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Abstract— In multiple-antenna communications, as bandwidth
and modulation order increase, system components must work
with demanding tolerances. In particular, high resolution and
high sampling rate analog-to-digital converters (ADCs) are often
prohibitively challenging to design. Therefore ADCs for such
applications should be low-resolution. This paper provides new
insights into the problem of optimal signal detection basedon
quantized received signals for multiple-input multiple-output
(MIMO) channels. It capitalizes on previous works [1], [2], [3],
[4] which extensively analyzed the unquantized linear vector
channel using graphical inference methods. In particular, a
“loopy” belief propagation-like (BP) MIMO detection algor ithm,
operating on quantized data with low complexity, is proposed.
In addition, we study the impact of finite receiver resolution in
fading channels in the large-system limit by means of a state
evolution analysis of the BP algorithm, which refers to the
limit where the number of transmit and receive antennas go to
infinity with a fixed ratio. Simulations show that the theoretical
findings might give accurate results even with moderate number
of antennas.

I. I NTRODUCTION

Most of the contributions on signal detection for multiple-
input multiple-output (MIMO) systems assume that the re-
ceiver has access to the channel data with infinite precision.
In practice, however, a quantizer (A/D-converter) is applied to
the received analog signal, so that the channel measurements
can be processed in the digital domain. In ultra-wideband
and/or high-speed applications, both the required resolution
and speed of the ADCs tend to rise, making them expensive,
power intensive and even infeasible [5]. This work deals with
MIMO channels with quantized outputs, which we will refer
to as quantized MIMO systems.

Recently, graphical inference methods have been applied
to the usual unquantized MIMO detection problem. In [1],
[2] “loopy” BP-like detection algorithms were derived as low
complexity heuristics for computing the marginal distribution
of each signal component. Hereby, we provide an extended
version of the approximative BP based algorithm relying on
the commonly used Gaussian approximation, while taking into
account the quantizer operation. Then, we provide a state
evolution formalism for analyzing the BP algorithm in the
large-system limit, and also several theoretical results on the
impact of finite receiver resolution that can be drawn from
it. We note that a similar problem has been considered in
[6], however based on thereplica method from statistical
physics [7]. In [8], linear systems with general separable

output channels have been considered in the large-system
limit. Although [8] could include our quantized MIMO case,
only sparse systems have been considered and no simula-
tion results have been provided to validate the theoretical
results. In this work, the “loopy” BP algorithm operating on
quantized dense linear systems is studied theoretically and
experimentally. Moreover, our derivation steps for the large-
system limit are quite straightforward and well justified. The
main advantage of the BP approach compared to [6] is that
it is more intuitive and allows to find efficient algorithms
and analyze their performance and convergence behavior. In
order to ease calculations, we restrict ourselves to real-valued
systems. However, the results can be extended to the complex
case.

Our paper is organized as follows. Section II describes
the system model. In Section III, an approximative BP-like
detection algorithm operating on quantized data is derived;
then, we provide a state evolution analysis of the BP algorithm
and study the effects of quantization in the large-system limit
in Section IV. Finally, in Section V, some simulation results
are presented to numerically validate the theoretical findings.

II. SYSTEM MODEL

We consider a point-to-point MIMO channel where the
transmitter employsK antennas and the receiver hasN
antennas. Let the vectorx ∈ R

K comprises theK transmitted
i.i.d. symbols, each drawn from a certain distributionq0(x)
with zero mean and variancecx. The unquantized (analog)
output vectory ∈ R

N is related to the input as

y = Hx+ η, (1)

where H ∈ R
N×K is the channel matrix assumed to be

perfectly known at the receiver, andη refers to Gaussian noise
vector with covarianceRηη = E[ηηT] = σ2

0I.
In a practical system, each receive signal componentyl,

1 ≤ l ≤ N , is quantized by ab-bit resolution scalar quantizer
(A/D-converter). Thus, the resulting quantized signals read as

rl = Q(yl), (2)

whereQ(·) denotes the quantization operation. For the case
that we use a uniform symmetric mid-riser type quantizer [9],
the quantized receive alphabet for each dimension is given by

rl ∈ {(−2b

2
− 1

2
+ k)∆; k = 1, · · · , 2b} = R, (3)
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where ∆ is the quantizer step-size andb the number of
quantizer bits, which are set the same for all the quantizers.

