
On Algebraic Traceback in Dynamic Networks
Abhik Das, Shweta Agarwal and Sriram Vishwanath

Department of Electrical & Computer Engineering
University of Texas, Austin, USA

Email: {akdas, shweta.a}@mail.utexas.edu, sriram@austin.utexas.edu

Abstract—This paper introduces the concept of incremental
traceback for determining changes in the trace of a network as it
evolves with time. A distributed algorithm, based on the method-
ology of algebraic traceback developed by Dean et al., is proposed
which can completely determine a path of d nodes/routers (d ∈ N)
using O(d) marked packets, and subsequently determine the
changes in its topology using O(log d) marked packets with high
probability. The algorithm is established to be order-wise optimal
i.e., no other distributed algorithm can determine changes in the
path topology using lesser order of bits (i.e., marked packets).
The algorithm is shown to have a computational complexity of
O(d log d), which is significantly less than that of any existing
non-incremental algorithm of algebraic traceback. Extensions of
this algorithm to settings with node identity spoofing and network
coding are also presented.

Index Terms—Incremental traceback, MANETs.

I. INTRODUCTION

Given the increasing number and forms of attacks on net-
works in recent years, developing efficient counter-measures,
such as traceback, is of significant value. In this paper, we
focus on determining efficient traceback mechanisms for net-
works with time-varying topologies. Settings such as mobile
ad-hoc networks (MANETs) are of particular interest in which
we desire to use traceback towards network management
and countering attacks such as denial-of-service (DoS) attack.
DoS attack is arguably one of the most common forms of
attack on both wire-line and wireless networks, where either
a single attacker or multiple distributed attackers “flood” a
victim’s link with random packets to disrupt the delivery of
legitimate packets. For the Internet, IP traceback is one of
the possible mechanisms for determining the source of this
attack [1] [2]. Similarly, generalized (not necessarily IP-based)
traceback proves useful in determining the origin of attacks
for MANETs. An important point to note is that traceback
may prove useful for purposes other than countering dis-
tributed DoS attacks. For instance, it can be used for network
maintenance purposes [3], for source/route verification and to
determine location of faulty nodes in the network.

Traceback mechanisms have been traditionally studied for
IP-based networks under the name of IP traceback [1]. The
common goal in traceback literature is to perform a post-attack
traceback for an IP-based network to determine the source(s)
of the attack. Our paper’s focus is on dynamic networks (which
may or may not be IP-based) where traceback is preemptively
performed to manage the network and deter possible attacks.
To this end, we desire that the traceback mechanism be
efficient and be able to track changes in the traces quickly with

minimal computation. In this paper, we develop an incremental
traceback mechanism which, after initialization, requires a low
packet and computational overhead to detect and determine
changes in traces of the network.

A. Background on Traceback

As mentioned earlier, a large body of literature on traceback
focuses on IP traceback. However, regardless of the setting,
good traceback mechanisms share some common properties
– they should (a) be partially deployable in the network,
(b) result in little or no change in the router hardware, (c) pro-
vide accurate traceback using a small number of packets,
(d) need as minimal an extent of ISP involvement as possible,
(e) perform well in presence of multiple attack sources and
forms, (f) have a low complexity mechanism for identifying
attackers. These properties also serve as the evaluation metrics
when comparing different traceback approaches.

The importance of the IP traceback problem has led to a
large body of research in the field, resulting in the development
of many interesting traceback mechanisms and methodologies
to date. We briefly describe some of them:

(i) Savage et al. [4] proposed one of the earliest proba-
bilistic traceback mechanisms where routers randomly
mark packets with their partial path information during
the process of packet-forwarding. The main disadvan-
tage of the scheme is the combinatorial computational
complexity of the traceback process.

(ii) Song and Perrig [5] proposed an improved and authen-
ticated packet-marking scheme with the ability to cope
with multiple attacks. However, the traceback process
by any workstation needs the knowledge of its current
upstream router map to all attackers.

(iii) Bellovin et al. [6] developed iTrace, a traceback scheme
where routers randomly send their IP addresses in form
of special packets to the source or destination IP address
of the data packets. The use of special packets generate
additional traffic; besides every workstation has to wait
for long enough time for getting sufficient number of
special packets to carry out traceback.

(iv) Dean et al. [7] suggested a novel algebraic approach to
the IP traceback problem – encoding the IP addresses
of routers a packet passes through, into a polynomial.
This allows reconstruction of the entire path in one go
after getting sufficient number of packets.

(v) Adler [8] gave a detailed theoretical analysis of the
traceback problem, described the tradeoffs of probabilis-

ar
X

iv
:0

90
8.

00
78

v3
 [

cs
.I

T
]

 2
0

Ja
n

20
10

2

tic packet-marking scheme and proposed a 1-bit packet
marking method to counter DoS attack.

(vi) Snoeren et al. [9] proposed SPIE, a mechanism which
tracks every packet through querying of the states of the
upstream routers. However, this requires the routers to
store a large amount of state information.

(vii) Thing and Lee [10] showed that the performance of a
traceback process in a wireless ad-hoc network depends
on the routing protocol and network size.

