (1) The mismatched divergence using empirical distributions

S ] can be interpreted as an estimator of KL divergence. To im-
where the optimization is taken over aII.fur!ctloﬁsZ - R. prove upon the Hoeffding test, we may apply other estimators
The supremum is achieved by the log-likelihood ratio.  g,ch as those using data dependent feattres [11], [12]ose th

The mismatched divergence is defined by restricting thgqtivated by source-coding techniqués][13] and otHers. [14]
supremum in[{1) to a function class: Our approach is different from them in that we exploit the
DY () = iug(w’ ) = log((m,ef))). (2) limited possibilities of alternate distributions.
Je

. . . . . II. DISTINGUISHABLE DISTRIBUTIONS
The associated mismatched universal test is defined as

The quality of the approximation of KL divergence using
oMM = 1I{ D™ (T ||z%) > n}. the mismatched divergence depends on the dimension of the
function class. The goal of this section is to quantify this

In this paper we restrict to the special case ofirsar
statement.

function class:F = { f, := Zf ri; } where{t;} is a set of
basis functions, and- ranges oveR?. We assume throughouta. Mismatched Divergence and Exponential Family
the paper that{v;} is minimal, i.e., {1,v1,...,¢4} are

linearly independent. The basis functions can be inteeﬂretmi
as features for the universal test. In this case, the deﬁnitiorﬂ1
(2) reduces to the convex program,

We first describe a simple result suggesting how a basis
ght be chosen given a finite set of alternate distributisns

at the mismatched divergence is equal to the KL divergence
for those distributions:

D™ (ul|m) = sup ({1, fr) — log({m, e/™)). Lemma 2.1: For any p possible alternate distributions
reRd {ml, w2, ..., 7P}, absolutely continuous with respect td,
The asymptotic variance of the mismatched universal testtiere existd = p basis functions{v1,...,¢q} such that
proportional to the dimension of the function clasinstead D™ (7*||7°) = D(n"||z°) for eachi. These functions can be
of |Z| — 1 as seen in the Hoeffding test: chosen to be the log-likelihood ratids); = log(w?/7%)}. O
lim Var [nD"™(I'"||°)] = %d, It is overly pessimistic to say that givgn distributions we

required = p basis functions. In fact, Lemma2.2 demonstrates
whenZ} has marginak® [3]. In this way we can expect sub-that if all p distributions are in the samé-dimensional
stantial variance reduction by choosing a smallhe function exponential family, then d basis functions suffices. We first
class also determines how well the mismatched divergenegall the definition of an exponential family: For a functio

D™ (t||x°) approximates the KL divergende (' ||7") for classF and a distribution, the exponential family (v, F)
possible alternate distributions'and thus the error exponentis defined as:

of the mismatched universal test [9]. In sum, the choice ef th V(z)el )

basis functiong;} is critical for successful implementation EW, F)y={p:ulz)= T feF}.

of the mismatched universal test. The goal of this paper is to (v, ef)

construct algorithms to construct a suitable basis. We will restrict to the case of linear function class, and we

say that the exponential family is-dimensional if this is the
dimension of the function class. The following lemma is a

In this paper we propose a framework to design the functieginterpretation of Lemmia_2.1 for the exponential family:
classF, which allows us to make the tradeoff between the er- Lemma 2.2: Consider anyp + 1 mutually absolutely con-

ror exponent and variance. One of the motivations comes fraiuous distributions{z? : 0 < i < p}. Then D (7i||mi) =
results presented in Sectibih | on the maximum number-of D(x'||=7) for all i # j if and only if ¢ € £(x°, F) for all i.
distinguishable distributions in an exponential family, which o o

suggests that it is possible to use approximately log(p) B- Distinguishable Distributions

basis functions to design a test that is effective agajnst Except in trivial cases, there are obviously infinitely many
different distributions. In Section ]Il we cast the featwe distributions in an exponential family. In order to chame
traction problem as a rank constrained optimization prnoble the difference between different exponential families df d
and propose a gradient-based algorithm with provable lodatent dimension, we consider a subset of distributionscivhi
convergence property to solve it. we call e-distinguishable distributions.