With these definitions, the conditional probability distribu-
tion of the quantized output given an inputx reads as

pr|x(r|x) =
N
∏

l=1

ρ0(rl|hT
l x), (4)

wherehT
l is the l-th row of H and

ρ0(rl|hT
l x) =

1
√

2πσ2
0

∫ rup
l

rlow
l

e
(y−h

T
l

x)2

2σ2
0 dy

= Φ

(

rupl − hT
l x

σ0

)

− Φ

(

rlowl − hT
l x

σ0

) (5)

with Φ(x) represents the cumulative Gaussian distribution
given by

Φ(x) =
1√
2π

∫ x

−∞
exp

(

− t2

2

)

dt. (6)

Hereby the lower and upper quantization boundaries are

rlowl =

{

rl − ∆
2 for rl ≥ −∆

2 (2
b − 2)

−∞ otherwise,

and

rupl =

{

rl +
∆
2 for rl ≤ ∆

2 (2
b − 2)

+∞ otherwise.

III. A PPROXIMATIVE BP DETECTION

Our goal is to derive a low complexity detector computing
the conditional mean estimate

x̂ = E[x|r], (7)

based on the knowledge ofq0(x), ρ0(·|·) andH. This problem
is related to the problem of finding the marginal probabilities
pxk|r(xk|r), for which belief propagation can provide low-
complexity approximations. To this end, a factor graph repre-
sentation is needed.

A. Factor Graph Representation

In analogy to [4], a factor graph representation of the
quantized MIMO system is shown in Fig. 1. Each data stream
xk is represented by a circle, referred to symbol node, and
each received quantized signalrl corresponds to a square,
called the signal node. Each edge connectingk andl represents
the corresponding gain factorhlk, if hlk 6= 0. Ignoring the
cycles in the graph, let us derive the so called “loopy” BP
algorithm (or sum-product algorithm) from the factor graph
representation.1

1We note that the BP is optimal for cycle free graphs and performs nearly
optimal in sparse graphs. In the case of dense, large enough,channel matrices,
it may provide good approximate posteriors as we will see later.
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Fig. 1

FACTOR-GRAPH REPRESENTATION OF THE QUANTIZEDMIMO CHANNEL.

B. BP based Detection

Each iterationt of BP consists in, first sending messages
from each signal nodel to each symbol nodek (horizontal
step), and then vice versa (vertical step). The messages contain
the extrinsic information ofxk in form of density functions
computed based on the previously received messages. We
denote the symbol-to-signal messages byπt

lk(xk) and the
signal-to-symbol messages byλt

lk(xk):
Horizontal step:

λt
lk(xk) =

∫

ρ0(rl|hT
l x)

∏

k′ 6=k

[πt
lk′ (xk′ )dxk′ ] (8)

Vertical step:

πt+1
lk (xk) = αlkq0(xk)

∏

l′ 6=l

λt
lk(xk), (9)

whereαlk is a normalization factor so thatπt+1
lk (xk) is a valid

density function. The algorithm is initialized by

π0
lk(xk) = q0(xk), l = 1, . . . , N, k = 1, . . . ,K. (10)

C. Approximative BP based Detection Algorithm

In the case of dense matrices, the complexity of the BP
algorithm grows enormously withK, since a (K − 1)-
dimensional integration (or summation) has to be performed
in the horizontal step. Thus we discuss now an approximation
scheme, in analogy to [1] (see also [10]), that may be justified
in the large-system limit. For this we split the quantityhT

l x

as

hT
l x =

∑

k′ 6=k

hlk′xk′ + hlkxk = wlk + hlkxk. (11)