In this paper, we perform traceback in a continuous manner,
with the goal of ensuring that the destination(s) in a network
stay well informed of the path(s) traversed by the packets
received by them. We desire that the technique used for
traceback is such that each node in the network remains
blind to the global network topology and the changes in it.
Essentially, when a change in topology occurs, we require
that the destination(s) alone detect this change and initiate
an incremental traceback analysis while the remaining nodes
(including the source(s)) remain oblivious to the change.

Towards the end of developing an incremental traceback
mechanism with desired qualities, we use the framework of
algebraic traceback as developed by Dean et al. [7]. Once the
algebraic traceback process is initialized using the algorithm
in [7], we show that O(log d) marked packets and a traceback
algorithm with a computational complexity of O(d log d) op-
erations per execution are sufficient to track the change (node
addition and deletion) in a path involving d nodes (d ∈ N).
Note that, if the non-incremental algebraic traceback process
were repeated each time there is a change in the path, O(d)
marked packets would be required to perform traceback. Next,
we argue that our incremental traceback process is order-wise
optimal in terms of the number of marked packets required
and has a lower computational complexity compared to the
conventional non-incremental traceback processes.

The rest of this paper is organized as follows. Sections II and
III give the system model and a detailed review of the algebraic
traceback mechanism respectively. The incremental traceback
schemes based on different path encoding versions of algebraic
traceback are presented in Sections IV and V. We describe the
traceback procedure for systems employing network-coding in
Section VI. The numerical results are shown in Section VII
and the paper concludes with Section VIII.

II. SYSTEM MODEL

We consider a network represented by a directed graph. The
nodes in the graph (identifiable with routers in the network)
have unique identifiers (IDs) that come from the finite field
GF (p), for some suitable prime number p. A directed edge
between a pair of nodes in the graph represents an error-free
channel. We assume that the transmissions across different
edges do not interfere with each other in any way.

Each node can act as a source, a destination or an intermedi-
ate packet-forwarding node, depending on the communication
pattern in the network. We focus our attention on one such
source and destination, represented in the graph by nodes r1
and D respectively. The source transmit data to the destination

D

D

D

r1 r2 rdrd-1

r1
rdrm-1 s rm

Path P

Node Addition

Node Deletion

r1
rdrm-1

rm+1

rm

Fig. 1. Dynamic behavior of path P

via the path P = (r1, r2, . . . , rd, D). However, this path
may change over the course of the transmission due to the
dynamic nature of the network/graph. We want to develop
an incremental algebraic traceback mechanism that enables
destination D to figure out this change in path P .

We assume that there is the possibility of node-ID spoofing,
i.e., a malicious node in path P misreporting its ID to avoid
detection by destination D. We also limit our incremental
traceback approach to track single node addition and deletion
in path P . This is deliberate, as conventionally, in wireless
networks, the timescale at which routes/paths change (of the
order of seconds) is many orders of magnitude greater than the
timescale of data transmission (of the order of milliseconds or
less). Thus, any one change can be detected before additional
changes occur in a path. Our algorithm and analysis framework
can be naturally extended to scenarios when multiple nodes
can enter or leave path P . The assumption also makes the
algorithm description and proofs much more intuitive and
concise, and therefore we focus on this simple case.

III. REVIEW: ALGEBRAIC TRACEBACK

In this section, we present certain relevant aspects of al-
gebraic traceback as developed by Dean et al. [7]. The idea
behind this traceback scheme is that a polynomial of degree
n in GF (p) is completely determinable using (n + 1) of its
evaluations at distinct points in GF (p). Though originally
designed for IP traceback to counter DoS attack, the approach
can be generalized to traceback in non-IP based networks.

A. Deterministic Path Encoding

The deterministic path encoding scheme is used when no
node-ID spoofing is suspected. The packet marking process is
initiated by the first node that encounters the packet (source
node, which is r1 for path P). We include a flag-bit field
and hop-count field (with initial values 0) in each packet
in the network – the flag-bit and hop-count values are set
to 1 when a packet is marked, otherwise the flag-bit value
remains unchanged and each node following the source node
just increments the hop-count by 1. In path P , when node

3

r1 initiates the process of marking a packet (with some
probability, say q1), it encodes a value-pair (x, y) into it, where
x is chosen randomly from GF (p) and y = r1. If node ri
(i = 2, . . . , d) encounters a marked packet, it uses the values
x, y, ri to update the value of y as follows:

y ← y · x+ ri. (1)

Hence, any marked packet received by destination D has a
value-pair of the form (x, y(x)) encoded in it, where

y(x) =

d−1∑
i=0

rd−ix
i.

If destination D receives d value-pairs (xi, y(xi)), i =
1, 2, . . . , d, where xi 6= xj ∀i 6= j, path P can be recon-
structed by solving the following matrix equation:

1 x1 x21 . . . xd−11

1 x2 x22 . . . xd−12
...

...
...

. . .
...

1 xd x2d . . . xd−1d




rd
rd−1

...
r1

 =


y(x1)
y(x2)

...
y(xd)

 .