C. Contributions of this paper



The motivation comes from the fact that KL divergences It is important to point out thafV(d) is exponential ind.
between two distributions are infinite if neither is abselyt This answers the question asked at the beginning of this sec-
continuous with respect to the other, in which case we stign: There exisp approximately distinguishable distributions
they aredistinguishable. When the distributions are distin-for which we can design an effective mismatched test using
guishable, we can design a test that achieves infinite erspproximatelylog(p) basis functions.
exponent. For example, consider two distributiot¥s 7! on
= {21,2’2,2’3}: 7T0(2’1) = 7T0(22) =0.5; 7T1(22) = 7T1(Z3) =
0.5. It is easy to see that the two error exponents of the test
o (Z7) = I{I'™(23) > 0.2} are both infinite. It is then natural  Suppose that it is known that the alternate distributioms ca
to ask: Giverp distributions that are pairwise distinguishabletake onp possible values, denoted by, 72, ..., 7?. Our goal
how many basis functions do we need to design a test thaidgo choose the function class of dimensiond so that the
effective for them? mismatched divergence approximates the KL divergence for

Distributions in an exponential family must have the santbese alternate distributions, while at the same time keggbie
support. We thus consider distributions that are approtdtya variance small in the associated universal test. The chafice
distinguishable, which leads to the definitions listed taelo d gives the tradeoff between the quality of the approximation
Consider the set-valued functidif parametrized by > 0,  and the variance in the mismatched universal test. We assume

that0 < D(r'||x°) < oo for all il
F(a) = {z : 2(2) > max(z(2)) — €} We propose to use the solution to the following problem as
the function class:

Ill. FEATURE EXTRACTION VIA
RANK-CONSTRAINED OPTIMIZATION

o Two distributionsr!, 72 aree-distinguishable if F(7!)\
F(n?) # 0 and F(7?) \ F(r!) # 0.

e Adistributionr is callede-extremal if w(F¢(7)) > 1—¢,
and a set of distributiong! is callede-extremal if every
7 e Ais e-extremal. wheredim F is the dimension of the function class. The

e For an exponential familg, the integetN' () is defined ~ Weights {y;} can be chosen to reflect the importance of
as the maximumV such that there exists ag > 0 such  different alternate distributions. This can be rewrittenthe
that for any0 < e < ¢, there exists ap-extremald C £  following rank-constrained optimization problem:
suc_h .that|.A| > N and any two distributions ind are max % P yi((xi, X;) — log({x0, eX+))
e-distinguishable. _

One interpretation of the final definition is that the teshgsi subject to rank (X) < d
a function classF is effective againstV(£) distributions, in  where the optimization variabl® is ap x |Z| matrix, andX;
the sense that the error exponents for the mismatched salvels theith row of X, interpreted as a function af. Given an
test are the same as for the Hoeffding test, wisere £(v, F):  optimizer X*, we choose{t/;} to be the set of right singular
vectors of X* corresponding to nonzero singular values.
Lemma 2.3: Consider a function clasg and its associated .
exponential family€ = £(v, F), wherev has full support, A. Algorithm
and defineN = N(&(v, F)). Then, there exists a sequence The optimization problem in({6) is not a convex problem

max(~ 39 DR ) s dimF) <@} (6)
=1

(6)

{AW AR A . m > 1}, such that for eaclt the set since it has a rank constraint. It is generally very difficult
A®) c & consists of N distributions, to design an algorithm that is guaranteed to find a global
. maximum. The algorithm proposed in this paper is a gener-

D (n|x') = D(x,x') for anym, 7z’ € AW alization of the Singular Value Projection (SVP) algoritiof

[15] designed to solve a low-rank matrix completion problem

and . . - , It is globally convergent under certain conditions valid fo
kli{l(}o TS D7 (x||7") = o0. matrix completion problems. However, in this prior work the
Cmtn! objective function is quadratic; we are not aware of anymrio

o work generalizing these algorithms to the case of a general
Let P(d) denote the collection of ali-dimensional expo- convex objective function.
nential families. DefinéV (d) = maxgcpq) NV(E). Inthe next  Let h(X) denote the objective function dfl(6). L&tdenote
result we give lower and upper bounds &iid), which imply  the set of matrices satisfyingnk (X) < d. Let Ps denote
that N(d) depends exponentially ogt the projection ontaS:
Proposition 2.4: The maximumN (d) = maxg N (&) ad-

mits the following lower and upper bounds: Ps(Y) = argmin{[|Y" — X|| : rank (X) < d}.

— d d lin practice the possible alternate distributions will liketake on a

N(d) > exp (LiJ [log(|Z]) — 10gL§J - 1]) (3)  continuum of possible values. It is our wishful thinking tivee can choose
a finite approximation wittp distributions, and choosé much smaller than

V

o p, and the resulting mismatched universal test will be effecagainst all
N(d) < exp ((d + 1)(1 + log(|Z|) - log(d + 1))) (4) alternate distributions. Validation of this optimism wile left to future work.



where we usd-|| to denote the Frobenius norm. The algorithm
proposed here is defined as the following iterative gradient
projection:

1) Vi = X* 4 oFVh(XF).