Given the distributionpwlk
(wlk), (8) can be rewritten as

λt
lk(xk) =

∫ ∞

−∞
ρ0(rl|wlk + hlkxk)pwlk

(wlk)dwlk. (12)

The key remark is thatwlk is a weighted sum of the indepen-
dent random variablesxk′ distributed according toπt

lk′ (xk′ ).
Due to the central-limit theorem, it can be regarded as a
Gaussian random variable in the large-system regime, having



the mean and the variance

µt
lk =

∑

k′ 6=k

hlk′mt
lk′ , (13)

Ct
lk =

∑

k′ 6=k

h2
lk′V t

lk′ , (14)

respectively, wheremt
lk′ and V t

lk′ are the mean and the
variance ofxk′ according to the distributionπt

lk′ (xk′ ). The
horizontal step can be now written as follows

λt
lk(xk) ≈

∫ ∞

−∞
ρ0(rl|wlk + hlkxk)

e
− (wlk−µt

lk
)2

2Ct
lk

√

2πCt
lk

dwlk

= Φ
(rupl −µt

lk−hlkxk
√

Ct
lk + σ2

0

)

−Φ
(rlowl −µt

lk−hlkxk
√

Ct
lk + σ2

0

)

=̇ρtlk(rl|µt
lk + hlkxk). (15)

Obviously the approximate BP is a kind of modified parallel
interference cancellation (PIC) as in the unquantized case
[1], where µt

lk represents an estimate of the interference
component inrl for the streamk, and Ct

lk quantifies its
MSE. Even if this approximate BP iteration holds in the limit
of infinite number of antennas, it usually performs well for
systems of moderate sizes.

IV. STATE EVOLUTION ANALYSIS

State evolution analysis (also known as density evolution
for the case of sparse matrices) is a powerful tool to study the
behavior of belief propagation in the large-system limit [11].
The large-system limit means that we consider the limit when
K andN go to infinity, while the ratioβ = K/N is kept fixed.
Under the conjecture that the presented BP based detector
would be asymptotically optimal, this analysis would deliver
useful theoretical results about the MIMO system performance
under quantization. For the analysis, we assume a random
channel matrixH, where the entries{hl,k} are i.i.d. with zero
mean and variance1/N . The main idea is to approximate the
messages by Gaussian densities, which holds exactly in the
large-system limit. In fact, given thathlkxk in (15) scales as
1/

√
N , it becomes small asN becomes large, and as such we

take the second-order expansion of the messages (15) as

ρtlk(xk|µt
lk + hlkxk) ≈ρtlk(xk|µt

lk) + ρ̇tlk(xk|µt
lk)hlkxk+

1

2
ρ̈tlk(xk|µt

lk)h
2
lkx

2
k +O(N−3/2),

(16)
whereρ̇tlk(xk|µt

lk) and ρ̈tlk(xk|µt
lk) denote the first order and

the second order derivatives ofρtlk(xk|µt
lk) with respect toµt

lk.
Keeping the terms up to the order ofN−1, and using now the
following approximation

1 + ax+
1

2
bx2 = eax+

1
2 (b−a2)x2

+O(x3), (17)

the horizontal and vertical steps can be represented as

λt
lk(x) ∝ exp

[

θtlkx− 1

2
(θt,2lk − Ξt

lk)x
2

]

, and (18)

πt+1
lk (x) ∝ q0(x) exp





∑

l′ 6=l

θtl′kx− 1

2

∑

l′ 6=l

(θt,2l′k − Ξt
l′k)x

2



 ,

(19)
respectively, where we introduced the definitions

θtlk=̇
ρ̇tlk(rl|µt

lk)

ρtlk(rl|µt
lk)

hlk and Ξt
lk=̇

ρ̈tlk(rl|µt
lk)

ρtlk(rl|µt
lk)

h2
lk. (20)