The value of d is obtained from the hop-count field of
the marked packets. The resulting matrix in the equation
is a full-rank Vandermonde matrix, and thus the system of
equations can be solved in O(d2) operations. Thus, path P is
determinable using d marked packets, provided the x-values
encoded in them are distinct. This can be ensured with high
probability by making the source r1 keep a record of the x-
values it has used while marking packets, thereby avoiding
re-use of the x-values until the marking of at least p packets.
Therefore, choosing a large enough p can ensure that O(d)
marked packets are sufficient for retrieval of path P .

B. Randomized Path Encoding

The deterministic path encoding scheme may be infeasible
if node-ID spoofing is possible and/or the first node to receive
a packet is unsure if it is indeed the source node (for example,
if r1 does not know it is the source node in path P). Then
we require a probabilistic traceback mechanism to address this
situation. For path P , node r1 initiates marking of the packet as
before (with probability q1), but now each intermediate node ri
(i = 2, . . . , d) clears an existing marking, if any, and re-marks
a packet with probability qi. Else, with probability (1 − qi),
each node ri just follows the update mechanism as given by
(1). The following pseudo-code summarizes this procedure:
Marking scheme at node ri:

for each packet w
with probability qi

x = random;
y = ri;
flagbit = 1;
hopcount = 1;

otherwise if flagbit = 1
y ← y · x+ ri;
hopcount← hopcount+ 1;

We assign non-trivial values to the marking probabilities
qi, i = 1, 2, . . . , d such that the traceback process remains ac-
curate while not requiring a very large overhead. For example,
[7] examines the case when qi = q ∈ (0, 1) ∀i. Then, apart
from marked packets with value-pairs corresponding to path
P , there are marked packets with value-pairs corresponding
to sub-paths Pi = (ri+1, ri+2, . . . , rd), i = 1, 2, . . . , d − 1,
as well. A marked packet received by destination D has a
value-pair of the form (x, y(x)) where

y(x) =

k∑
i=0

rd−ix
i, k = 0, 1, . . . , d− 1.

These marked packets can be segregated, in terms of the sub-
paths their value-pairs correspond to, on the basis of their hop-
count values1, as a hop count of i (< d) implies that the value-
pair is for Pd−i and, consequently, a hop-count of d implies
that the value-pair is for path P . Using this, the sub-paths and
therefore, the entire path P can be reconstructed after getting
sufficient number of marked packets, in a manner similar to
deterministic path encoding. The x-values across nodes can
be maintained as distinct values (to ensure invertibility of the
resulting matrix at the destination) by requiring that the nodes
with non-zero marking probabilities keep a track of the x-
values they use while marking packets and only reuse values
when all elements in GF (p) have been exhausted.

Suppose fi, i = 1, 2, . . . , d be defined as the fraction of
packets marked by node ri and received by destination D,
then fi can be expressed in terms of qi, i = 1, 2, . . . , d, as

fi =

{
qi
∏d
j=i+1(1− qj) if i 6= d

qd if i = d

with the fraction of unmarked packets given by f0 = 1 −
(
∑d
i=1 fi) =

∏d
i=1(1−qi). This makes the fraction of marked

packets coming from source r1 to be f1
1−f0 , i.e., one out of

d 1−f0f1
e marked packets is from node r1 on an average. Since d

marked packets from node r1 with distinct x-values are needed
for determining path P , an average of dd 1−f0f1

e marked packets
needs to be received by destination D to ensure that d packets
among them have value-pairs corresponding to path P .

If qi = q ∀i, we have f0 = (1− q)d and f1 = q(1− q)d−1,
which gives the average number of marked packets as

d

⌈
1− f0
f1

⌉
= d

⌈
1− (1− q)d

q(1− q)d−1

⌉
= d

⌈
d−1∑
i=0

1

(1− q)i

⌉
.

As q → 0, the above quantity goes to d2. Hence, if q is chosen
reasonably small, an average of O(d2) marked packets are
sufficient for determining path P . But f0 is large for small
q, which is inefficient as then destination D has to wait for a
longer time to receive sufficient number of marked packets for
performing traceback. Thus, there is a tradeoff in the value of
q. Even for the general case of marking probabilities, dd 1−f0f1

e

1For simplicity, we assume that the hop-count field is not attacked. If this
field is attackable, then alternate mechanisms for path reconstruction exist
such as the Guruswami-Sudan algorithm based mechanism presented in [7].

4

becomes smaller as f0 and f1 become large. But f0 cannot be
very large, causing a tradeoff. Regardless of this tradeoff, an
average of O

(
d(1−f0f1

)
)

marked packets is necessary.

IV. INC. TRACEBACK: DETERMINISTIC PATH ENCODING

In this section, we present an incremental traceback ap-
proach, based on the methodology of deterministic path encod-
ing. We adopt the same encoding/marking procedure i.e., the
source node initiates the packet marking process. As discussed
earlier, path P can be ascertained using O(d) marked packets
with a computational complexity of O(d2). Our interest is in
the case when this initial process has occurred, and then path
P changes due to node addition or deletion. A conventional
traceback mechanism would repeat the traceback procedure
again, i.e., destination D would wait until it receives O(d)
marked packets again, reconstruct the modified path and
then determine where the change has occurred. This scheme
proves to be inefficient – the number of marked packets and
computational load incurred remains the same. The proposed
incremental traceback method makes use of the fact that path
P is known to destination D (due to an initial traceback
process) to determine the change using O(log d) marked
packets with a computational complexity of O(d log d).

