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Abstract— In multiple-antenna communications, as bandwidth output channels have been considered in the large-system
and modulation order increase, system components must work |imit. Although [8] could include our quantized MIMO case,
with demanding tolerances. In particular, high resolution and only sparse systems have been considered and no simula-

high sampling rate analog-to-digital converters (ADCs) ae often . . . .
prohibitively challenging to design. Therefore ADCs for sich tion results have been provided to validate the theoretical

applications should be low-resolution. This paper provide new results. In this work, the “loopy” BP algorithm operating on
insights into the problem of optimal signal detection basedon quantized dense linear systems is studied theoretically an
quantized received signals for multiple-input multiple-autput  experimentally. Moreover, our derivation steps for theyéar
(MIMO) channels. It capitalizes on previous works [1], [2] Bl gystem Iimit are quite straightforward and well justifiecheT

[4] which extensively analyzed the unquantized linear veor . .
channel using graphical inference methods. In particular, a main advantage of the BP approach compared_to [6] is that

“|Oopy" belief propagation_"ke (BP) MIMO detection a|g0r |thm, it is more intuitive and allows to find efficient algorithms
operating on quantized data with low complexity, is proposd. and analyze their performance and convergence behavior. In
In addition, we study the impact of finite receiver resolution in  order to ease calculations, we restrict ourselves to ralaled

fading channels in the large-system limit by means of a state gyqtems. However, the results can be extended to the complex
evolution analysis of the BP algorithm, which refers to the ’

limit where the number of transmit and receive antennas go to case. . . ) .

infinity with a fixed ratio. Simulations show that the theoretical Our paper is organized as follows. Sectioh Il describes
findings might give accurate results even with moderate numér  the system model. In Sectidn]lll, an approximative BP-like
of antennas. detection algorithm operating on quantized data is derived

then, we provide a state evolution analysis of the BP algarit

and study the effects of quantization in the large-systemit li

in SectionIV. Finally, in Sectiof V, some simulation result
Most of the contributions on signal detection for multipleare presented to numerically validate the theoretical rligsli

input multiple-output (MIMO) systems assume that the re-

ceiver has access to the channel data with infinite precision Il. SYSTEM MODEL

In practice, however, a quantizer (A/D-converter) is agplio  We consider a point-to-point MIMO channel where the
the received analog signal, so that the channel measuremeinsmitter employsk antennas and the receiver hag
can be processed in the digital domain. In ultra-widebarghtennas. Let the vectar ¢ RX comprises thes” transmitted
and/or high-speed applications, both the required resolutii.d. symbols, each drawn from a certain distributigy{z)
and speed of the ADCs tend to rise, making them expensivgith zero mean and variance,. The unquantized (analog)
power intensive and even infeasible [5]. This work dealdwitoutput vectory € RY is related to the input as

MIMO channels with quantized outputs, which we will refer

to as quantized MIMO systems. y=Hz +m, (1)

Recently, graphical inference methods have been appligfa e g c RVXK is the channel matrix assumed to be

to the usual unquantized MIMO detection problem. In [1},o e cty known at the receiver, angrefers to Gaussian noise
[2] “loopy” BP-like detection algorithms were derived asMo |, tor with covariance®... — Elnn’] = 021
= = opl.

complexity heuristics for computing the margi.nal disttiba n a practical system, each receive signal compongnt
of each signal component. Hereby, we provide an extend I < N, is quantized by a&-bit resolution scalar quantizer

version of the approximative BP based algorithm relying o 7D-converter). Thus, the resulting quantized signatzdras
the commonly used Gaussian approximation, while taking in

account the quantizer operation. Then, we provide a state rr = Q(y), (2)

evolution formalism for analyzing the BP algorithm in the o ,
large-system limit, and also several theoretical resuitshe Where Q() denotes the quantization operation. For the case

impact of finite receiver resolution that can be drawn froffiat We use a uniform symmetric mid-riser type quantizey [9]

it. We note that a similar problem has been considered the quantized receive alphabet for each dimension is giyen b

[6], however based on theeplica method from statistical b 1 X
physics [7]. In [8], linear systems with general separable T € {(—5 -3t E)A; k=1,---,2} =R, (3)

|I. INTRODUCTION
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where A is the quantizer step-size and the number of
guantizer bits, which are set the same for all the quantizers