For the following, we assume a random matrixH with i.i.d.
entries and we consider the large-system limit. The state evo-
lution analysis aims to study the dynamics of the BP detector,
i.e. to track the evolution of the densities parameters, namely
µt
lk, Ct

lk from (13) and (14), respectively, and additionally

ztlk=̇
∑

l′ 6=l

θtl′k, F t
lk=̇

∑

l′ 6=l

θt,2l′k, Gt
lk=̇

∑

l′ 6=l

Ξt
l′k (21)

over the iterations. Strictly speaking, these variables are ran-
dom. Relying on a heuristic assumption that the incoming
messages(θtlk,Ξ

t
lk) to each symbol node remain independent

from iteration to iteration, when conditioned on a given
transmit symbolxk and channelH, and by the central
limit theorem, we conclude thatµt

lk, Ct
lk (from (13) and

(14)), ztlk, F t
lk andGt

lk become asymptotically Gaussian. In
particularCt

lk, F t
lk andGt

lk are sums of terms of order1/N ,
thus they admit asymptotically zero variance. In other words,
they become deterministic in the large-system limit at given
iteration provided thatH has i.i.d. entries, i.e. independent
of the given realization ofH, the received vectorr and the
indexesl andk; that is

∑

k′ 6=k

h2
lk′V t

lk′ →
∑

k′ 6=k

Er|xk
[h2

lk′V t
lk′ |H, xk]=̇Ct, (22)

∑

l′ 6=l

θt,2l′k →
∑

l′ 6=l

Er|xk
[θt,2l′k|H, xk]=̇F t, (23)

∑

l′ 6=l

Ξt
l′k → Er|xk

[Ξt
l′k|H, xk]=̇Gt, (24)

where→ symbolizes the convergence to the asymptotic limit.
Therefore, we can write the messagesπt+1

lk (x) as

πt+1
lk (x) → αq0(x) exp

[

ztlkx− 1

2
(F t −Gt)x2

]

. (25)

We will return to the calculation of these parameters later on.
Now let us consider the joint distributionpwlk,µt

lk
(w, µ) of the

interference term in antennal for symbol k, wlk from (11),
and its estimateµt

lk in (13), givenH andxk. Again by the
central limit argument,wlk andµt

lk are asymptotically jointly
Gaussian

(wlk, µ
t
lk) ∼ N

(

0,Rt
w,µ

)

,

with the covariance matrixRt
w,µ, having the entries

E[w2
lk|H, xk] = E

[(

∑

k′ 6=k

hlk′xk′

)2∣
∣

∣
H, xk

]

=
∑

k′ 6=k

h2
lk′E[x2

k′ |H]

→ β

∫

xk′q0(xk′ )dxk′ =̇βcx,

(26)



E[µt,2
lk |H, xk] = E[(

∑

k′ 6=k

hlk′mt
lk′ )2|H , xk]

=
∑

k′ 6=k

h2
lk′E[m

t,2
lk′ |H ]

→ βEzt
lk′

[(

∫

xπt
lk′ (x)dx

)2]

=̇βctm,

(27)

E[wlkµ
t
lk|H, xk] =

∑

k′,k′′ 6=k

hlk′hlk′′E[xk′′mt
lk′ |H]

=
∑

k′ 6=k

h2
lk′E[xk′mt

lk′ |H ] (28)

→ βExk′ ,zt
lk′

[

xk′

∫

xπt
lk′ (x)dx

]

=̇βctx,m.