The change in topology of path P involves either addition
or deletion of a single node, which can be detected using the
hop-count value of a marked packet – it changes from d to
(d+1) for node addition and to (d−1) for node deletion. We
examine these two cases separately.

A. Node Addition

Note again that the encoding process remains the same
as before (as in Section III-A). In incremental traceback, all
that changes is the decoding algorithm at the destination D.
Suppose a node with ID s gets added to path P in the mth
position, 1 ≤ m ≤ d + 1 (1st position refers to the position
before node r1 and (d + 1)th position refers to the position
after node rd). Then the new packets have value-pairs of the
form (x, z(x)) encoded in them, where

z(x) = am(x) + xd−m+1(s+ xbm(x)). (2)

ak(x) and bk(x) are polynomials given by

ak(x) =

{
rd + rd−1x+ . . .+ rkx

d−k if k 6= d+ 1
0 if k = d+ 1

(3)

bk(x) =

{
rk−1 + rk−2x+ . . .+ r1x

k−2 if k 6= 1
0 if k = 1

(4)

for k = 1, 2, . . . , d + 1. These polynomials are known to
destination D from the usual traceback performed previously,
which gives r1, r2, . . . , rd. The polynomials also satisfy

y(x) =

d−1∑
i=0

rd−ix
i = ak(x) + xd−k+1bk(x)

∀k, where y(x) refers to the y-value of the marked packet
received by destination D prior to addition of node s.

Suppose (xi, zi), i = 1, 2, . . . , l, are the value-pairs encoded
in l marked packets received after the addition of s in path P .
We consider the following set of equations:

zj = ak(xj) + xd−k+1
j (s+ xjbk(xj)), 1 ≤ j ≤ l. (5)

From (2), the set of equations is consistent for k = m. For k 6=
m, the set of equations is not consistent with high probability
(this is established by Theorem 1 below). We make use of
this property to design an incremental traceback algorithm for
destination D as follows:
Algorithm I

(i) Construct a (d+ 1)× l matrix Ŝ = [ŝkj] where

ŝkj =
zj − ak(xj)
xd−k+1
j

− xjbk(xj).

(ii) If there exists a unique row in Ŝ with equal elements,
say the m̂th row, declare that the new node is in m̂th
position with ID ŝ = ŝm̂j , 1 ≤ j ≤ l.

(iii) If there exists more than one row in Ŝ with equal
elements, declare that an error has occurred. Wait for
more value-pairs to arrive through marked packets, say
(xi, zi), i = l + 1, . . . , l + ε, where ε is an integer of
smaller order compared to l. Repeat the algorithm using
the value-pairs (xi, zi), i = ε + 1, . . . , l + ε. Theorem
1 below shows that the algorithm terminates with high
probability while obtaining the correct node ID.

Theorem 1: A newly added node in path P can be identified
by destination D using l = O(log d) marked packets and
Algorithm I, with a computational complexity of O(d log d).
Proof: From (5), it is clear that all elements of the mth row of
Ŝ will be equal. If this is the only such row, we have the correct
new node position and ID s = ŝmj , 1 ≤ j ≤ l. An error occurs
if there exists another row i 6= m such that all elements of
the ith row are equal as well. To determine the probability
of this happening, we note that xj is chosen uniformly over
GF (p). This makes ŝkj uniform for any k 6= m, since each
ŝkj is purely a function of xj . So, ŝij , j = 1, 2, . . . , l is an
i.i.d. uniform random process. This gives

Pr(ŝij = ŝij′) =
1

p
= 2− log2 p

for any 1 ≤ j, j′ ≤ l and j 6= j′. Let Ei be the event that
all elements of the ith row of Ŝ are same. Then we have
Pr(Ei) = 2−l log2 p for i 6= m, since there are l elements in
each row. The probability of error is

Pe = Pr(∪i 6=mEi) ≤ dPr(Ei) = 2log2 d−l log2 p

where the inequality above is due to the union bound. Pe can
be made arbitrarily small if log2 d − l log2 p can be made as
negative as possible. If we require that l > log2 d

log2 p
, then this can

be satisfied. Thus, we choose l = d log2 d
log2 p

+ δe, where δ ∈ N
is a small constant. Then Pe gets upper-bounded as

Pe ≤ 2log2 d−l log2 p =
1

pδ
2log2 d−log2 pd

log2 d
log2 p e ≤ 1

pδ

5

where the second inequality follows from the fact that a −
bdab e ≤ 0 ∀a, b ∈ R, b 6= 0. By choosing a large enough
value for p, Pe can be bounded above by any arbitrary small
positive value. In other words, l = O(log d) is sufficient for
determining the newly added node correctly.