With these definitions, the conditional probability dibtr
tion of the quantized output given an inpatreads as

N
Pr\m(T|$) = HPO(Tl|th€B)7 (4)
=1

whereh is thel-th row of H and

Fig. 1
FACTOR-GRAPH REPRESENTATION OF THE QUANTIZEIMIMO CHANNEL.
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Each iterationt of BP consists in, first sending messages
with ®(z) represents the cumulative Gaussian distributidiiom each signal nodé to each symbol nodé (horizontal

given by step), and then vice versa (vertical step). The messagéaicon
1 . .2 the extrinsic information ofc; in form of density functions
d(x) = _/ exp (_5) dt. (6) computed based on the previously received messages. We
V2T ) o

denote the symbol-to-signal messages #y(z;) and the

Hereby the lower and upper quantization boundaries are signal-'Fo-symboI messages By (z):
Horizontal step:

- m—% for TZZ—%(Qb—2)
'S =
: —00 otherwise, N (k) = /PO(Tl|h;rm) H [l (21 )daw ] (8)
k' #k
and .
w {7’1 + % for 1 < %(217 —9) Vertical step:
= .
oo otherwise. i (@) = adolan) T Malan), ©)
I1l. APPROXIMATIVE BP DETECTION vl
Our goal is to derive a low complexity detector computin§/hereas is a normalization factor so tha," () is a valid
the conditional mean estimate density function. The algorithm is initialized by
& = E[z|r], (7) . (rr) = qo(xx), 1=1,...,N, k=1,... K. (10)

based on the knowledge gf(x), po(:|-) andH. This problem C. Approximative BP based Detection Algorithm
is related to the problem of finding the marginal probalasti
Pay|r(zr|r), for which belief propagation can provide low-
complexity approximations. To this end, a factor graph eepr
sentation is needed.

In the case of dense matrices, the complexity of the BP
algorithm grows enormously withK, since a (K — 1)-
dimensional integration (or summation) has to be performed
in the horizontal step. Thus we discuss now an approximation
scheme, in analogy to|[1] (see al$o][10]), that may be judtifie

in the large-system limit. For this we split the quanth)}r:c
In analogy to [[4], a factor graph representation of thgs

qua_nuzed MIMO system is shown in Fig. 1. Each data stream thw _ Z haw Th + hupae = wi + e, (11)
xi IS represented by a circle, referred to symbol node, and
each received quantized signal corresponds to a square,
called the signal node. Each edge connectiagd! represents Given the distributiomp,,, (wix), @) can be rewritten as
the corresponding gain factduy, if h;, # 0. Ignoring the o

cycles in the graph, let us derive the so called “loopy” BP AL () :/ po(r1wie + Purar )Py, (wig)dwe.  (12)
algorithm (or sum-product algorithm) from the factor graph —0

representatioB).

A. Factor Graph Representation

K £k

The key remark is thaty, is a weighted sum of the indepen-
dent random variables, distributed according ta?,., (z/).
1We note that the BP is optimal for cycle free graphs and per$onearly D h -li k h . b g to, (d kd)
optimal in sparse graphs. In the case of dense, large enohghnel matrices, ue t(_) the central- Imlt t _eorem' it can be rega_r € as_ a
it may provide good approximate posteriors as we will seerlat Gaussian random variable in the large-system regime, favin



the mean and the variance 1
o) < anle)exp | 3 b — 5 (607~ S |

ph = > hmi, (13) 2l 2l
k' £k 19)
ol = Z W2 Vi (14) respecuvilyé V\Ihter)e we introduced t:e(dchl?n;ons
k' #£k . P\TI =t - Pre\TtlH
Gfk:7ik(r | ik)hl and :sziik(r | ik)hfk. (20)
respectively, wherem|,, and V}}, are the mean and the Pir\"t ”_lk P\ H, S
variance ofz; according to the distribution’,, (x4/). The  For the following, we assume a random matkixwith i.i.d.
horizontal step can be now written as follows entries and we consider the large-system limit. The state ev
lution analysis aims to study the dynamics of the BP detector
_ o —npp)? : . "
oo o >CT, i.e. to track the evolution of the den_smes paramet_e_rs,eiynm
o () = / po(rilwik + hipxy) ———=—dwy pher Cl from (@3) and [(I4), respectively, and additionally
o 2mCy t t t t,2 t t
(ot o iy D AT Gy e
= - U'#£1 U'#£1 £l
VC + a5 VC + a5