2) Xk+1 — Ps(Yk+1)_
The projection step is solved by keeping only tthdargest
singular values ot **+1. The iteration is initialized with some 0 2 s s 8 10 2  d

arbitrary X° and is stopped when thgX**! — X*|| < ¢ for Fig. 1: Dashed curve: averﬁgeOdDMM (1?]|70) /D(?||x0). Solid curve:
some smalk > 0. average ofD"M (r*||7?) /D (x*||7Y)

B. Convergence Resuilt generating6; ,} and{6; , } according to uniform distributions
We can establish local convergence: on [—1,1] and [-0.1,0.1], respectively. In application of the
Proposition 3.1: SupposeX satisfiegank (X) = dandisa algorithm presented in Section TIIA, the bades } and{v}}

local maximum, i.e. there exists> 0 such that for any matrix are not given. This model can be interpreted as a perturbatio

X € S satisfying || X — X|| < §, we haveh(X) > h(X). to g-dimensional exponential family with bas{g;}.
oosen* = « for all k where0 < o < 2/(+ max; v*). Then n the experiment we have two phases: In the feature extrac-

Ch k = o for all k where0 211) *). Th In th h h In the f

there exists @&’ > 0 such that ifX° satisfies| X° — X|| < ¢’ tion (training) phase, we randomly generatel distributions,

andrank (X°) < d, thenX* — X ask — co. Moreover, the takenasr’, ..., «”. We then use our techniques i (5) with the

convergence is geometric. O proposed aIgorithm to find the function clags The weights
% o v; are chosen as’ = 1/D(r||7") so that the objective value

Rnl‘fr} ?denﬁiex})?e ?ngr;e;;n%é E))f(fr[:é +rI(;I(/)2f)i(S.tglt Eearis no larger thari. In the testing phase, we randomly generate

oo 02 ) ) ° P t distributions, denoted by', ..., u'. We then compute the

X the setS can be approximated by this hyperplake as 9 (i 170) /D (1 || e

demonstrated in Lemn{a_3.2 average o (lf I7°)/ D(p"|7°). N
Lemma 3.2 There exisi .>.O and M > 0 such that: 1) for For the experimental results shown in Figlte 1, the param-

2 > : e o _ .

any X € S satisfying|| X — X|| < ¢, there existsZ € H such gters are chosen as= 8’Mz Z_5,Oandt 1.50(?' Shown_ln_ the

that | Z — X|| < M|[X — X||% 2) for any Z € H satisfying figure is an aver_aggz ab™ (7 How )/D(w H_w ) (for training)

1Z - X| < 5. there existsX € S satisfying || X — Z|| < as well asD"™ (u*||7°)/D(u*||=°) (for testmg) for two cases:

M| Z - Xﬁg — p =50 andp = 500. We observe the following:

Let 7k — 'PH(Y;Q) i.e., the projection of* onto M. We 1) The objective value increases gracefullycamcreases.

obtain from Lemma& 312 that* is close toX* as follows: Ford > 7, the values are close to 1, .
Lemma 3.3: Consider anyX satisfying rank (X) — 2) The curve for_ training and testing are closer whers

There exists > 0 and M > 0 such that if|ZF — X|| < larger, which is expected.

then||zF — X*|| < M| Y* — X||3.

Lemma 3.4: Gradients ofi(X) are Lipschitz with constant
L= §max; 7', i.e. ”Vh(g(l? — Vh(X2)|| < .LHXl - Ao The main contribution of this paper is a framework to
Lemma 3.5: SupposeX is a local maximum inS and  address the feature extraction problem for universal Hygsis

rank (X) = d. Then X is also a local maximum if. testing, cast as a rank-constrained optimization problehis
Outline of Proof of Proposition Bl  Using standard js motivated by results on the number of easily distinguida
results form optimization theory, we can prove that for anyistributions, which demonstrates that it is possible te as
small enoughs > 0, if | X* — X[| < 6 anda < 7, then gsmall number of features to design effective universalstest
2"+ — X|| < ¢l| X* — X|| for someq < 1 whereq could  for 4 large number of possible distributions. We propose a
depend omj, and||y**! — X|| < [ X* — X|. Thus, we can gradient-based algorithm to solve the rank-constraingi op
choose @ small enough so that/§= < +52. With this choice, mization problem, and the algorithm is proved to converge

09

0.8

W (7| 70) /D (|| 70)