Since the algorithm relies on the computation of Ŝ which
has (d+1)l entries, we get a complexity of O(d log d) (since
l = O(log d)). This completes our proof.

B. Node Deletion

Suppose node rm (1 ≤ m ≤ d) gets deleted from path P ,
leaving behind d − 1 nodes. Then the new marked packets
carry value-pairs of the form (x,w(x)), where

w(x) = am(x)− xd−m(rm − bm(x)). (6)

ak(x) and bk(x) are polynomials as defined in (3) and (4).
Suppose (xi, wi), i = 1, 2, . . . , l be the received value-pairs

from l marked packets received after deletion of node rm. We
consider the following set of equations:

wj = w(xj) = ak(xj)− xd−kj (rk − bk(xj)), 1 ≤ j ≤ l. (7)

From (6), the set of equations is consistent for k = m. For k 6=
m, the set of equations is not consistent with high probability
(proved in Theorem 2). We make use this property to design
an incremental traceback algorithm for destination D, for the
case of node deletion, as follows:
Algorithm II

(i) Construct a d× l matrix R̂ = [r̂kj] where

r̂kj = bk(x)−
wj − ak(xj)

xd−kj

.

(ii) If there exists a unique row in R̂ with equal elements,
say the m̂th row, declare that the deleted node was in
m̂th position with ID r̂ = r̂m̂j , 1 ≤ j ≤ l.

(iii) If there exists more than one row in R̂ with equal
elements, declare that an error has occurred. Wait to
receive more value-pairs through marked packets, say
(xi, wi), i = l + 1, . . . , l + ε, where ε is an integer of
smaller order compared to l. Repeat the algorithm using
the value-pairs (xi, zi), i = ε + 1, . . . , l + ε. Theorem
2 below shows that the algorithm terminates with high
probability while obtaining the correct node ID.

Theorem 2: A deleted node in path P can be identified
by destination D using l = O(log d) marked packets and
Algorithm II, with a computational complexity of O(d log d).
Proof: From (7), all elements of the mth row of R̂ will be
equal. If this is the only such row, we have the correct deleted
node ID rm = r̂mj , 1 ≤ j ≤ l. An error occurs if there exists
another row i 6= m such that all elements of the ith row are
equal as well. Using the same argument as in the proof of
Theorem 1, we get r̂ij , j = 1, 2, . . . , l to be an i.i.d. uniform
random process. This gives

Pr(r̂ij = r̂ij′) =
1

p
= 2− log2 p

for 1 ≤ j, j′ ≤ l and j 6= j′. Let Ei be the event that all ele-
ments of the ith row of R̂ are same. Then Pr(Ei) = 2−l log2 p

for i 6= m, and the probability of error is

Pe = Pr(∪i 6=mEi) ≤ (d− 1)Pr(Ei) < 2log2 d−l log2 p

where the inequality is again due to union bound. Since the
upper-bound of Pe is same as that for the case of node addi-
tion, using the same approach as in the proof of Theorem 1, we
conclude that Pe can be bounded above by any arbitrary small
positive value and l = O(log d) is sufficient for determining
the deleted node’s location and ID with high probability. Since
the algorithm makes use of R̂, which has dl entries, this results
in a computational complexity of O(d log d) (l = O(log d)).
This completes our proof.

Thus, be it node addition or deletion, O(log d) marked
packets are always sufficient for destination D to determine
the change in path P accurately. Before we proceed to ran-
domized traceback algorithms, a quick note on the order-wise
optimality of Algorithms I and II. Note that, from principles of
information theory [11], it is well known that the entropy of a
uniform source with an alphabet of size k is log2 k bits. Thus,
even if a centralized mechanism existed to communicate the
location of the node being inserted/deleted, it would require
O(log2 d) bits to do so, as there are d equally likely places
for the change. Our distributed mechanism uses d log2 d

log2 p
+ δe

packets or approximately 2(log2 d + δ log2 p) bits. Thus, in
terms of the order of growth of network overhead in d, the
incremental traceback mechanism is order-wise optimal.

V. INC. TRACEBACK: RANDOMIZED PATH ENCODING

In this section, we present an incremental traceback ap-
proach, useful when node-ID spoofing is suspected, utilizing
the randomized path encoding framework. In this setup, each
packet decides to clear any existing marks and re-initiate the
marking process with some probability qi. As multiple nodes
on path P now act as source nodes, we receive different
(sub) polynomial evaluations across time. The marked packets
carry value-pairs corresponding to both sub-paths Pi, i =
1, 2, . . . , d − 1 and of the entire path P . As described in
Section III-B, path P can be initially determined using an
average of O

(
d(1−f0f1

)
)

marked packets with a computational
complexity of at least O(d2). Once path P is known to the
destination, we show that it possible to track its changes using
lesser number of marked packets with lower complexity.

Due to the random nature of packet-marking, one cannot
immediately ascertain if node addition or node deletion has
occurred from the hop-count value of the marked packets.
So, we need to consider both the possibilities jointly in our
analysis. If a node with ID s gets added to path P , the value-
pair of a new marked packet has information about s encoded
in it, provided it has traversed a sub-path containing node s.
Similarly, if node rm is removed from path P , only those
marked packets that traverse sub-paths that contained node
rm prior to its deletion can provide information about rm.