In the steps above, we used the fact that the expectations with
respect toxk′ andztlk′ become asymptotically independent of
the indexesl andk′. Thus, we obtain the bivariate Gaussian
distribution

pwlk,µt
lk
(w, µ) =

e

−
(w−

ctx,m

ctm
µ)2

2β(cx−

c
t,2
x,m

ctm
)

√

2πβ(cx − ct,2x,m

ctm
)

e
− µ2

2βctm

√

2πβctm
. (29)

Next, the MSE parameterCt in (22) can be expressed as

Ct=
∑

k′ 6=k

E
[

h2
lk′

∫

x2πt
lk′ (x)dx −mt,2

lk′

∣

∣

∣
H, xk

]

=
∑

k′ 6=k

h2
lk′E

[

∫

x2πt
lk′ (x)dx

∣

∣

∣
H, xk

]

−
∑

k′ 6=k

h2
lk′E[m

t,2
lk′ |H ]

→βExk′ ,zt
lk′

[

∫

x2πt
lk′ (x)dx

]

− βctm=̇β(ctx̂ − ctm). (30)

Note that the densitiesρtlk(·|·) defined for the horizontal step
in (15) become independent ofl andk, and read as

ρt(r|µ) = Φ
( rup − µ
√

β(ctx̂−ctm)+σ2
0

)

− Φ
( rlow − µ
√

β(ctx̂−ctm)+σ2
0

)

.

(31)
Afterwards, we computeF t from (23). For that we need the
joint distributionpr,µt

lk
|xk

(r, µt
lk|xk) for fixed channelH

pr,µt
lk
|xk

(r, µt
lk|xk) =

∫

pr,µt
lk
,wlk|xk

(r, µt
lk, wlk|xk)dwlk

=prl|xk
(rl|xk)

∫

prl,µt
lk
,wlk|xk

(rl, µ
t
lk, wlk|xk)dwlk

=prl|xk
(rl|xk)

∫

ρ0(rl|wlk+hlkxk)pwlk,µt
lk
(wlk, µ

t
lk)dwlk

→prl|xk
(rl|xk)ρ̄

t(rl|µt
lk + hlkxk)

e
− µ

t,2
lk

2βctm

√

2πβctm
, (32)

whererl is the vector containing the elements ofr excluding
rl and the density function̄ρt(·|·) is obtained using (29) by

performing the integration as

ρ̄t(r|µ)=Φ

(

rup − µ
√

β(cx− ct,2x,m

ctm
)+σ2

0

)

−Φ

(

rlow − µ
√

β(cx− ct,2x,m

ctm
)+σ2

0

)

.

(33)
From (23), (20) and (32) we identify after some straightfor-

ward steps the asymptotic non-vanishing term for the param-
eterF t

F t =
∑

r∈R

∫

ρ̄t(r|µ)
[

ρ̇t(r|µ)
ρt(r|µ)

]2
e
− µ2

2βctm

√

2πβctm
dµ, (34)

where we dropped the indexesl and k due to asymptotic
independence in the large-system limit. Similarly, we obtain
the parameterGt in (25) as follows

Gt =
∑

r∈R

∫

ρ̄t(r|µ) ρ̈
t(r|µ)

ρt(r|µ)
e
− µ2

2βctm

√

2πβctm
dµ. (35)

We turn now to determine the distribution ofztlk defined
in (21), which, as mentioned before, follows a Gaussian
distribution conditioned onxk. Again by (20) and (32), we
show that its mean is

Er|xk,H [ztlk|xk,H] =

=
∑

r∈R

∫

∑

l′ 6=l

ρ̄t(r|µ + hl′kxk)
ρ̇t(r|µ)
ρt(r|µ)hl′k

e
− µ2

2βctm

√

2πβctm
dµ

→
∑

r∈R

∫

˙̄ρt(r|µ) ρ̇
t(r|µ)

ρt(r|µ)
e
− µ2

2βctm

√

2πβctm
dµ · xk=̇Et · xk,

(36)
and its variance is

Er|xk,H [zt,2lk |xk,H]− (Er|xk,H [ztlk|xk,H])2

→
∑

l′ 6=l

Er|xk,H [θt,2l′k|xk,H]
!
= F t. (37)

Note thatztlk ≈ ∑N
l′=1 θ

t
l′k = ztk and thusπt

lk(xk) ≈ πt
k(xk)

for all l because eachθlk has a vanishingly small effect on
the sum. In summary, we get the conditional density