L top 15 over the iterations. Strictly speaking, these variablesran-
=pue(ril g + hanr).- (15 dom. Relying on a heuristic assumption that the incoming

Obviously the approximate BP is a kind of modified parallénessagest;,, Z;, ) to each symbol node remain independent
interference cancellation (PIC) as in the unquantized caf$@m iteration to iteration, when conditioned on a given
[1], where 1}, represents an estimate of the interferendg2nsmit symbolz; and channelH, and by the central
component inr, for the streamk, and Cf, quantifies its limit theorem, we conclude tha,, Cj, (from (I3) and
MSE. Even if this approximate BP iteration holds in the limif1d), zf,, F};, and G}, become asymptotically Gaussian. In
of infinite number of antennas, it usually performs well foparticularCy,, Fy, and Gy, are sums of terms of ordey/N,

systems of moderate sizes. thus they admit asymptotically zero variance. In other word
they become deterministic in the large-system limit at give
IV. STATE EVOLUTION ANALYSIS iteration provided thatHd has i.i.d. entries, i.e. independent

State evolution analysis (also known as density evolutidfl the given re.alizati.on of, the received vector and the
for the case of sparse matrices) is a powerful tool to study tifidexesl and; that is

behavior of belief propagation in the large-system limit][1 Z h3, Vit — Z E'r‘\wk[h?k’ VL | H, 2] =C, (22)
The large-system limit means that we consider the limit when K2k K2k
K andN go to infinity, while the ratig3 = K/N is kept fixed. .

go to infinity, whi i3 /N is kept fix Zelt/,i _ ZEr\sz?ilH’%]:Fta 23)

Under the conjecture that the presented BP based detector

would be asymptotically optimal, this analysis would defiv i . A . o
useful theoretical results about the MIMO system perforoean > Ely = Eppa, (Bl [ H, 2] =G, (24)
under quantization. For the analysis, we assume a random  U#l

channel matrixH , where the entrie$h, ;. } are i.i.d. with zero where— symbolizes the convergence to the asymptotic limit.
mean and variance/N. The main idea is to approximate theTherefore, we can write the messages ' (z) as

messages by Gaussian densities, which holds exactly in the 1

large-system limit. In fact, given that;,z;, in (I5) scales as 7, (z) — ago(z) exp [sz:v — —(F' = GY2?%|. (25)
1/+/N, it becomes small a& becomes large, and as such we 2

take the second-order expansion of the messages (15) as We will return to the calculation of these parameters later o
Now let us consider the joint distributiqnﬂlk_#fk (w, 1) of the

Pue @k |y, + hawwr) = (@x i) + Pl (@xlpi)hiszit interference term in antenriafor symbol k, wy, from (L1),
1 B _ . . t . . .

it (el 2 a2 + O(N=/2), and its estimatg;;, in s, glv?nH and zy,. Again b_y _the
2 (16) central limit argumentw;;, andy;, are asymptotically jointly

wherepl, (zx|p,,) and g, (zx|uf,.) denote the first order and Gaussian
the second order derivatives @f, (x| u}, ) with respect tquf, .

Keeping the terms up to the order df!, and using now the with the covariance matrixR
following approximation

(wlka :ufk) ~ N (03 Rfy”u.) )

t
W,

having the entries

2 2
1 1 2 2 E[wlk|Haxk]:E[(z hlk’l’k/) ‘H,.’L‘k}
1+az+ 51)302 = ozt (b—a®)z® | (9(%3)7 (17) =

_ 2 2
the horizontal and vertical steps can be represented as - %hWE[IMH] (26)