Note that the number of marked packets required to detect
a change (addition or deletion) in path P is highest when the

6

change occurs in the first position of the path i.e., either when
node r1 gets deleted or a new node gets added before it. In
such a situation, the marked packets that are useful in tracking
this change are ones that are marked by the first node and by
no other node along the new path, which we call P ′. Let
f ′i denote the fraction of packets received by the destination
and marked by the ith node in path P ′. Then, the fraction
of marked packets originating at the first node along path
path P ′ is f ′

1

1−f ′
0

where f ′0 = 1 − (
∑
i≥1 f

′
i) is the fraction

of unmarked packets. This implies that, from an average of
ld 1−f

′
0

f ′
1
e new marked packets received by the destination after

a change (addition or deletion in the path), l marked packets
with the highest hop-counts are likely to come from the node
in the first position on path P ′. In the following sections,
we show that l = O(log d) is sufficient to determine the ID,
position and nature of the change in the path P , given that the
destination already has knowledge of the path P .

Let us start with the assumption that a new node s gets
added at the mth position in path P (1 ≤ m ≤ d+1), Now, a
marked packet with hop-count h, where d−m+2 ≤ h ≤ d+1,
contains information that includes the ID s. Therefore, the
value-pair for this packet can be rewritten as

z(x) = am(x) + xd−m+1(s+ xbm,h(x)). (8)

ak(x) is defined as in (3) and bk,h(x) is defined as

bk,h(x) = rk−1 + rk−2x+ . . .+ rd−h+2x
k−d+h−3

for k = d−h+2, . . . , d+1 and bk,h(x) = 0 for k = d−h+2.
Similarly, if node rm (1 ≤ m ≤ d) is deleted from path P ,
then a marked packet with hop-count h, where d−m+ 1 ≤
h ≤ d− 1 contains value-pair (x,w(x)) such that

w(x) = am(x)− xd−m(rm − bm,h+2(x)). (9)

Depending on whether a node gets added or deleted in
path P , path P ′ has d + 1 or d − 1 nodes respectively.
Note that, if there is no change in P , we have P ′ = P .
So, f ′0 and f ′1 can take three possible values, one is the
unchanged f0 and f1, the other two values result from a
change in P (node addition and node deletion). Let F0 and F1

denote those values of f ′0 and f ′1 that maximizes 1−f ′
0

f ′
1

among
these three choices. Suppose (xi, zi), i = 1, 2, . . . , l are the
value-pairs of the marked packets with the highest hop-count
values, say hi, i = 1, 2, . . . , l, among ld 1−F0

F1
e marked packets

received by the destination. Then, by an expected/average
value argument, these l packets are marked by nodes close
to node r1 and possess information about the change in path
P . If hi = d + 1 for some i, it means there has been node
addition but if hi ≤ d ∀i, we cannot conclude anything and
have to consider both the possibilities of node addition and
node deletion. We propose the following incremental traceback
algorithm for destination D to determine change in path P:
Algorithm III

(i) Construct a (d+ 1)× l matrix Ŝ = [ŝkj] where

ŝkj =
zj − ak(xj)
xd−k+1
j

− xjbk,hj (xj)

for k ≥ d− hj + 2 and ŝkj = 0 otherwise.
(ii) If there exists a unique row in Ŝ, say the m̂th row, such

that all non-zero elements (there should be atleast two
non-zero elements) of the row are equal, declare that
there is a new node added in m̂th position with ID ŝ
equal to the non-zero element value.

(iii) If there exists more than one row in Ŝ with equal non-
zero elements, declare that an error has occurred. Wait to
get more value-pairs with high hop-count values through
marked packets. Repeat (i), (ii) using these and some of
the earlier value-pairs (l value-pairs in all).

(iv) If there exists no row in Ŝ with equal non-zero elements,
construct a d× l matrix R̂ = [r̂kj] where

r̂kj = bk,hj+2(x)−
zj − ak(xj)

xd−kj

for k ≥ d− hj + 1 and r̂kj = 0 otherwise.
(v) If there exists a unique row in R̂, say the m̂th row, such

that all non-zero elements of the row are equal, declare
that the node in m̂th position has been deleted with ID
equal to the non-zero element value.

(vi) If there exists more than one row in R̂ with equal non-
zero elements, declare that an error has occurred. Wait to
get more value-pairs with high hop-count values through
marked packets. Repeat (iv), (v) using these and some
of the earlier value-pairs (l value-pairs in all).

(vii) If there exists no row in R̂ with equal non-zero elements,
declare that there has been no change in P .