ρtG(z
t
k|xk,H) =

1√
2πF t

e−
(zt

k
−Etxk)2

2Ft . (38)

Since the BP iteration is initialized byπlk(xk) = q0(xk),
we have from (27), (28) and (30) the initial parametersc0m =
c0x,m = 0 and c0x̂ = cx, it can be shown by mathematical
induction that for allt

ctm = ctx,m, ctx̂ = cx, ρ̄t(r|µ) ≡ ρt(r|µ),
Et = F t, Gt = 0, πt+1

k (xk) ∝ q0(xk) · ρtG(zk|xk).
(39)

Finally, we conclude that the performance of the large-system
regime is fully described by the sequential application of two
updates for the parametersF t andctm (cf. (34) and (27))



F t =
∑

r∈R

∫

ρ̇t(r|µ)2
ρt(r|µ)

e
− µ2

2βctm

√

2πβctm
dµ,

ct+1
m =

∫

[
∫

xρtG(z|x)q0(x)dx]2
∫

ρtG(z|x)q0(x)dx
dz,

(40)

with the initial statec0m = 0. Interestingly, the stationary
conditions of the state evolution equations coincides withthe
fixed point equation found in [7] with the replica method.

V. NUMERICAL RESULTS

Let us consider BPSK transmission, i.e.xk ∈ {−1,+1}.
We havecx = 1 and from (40) we get

ct+1
m =

∫ ∞

−∞

1

2
√
2πF t

(

e−
(z−Ft)2

2Ft − e−
(z+Ft)2

2Ft

)

tanh(z)dz

=

∫ ∞

−∞

1√
2πF t

e−
(z−Ft)2

2Ft tanh(z)dz, (41)

where the second line follows from the antisymmetric property
of the tanh(z) function. The equations (40) of the state
evolution as well as the typical trajectory of the BP iteration
are shown in Fig. 2, forβ = 1.8, σ0 = 0.1 and b = 4.
The quantizer step size∆ has been chosen to minimize the
distortion under Gaussian input. We distinguish differentfixed
points. Clearly, the performance of BP based detection algo-
rithm is characterized by the poor solution as shown in Fig. 2.
Besides, from the distribution ofzk given xk, ρtG(zk|xk) in
(38), which directly affects the decision ofxk throughπk(xk),
it immediately follows that the bit error probability (BER)after
performingt iterations is given by

P t
b = Pr(zt ≤ 0) = Q(

√
F t), (42)

where Q(z) =
∫∞
y

1√
2π

e−
t2

2 dt is the error function. The
analytical BER performance at the fixed point forβ = 1 (N =
K) is shown in Fig. 3 as function of the SNR= 10 log10

1
σ2
0

for different number of bits. The experimental BERs, carried
out for a 20 × 20 system withb ∈ {1, 4} and using 10 BP
iterations, are also shown for comparison. Obviously, there is
a good match between the theoretical results and the Monte
Carlo results forb = 1, while there is a gap forb = 4 due
to the insufficiently high number of antennas. Nevertheless,
the analytical curve forb = 4 still predicts correctly that
the performance loss with four bits compared to the ideal
case (b = ∞) becomes negligible. We note that (40) for
the noiseless case (σ0 = 0) always admits a possible perfect
detection solution, i.e.c∞m = 1 andF∞ = ∞ [6]. However,
since the fixed point solution is not unique and BP usually
converges to the worst solution, the BER behavior over the
SNR might exhibit an error-floor as shown in Fig. 3 for the
caseb = 1. The minimum number of bits needed to ensure
perfect detection in the noiseless case, i.e. where the recursion
(40) evolves to the unique fixed point solution atc∞m = 1,
is depicted in Fig. 4 as function of the load factorβ. We
observe that for a system loadβ ≤ 1 even 2-bit ADCs might
be sufficient for symmetrical systems.
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VI. CONCLUSION