1 _ .
Al () o< exp |02 — 5(‘9;1%2 —Ef)2?|, and (18) — B/xk’QO(Ik’)dxk’:Bsz



Bl [H, xx] = Bl huwmiy)?[H, 2] performing the integration as

K £k
up __ low __
= i Elmil | H] 27) ﬁt(rm)—@( r__# >_q>< r—# )
k'#k eyl chin
t ) t ﬂ(cm—?)—i-aQ B(cz—?)—i-ag
- ﬂEZ;k, |:( / LT g (x)da:) }iﬂcma (33)
From [23), [2D) and(32) we identify after some straightfor-
ward steps the asymptotic non-vanishing term for the param-
E[wlk,ufk|H, Ik] = Z hlk/hlk//E[xknmfk/ |H] eter F't
Kk #£k ) .2
.t T35k,
= 3 by Blomi H) @ poy [ |G @
KAk o pr(rlw) ] /2B,

— PEg,, 2t [ffk'/xﬂltk/(ff)dx} =Bcum-  where we dropped the indexdsand k due to asymptotic

independence in the large-system limit. Similarly, we abta

In the steps above, we used the fact that the expectatiohs Wie paramete&? in (25) as follows
respect tar;, andz},, become asymptotically independent of
the indexed and k’. Thus, we obtain the bivariate Gaussian

2

5 (rl) e P
distribution G = /ﬁt rlp)? ————dp. (35)
. 7;3 tr )Pt(TW V/2mpB,
(w— 2" )2
%L e We turn now to determine the distribution ef, defined
R S 29 in @), which, as mentioned before, follows a Gaussian
(29) distribution conditioned om;. Again by [20) and[(32), we

(w, ) = —

pwztmﬂfk w, j) = 2 :
ct’ 2 4

\/QWﬁ(cm — =5 Ve,

m

show that its mean is

¢ _
Next, the MSE parametetr* in (22) can be expressed as Erfor o [aig o, H] =

2

-t —5a
_ prrlp), e *em
Ct= E[hlzk, /xzwfk, (z)dz —m}2 H,xk} = Z /Zpt(TW + hukr) = hy i du
;«27;;@ Ik =) p2 (rlp) " \/2mBct,
—
KAk Kk = p'(rlp) \/2nBct, ’

BBy | [P mho ()] = Bl 5(ch — ). (30) (36)

1Y and its variance is

Note that the densities], (-|-) defined for the horizontal step Er\mk,H[th;fL’Ck, H] — (Ep o, H1[20:] Tk, H))?
in become independent bfand &k, and read as !
a3 P > B w02 |an, H) £ F1. B7)
low

up . A
Pt(Tlﬂ):‘I’( ﬂ(rt_ t'u)+ 2)_(1)( B(Tt t'L)L+ 2)'
€~ Cm)T 90 €2~ m 02 ) Note thatzj, ~ S 0L, = 2% and thust}, (zx) ~ 7k (k)

r_
Afterwards, we computé™ from (23). For that we need thefﬁr all 1 blecause eachy; has ahvanlsh(;ln_gly slrgall gﬁect on
joint distributionpr,ufk‘mk(r,u}fk|xk) for fixed channelH the sum. In summary, we get the conditional density

1 _Gh-ptay?

t t —
pa(zi|ag, H) = ———e Y (38)
. B . G( k| ) W
pT,,ufk\zk (raﬂlk|xk) - pT‘-,Mfk-,wlk‘Ek (T,/le,’LUlk|l'k)dwlk
Since the BP iteration is initialized by (2x) = qo(zk),
=Py |2y (T1]Tk) /p,_hufk,wlk‘mk(’l’l,ugk,wlﬂxk)dwlk we have from[(217),[(28) and_(BO) the initial paramet&fs=
., = 0andc = ¢, it can be shown by mathematical
:pm\mk(rl|Ik)ﬁ70(rl|wlk+hlk$k)pwlk,ufk(wlka fiix ) dwie induction that for all¢
L2 Chy =y Ch = o, PHrlp) = p'(r|p),
¢ ¢ e E'=F' G'=0, nt(ap) < qo(xr) - ph(zk)zr) (39)
= ey (Te|i) 0" (rel iy, + Purn) —====, (32) ’ v T k) O Q0ATR) " PGAEKITR):
\/2mpet,