Theorem 3: Any change in path P can be identified by
destination D using l = O(log d) marked packets, containing
information about the change encoded in them, and Algorithm
III with a computational complexity of O(d log d).
Proof: The cases of node addition and node deletion cannot
return positive results simultaneously i.e., both Ŝ and R̂ cannot
have unique rows with their non-zero elements equal. Since
the value-pairs from the l marked packets are assumed to
possess information about the change in P , equality of all the
elements, not the non-zero elements alone, of some row of R̂
or Ŝ would confirm the change (from (8) and (9)). So, we need
to show that, for node addition (node deletion), the existence
of more than one row in Ŝ (R̂) with equal elements is highly
improbable for l = O(log d). Note that this is exactly what
we have already established as part of the proofs of Theorems
1 and 2. Also, Algorithm III requires evaluating both R̂ and Ŝ
in the worst-case situation, each of which has a computational
complexity of O(d log d). This gives an overall complexity of
O(d log d). This completes our proof.

Thus, l = O(log d) marked packets, with the informa-
tion of path change encoded in them, and an average of
O
(
(log d)(1−F0

F1
)
)

marked packets in general, are sufficient
to determine the correct change in topology of P .

A. Reducing the requirement on number of marked packets

In this section, we develop two schemes that enable us to
reduce the average order of marked packets needed to perform

7

probabilistic traceback. If qi = q ∀i, then f0 = (1 − q)d,
f1 = q(1− q)d−1 and

1− f0
f1

=
1− (1− q)d

q(1− q)d−1
=

d−1∑
i=0

1

(1− q)i
. (10)

Since the quantity in (10) increases with d, we have 1−F0

F1
=∑d

i=0
1

(1−q)i , which approaches (d + 1) as q → 0. So,
if q is chosen arbitrarily small, an average of O(d log d)
marked packets are sufficient for determining any change in
P . However, a small q implies a larger value for f0, and thus
there is a tradeoff between the two parameters.

To reduce the average number of marked packets, we must
attempt to make each of the fi values comparable to one
another for this. One way this can be done is through requiring
that the marking probability of a packet be dependent on
the hop-count, i.e., higher the hop-count value of a packet,
lesser is the probability that a node marks it. So, we have
qi = q(h) where h is the hop-count of a packet and
q : N → [0, 1) is a non-increasing function in h. This gives
f1 = q(1)

∏d
i=2(1 − q(i)) and f0 =

∏d
i=1(1 − q(i)) for P .

Next, we present two packet marking schemes with the aim
of reducing the average number of marked packets needed for
incremental probabilistic traceback.

1) Scheme 1: We consider a constant h0 ∈ N and the
following marking-probability function:

q(h) =

{
q ∈ (0, 1) if 1 ≤ h ≤ h0

0 otherwise

This gives f1 = q(1− q)h0−1, f0 = (1− q)h0 and

1− f0
f1

=
1− (1− q)h0

q(1− q)h0−1
=

h0−1∑
i=0

1

(1− q)i
(11)

for d ≥ h0. As q → 0, the quantity in (11) goes to h0. So,
the average order of marked packets becomes O(h0 log d) =
O(log d) for d ≥ h0. Next, we substitute q = 1

h0
and get:

1− F0

F1
= h0

1−
(
1− 1

h0

)h0

(
1− 1

h0

)h0−1

 (12)

for d ≥ h0. As h0 increases, the numerator and denominator
of (12) approach 1− 1

e and 1
e respectively. This makes 1−F0

F1
≈

(e− 1)h0. Also F0 ≈ 1
e i.e., about 37% of the packets remain

unmarked in this scheme.
2) Scheme 2: We consider the same constant h0 and the

following marking-probability function:

q(h) =

{
αh α ∈ (0, 1), 1 ≤ h ≤ h0
0 otherwise

This gives f1 = α
∏h0

i=2(1− αi), f0 =
∏h0

i=1(1− αi) and

1− f0
f1

= 1 +
1

α

[
1∏h0

i=2(1− αi)
− 1

]
(13)

for d ≥ h0. As α → 0, the ratio in (13) goes to 1 and the
average number of marked packets in the system is O(log d)

for d ≥ h0. Note that there is a tradeoff in the choice of α -
if it is small, then the fraction of unmarked packets is large.
For α ∈ (0, 12] and h0 ≥ 3, we get

1− F0

F1
≈ 1 +

α

(1− α)(1− α3)
. (14)

As α varies from very small to 1
2 , the quantity in (14) varies

from 1 to 2 1
7 and the fraction of unmarked packets changes

from close to 100% to around 30%.
Thus, with an intelligent choice of marking probabilities,

we can reduce the overall network overhead incurred.

VI. TRACEBACK FOR NETWORK CODING

In the previous sections, we have focused only on a single
path P with source node r1 and destination D. However, a
general graph can have a multicast set-up with a source com-
municating to more than one destinations. In such a situation,
adopting schemes such as network coding can help increase
the set of rates achievable by the sources in the network. We
use the algebraic traceback framework in this paper to develop
a non-incremental (and incremental) mechanism of performing
traceback in network coded systems.