07 - Testing Training
p = 500

p =50

06 -

Average of D

d.
61

V. CONCLUSIONS

we have locally. Directions considered in current research inetud
XM X < ||ZF = X+ |2 - xR a_lpplying the nuclear—no_rm he_uristic [16] to solve the ojitan
< 1ZE X MeE VR _ X tion problem [b), applying this framework to real-world dat
< | . - X[+ A I - - X| and extension of this framework to incorporate other form of
< (¢+3(1-g)IX" - X||. partial information.
Propositio_3.1L then follows from induction. [ |

APPENDIX
IV. SIMULATIONS

We consider probabili';y distributions in an exponer(—A' Proof of the lower bound in Proposition[2.4

tial,family of the form 7'(z) = exp{d_{_, Oirti(z) + We give a constructive proof of the lower bourid (3) by
L. 0; L 0i(2)}. We first randomly generatfy;} and {¢;} combining ideas in Lemma A.1 afd A.2.

to fix the model. A distribution is obtained by randomly Lemma A.l: N(2) > |Z|.



Proof: We pick the following two basis functiong; , v5:

v =[Z| -1,|Z] -2,...,0],
|z|-1

Zrﬂ'].

For1 < k < |Z|, defineu® asuf = 1 + 2F70-54,.
Assuming without loss of generality tha = {1,...,|Z|},
we havearg max, u*(z) = k .

Now, for anyg > 0, 1 < k < |Z|, define the distribution

7P (2) = Cexp{Bu(2)}.

2
. 7
andy, = [1,1.5, E 277, M
=0

B(&) = {y’,1 < i < |Z|}. The following lemma connects
7(B(£)) to N(£).
Lemma A5: N(&) < 7(B(E)).

Proof: For givenr € R? and e > 0, denote]

Fe(>,rth). By the definition of F© we havel = {i :

rTy® > sup, (X", mii(2)) — €}. Therefore, there exists such
thatr’y* > b forall i € I, andr™y* < bforall i ¢ I. That is,
I is the subset ofy*} that lies in the half spacgy : 7'y > b}.

Thus,{y* :i € I} € {hN B(€) : h € H}. Since this holds
for any element in{ F<(>", ri¢hy) : 7 € R%, e > 0}, we obtain
the result.

[ |
Proof of the upper bound: We obtain [[#) on combining

where(C' is a normalizing constant. Since there are only finitgemm Lemm&Al4 and Lemnia A5, together with the

choices ofk, for any small enough, there existg3, such that identity VC/(H) = d + 1.

for 8 > Bo, {7"#,1 < k < |Z|} are e-extremal and any two
distributions in{7*# 1 < k < |Z|} are e-distinguishable. m
Lemma A2: N(d) > (7))

Proof: Takey(z) =1{z =k} for 1 <k < d.

Outline of proof of the lower bound: The basis functions
used in the construction are the Kronecker products of ba§
functions used for Lemma_A.2 and LemimalA.1.

Let J = ||Z|/|4d]]. Let 1,12 denote the basis function
defined in[(¥) with|Z| replaced byJ. The basis functions used

for the lower bound are given by (1]

Ur(i+5J) =1{j =k =1} (i), for1<k<|3d], [
iy lage) (i +3J) =1{j =k —1}o(i), for1<k<|id]. 3
| ]

B. Proof of the upper bound in Proposition[2.4]

The main idea of the proof of{4) is to relate this bound tg4
VC dimension. We first obtain an elementary upper bound.
Lemma A3: N(€) < N(E), where

NE) = {F (D _ruh) : v € R% e > 0}].

Proof: By definition lif a subse# of £ is e-extremal, and
any two distributions inA are e-distinguishable, then for any
two distributionsr?, 77 € A, there exists;, e; > 0 such that
Fei (log(n")) # F* (log(n?)). n

Let H denote the set of all the half spacef, and let
VC(H) denote the VC dimension dH. It is known that
VC(H) = d + 1 [17, Corollary of Theorem 1].

For any finite subseB of R?, definer(B) = [{hNB : h €
H}|. In other words,;7(B) is the number of subsets one can
obtain by intersecting3 with half-spaces fronH. A bound
on 7(B) is given by Sauer’s lemma:

Lemma A.4 (Sauer’s Lemma): The following bound holds
wheneverB| > VC(H):

(5]
(6]

(7]

(8]

El
[10]

B -
(B) = (o) ™

Consider anyi-dimensional exponential famil§ with basis
{11,1 <1 < d}. Define a set of functiofy’} C R? via,

In other words, if we stacK«;} into a matrix so that each 4]
Yy is a row, then{y’} are the columns of this matrix. Let

[12]

[13]
1<i<|z],1<j<d

[ |
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