We studied a low complexity detection algorithm based on
belief propagation for quantized MIMO systems. Additionally,
a state evolution formalism has been presented to analyze the
performance of the BP based detector when operating on quan-
tized data in the large-system limit of fading channels. A set of
simulation results was provided, which, in agreement with the
analytical results, shows that the BP approach achieves good
performance even with low resolution ADCs and moderate
number of antennas.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3

4

5

6

7

8

PSfrag replacements

BER

b

βs → E
E → s

Fig. 4

M INIMUM NUMBER OF BITS NEEDED FORBP PERFECT DETECTION

(Pb → 0 AS σ0 → 0) AS FUNCTION OFβ.

REFERENCES

[1] Y. Kabashima, “A CDMA multiuser detection algorithm on the basis of
belief propagation,”J. Phys. A: Math. Gen., vol. 36, pp. 11111–11121,
2003.

[2] T. Tanaka and M. Okada, “Approximate belief propagation, density
evolution, and statistical neurodynamics for CDMA multiuser detection,”
IEEE Trans. Inform. Theory, vol. 51, no. 2, pp. 700–706, Feb. 2005.

[3] A. Montanari and D. Tse, “Analysis of belief propagationfor non-linear
problems: The example of CDMA (or: How to prove Tanakas formula),”
in Proc. IEEE Inform. Theory Workshop, Punta del Este, Uruguay, Mar.
2006, p. 122126.

[4] D. Guo and C.-C. Wang, “Multiuser Detection of Sparsely Spread
CDMA,” IEEE J. Sel. Areas Commun., vol. 26, no. 3, pp. 421–431,
April 2008.

[5] D. D. Wentzloff, R. Blázquez, F. S. Lee, B. P. Ginsburg, J. Powell, and
A. P. Chandrakasan, “System design considerations for ultra-wideband
communication,” IEEE Commun. Mag., vol. 43, no. 8, pp. 114–121,
Aug. 2005.

[6] K. Nakamura and T. Tanaka, “Performance analysis of signal detection
using quantized received signals of linear vector channel,” in Proc.
Inter. Symp. Inform. Theory and its Applications (ISITA), Auckland, New
Zealand, Dec. 2008.

[7] K. Nakamura and T. Tanaka, “Microscopic analysis for decoupling
principle of linear vector channel,” inIEEE Intern. Symp. Inform. Theory
(ISIT), Toronto, Canada, Jul. 2008, pp. 519–523.

[8] D. Guo and C.-C. Wang, “Random Sparse Linear Systems Observed
Via Arbitrary Channels: A Decoupling Principle,” inIEEE Intern. Symp.
Inform. Theory (ISIT), Nice, France, June 2007, pp. 946–950.

[9] J. G. Proakis,Digital Communications, McGraw Hill, New York, third
edition, 1995.

[10] D. Guo and T. Tanaka, Generic multiuser detection and statistical
physics, in Advances in Multiuser Detection, edited by M. Honig. Wiley-
IEEE Press, 2009.

[11] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity
check codes under message-passing decoding,”IEEE Trans. Inform.
Theory, vol., vol. 47, no. 2, pp. 599–618, Feb. 2001.



0.8 1 1.2 1.4 1.6 1.8 2 2.2
1

2

3

4

5

6

7

8

beta

b



Q(  )x

M

H

N
n

y r
ML ^x

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m

E

Etom

mtoE



rho0(yN|h1x)

H
q(x), rho(y|.)

postulates

<XK>

<X2>

<X1>X1

X2

XK

EstimatesDetectorCond. Output Distr.  Input distr. q0(x) Linear Channel

rho0(y1|h1x)

rho0(y2|h1x)


	I Introduction
	II System Model
	III Approximative BP Detection
	III-A Factor Graph Representation
	III-B BP based Detection
	III-C Approximative BP based Detection Algorithm

	IV State Evolution Analysis
	V Numerical Results
	VI Conclusion
	References