Finally, we conclude that the performance of the largeesyst
wherer, is the vector containing the elementsroéxcluding regime is fully described by the sequential applicationvad t
r; and the density functiop®(-|-) is obtained using[{29) by updates for the parametefg andc!, (cf. (34) and [(2I7))



2

I3
jaa Z / pr(rlu du,

= pt(rlp) /2mBct, (40) 7L
t+1 _ [f xﬂé(le)qo(x)dx]z 6
= ; dz,

J pe(zlz)q0 () dz

with the initial statec?, = 0. Interestingly, the stationary &
conditions of the state evolution equations coincides it

fixed point equation found iri_[7] with the replica method. 3r
V. NUMERICAL RESULTS 2F
Let us consider BPSK transmission, i®, € {—1,+1}. it

We havec, = 1 and from [40) we get

I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 | I I

[e%s) C
1 (z—F)2 (z+F?)? m
t+1 _ 7( —eosr - EEE )
it = e 2F e 2F tanh(z)dz
m Loo 22 Ft Fig. 2
oo
1 _(z=F"H? _ _ _
_ / e o tanh(z)dz, (41) STATE EVOLUTION CHART, 8 = 1.8, 00 = 0.1 AND b = 4.
—oo V2TEF?

where the second line follows from the antisymmetric proper
of the tanh(z) function. The equations_(#0) of the state
evolution as well as the typical trajectory of the BP iteyati
are shown in Fig[12, for3 = 1.8, 09 = 0.1 andb = 4.

The quantizer step sizA has been chosen to minimize the

distortion under Gaussian input. We distinguish differfiered 10"

points. Clearly, the performance of BP based detection-algc

rithm is characterized by the poor solution as shown in[Big. 2

Besides, from the distribution of;, given xy, pf (zk|zk) in 5 —— Theor. b=

(38), which directly affects the decision of throughm (zy,), @ —e—Theor. b=4

it immediately follows that the bit error probability (BERjter 107 —=—Theor. b=3

performingt iterations is given by Ilﬂgg:: E;i
P = Pr(' < 0) = QW) & B

where Q(z) = [ \/%e*§dt is the error function. The 107 ‘ R - ¢ -Simul. b1 |

analytical BER performance at the fixed point foe= 1 (IV = 0 5 10 1520 25 30

K) is shown in Fig[B as function of the SNR10log, 10logyg 5z

for different number of bits. The experimental BERSs, catrie
out for a20 x 20 system withb € {1,4} and using 10 BP
iterations, are also shown for comparison. Obviously,dtisr

. RESOLUTIONS THE SIMULATIVE RESULTS WERE OBTAINED FROM THE
a good match between the theoretical results and the Monte
Carlo reSUltS forb -1 Whlle there iS a gap fOb —4 due APPROXIMATIVE BP DETECTION APPLIED ON A20 X 20 SYSTEM.
to the insufficiently high number of antennas. Nevertheless
the analytical curve folb = 4 still predicts correctly that
the performance loss with four bits compared to the ideal
case § = oo) becomes negligible. We note thai {40) for V1. CONCLUSION
the noiseless case{ = 0) always admits a possible perfect

detection solution, i.ec® = 1 and F'> = oo [6]. However, ) . . .
since the fixed point solution is not unique and BP usually WWe studied a low complexity detection algorithm based on

converges to the worst solution, the BER behavior over tiglief propagation for quantized MIMO systems. Additidpal
SNR might exhibit an error-floor as shown in Fig. 3 for th@ state evolution formalism has been presented to_analyeze th
caseb — 1. The minimum number of bits needed to ensurgerformance of the BP based detector when operating on quan-
perfect detection in the noiseless case, i.e. where thesiecu 1iZ€d data in the large-system limit of fading channels. pose

(@0) evolves to the unique fixed point solution g = 1, S|mulgt|on results was provided, which, in agreement with t

is depicted in Fig[4 as function of the load facter We analytical results, shc_)ws that the BP approach achieved goo
observe that for a system loati< 1 even 2-bit ADCs might performance even with low resolution ADCs and moderate

be sufficient for symmetrical systems. number of antennas.

Fig. 3
BERFORBPSKAS FUNCTION OFcrg FORS = 1 AND DIFFERENT BIT
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