To better motivate our traceback mechanism, we start with a
simple unicast communication setup without network coding.
Here, one source communicates with only one destination
through a number of paths (Sections I through V have con-
sidered the case where there is just one path that is being
traced). Note that, for unicast communication, network coding
is not required and the Ford-Fulkerson algorithm [12] gives
us routes that achieve capacity. For a network with unit
capacity links and a mincut of R, Ford-Fulkerson returns
R distinct paths from source to destination. We labels these
paths as Li, i = 1, 2, . . . , R and the goal of traceback is to
determine the identities of the nodes involved along each path
at the destination. Note that, if the network mincut is R, the
destination receives at least R packets at every time instant.
Here, we assume that the destination can determine which path
Li a particular packet traversed. For example, if each path were
along a different OFDM sub-channel (in a MANET), then our
assumption implies that the destination can identify the sub-
channel through which each packet is received. Now, both the
non-incremental and incremental traceback schemes described
in Sections III, IV and V can be performed individually on
each of the Li’s separately, and nodes along all R paths
between source and destination can be identified.

Next, consider a multicast setup where in-network coding is
used. In other words, there are nodes which generate (random)
linear combinations of packets which they receive, and forward
these combinations. We desire to develop a marking scheme
that will enable us to trace the path taken by the source packet
even after being linearly combined at the intermediate node
with other packets. To make our strategy concrete, we take the
well-known ‘butterfly’ network as an example for our graph
(Figure 2). Note that our traceback procedure is in no way
limited to this butterfly network and can be generalized to
other multicast networks employing network coding.

8

S S

C CE E

A

B

A1A2

B2 B1

D1 D1
D2D2

p q

p

p

q

q

p+q

p+q p+q

Butterfly Network Virtual Network

(a) (b)

Fig. 2. The butterfly network and its equivalent virtual network

In Figure 2, S is the source node and D1 and D2 are
the destination nodes. The paths which are used by packets
originating from S to D1 are SCD1, SEABD1 and from S to
D2 are SED2, SCABD2 for communicating with D2. Note
that the min-cut for this network is 2 bits, a rate of 2 for both
(S,D1) and (S,D2) is achievable using network coding. To
develop our traceback procedure, consider the virtual network
in Figure 2-b where nodes A and B get split into two new
node-pairs (A1, A2) and (B1, B2). In this virtual network, the
same rate of 2 is achievable for both (S,D1) and (S,D2)
without network coding. Moreover, Ford-Fulkerson (routing)
is sufficient to achieve capacity, and a traditional algebraic
packet marking scheme is sufficient to perform traceback.
Thus, for the original network in Figure 2-a, we desire to
“mimic” the virtual network in Figure 2-b. Say (x1, y1) and
(x2, y2) are the value-pairs received by A from C and E
respectively, Then A chooses one of the value-pairs with some
probability, say (xi, yi), and updates it using its own ID a,
to get (xi, y

′
i), where y′i ← yi · xi + a. To ensure that the

same path is not chosen every time, node A may change the
probability of selection in every time-slot. When the chosen
value-pair is received by the other nodes, the same policy as
traditional marking is followed. In this way a destination can
determine the paths to all the sources. For example, destination
D1 can determine the paths SCD1, SEABD1 and SCABD1.
Thus, every destination can recreate the network subgraph
corresponding to packets it observes.

A. Faulty/Malicious Nodes in Network-Coded Systems

As described above, a destination in a network-coded sys-
tem traces a subgraph instead of a path traversed by a packet.
Here, we describe an approach to identify a malicious/faulty
node in such a network. We restrict our attention to the case
in which a single node in the network is faulty or malicious;
this approach can be extended to the more general case.

The broad idea is that routing can be performed in such
a way that the subgraph traversed by packets from a set

of sources to a given destination evolves over time. More
precisely, if at time t1, the subgraph G1 traversed by packets
originating at sources S1 and S2 and ending at a destination D
is different from the subgraph G2 traversed between sources
S1, S2 and destination D at time t2, then the intersection of
G1 and G2 is small. So, if this subgraph evolves so that
it is different at different time-slots, then for each time-slot
that decoding fails (due to some node in the subgraph being
malicious or faulty), the subgraph traversed during that time-
slot can be isolated and intersected with subgraphs of other
such time-slots (when decoding failed). This will enable the
receiver to identify a small set of nodes (in the intersection)
as candidates for the malfunctioning/malicious node.

The subgraph creation needs to be done carefully, so that
every k subgraphs (for some chosen k) have a nonempty
but not too large intersection. We defer the details of such
a construction to a future version of the paper.

VII. NUMERICAL RESULTS

In this section, we present some numerical results on the
number of market packets required to successfully perform
algebraic traceback. We consider a network where the nodes
have 16-bit long IDs. This means the order p of the prime
field, where the identities come from, should be greater than
216 − 1. We assume p = 216 +1, which is the smallest prime
greater than 216 − 1. Then for deterministic path encoding,
for a dynamic path P of length d the number of marked
packets needed for determining the path initially is d. As
derived in Section IV, the number of marked packets needed
for determining the change in path P , once its topology is
known, is given by l = d log2 d

log2 p
+ δe, where δ ∈ N is a

constant which determines the rate with which the (union)
upper-bound of the probability of error decays with p. We
choose δ = 2, which upper-bounds the probability of error by
1
p2 , which is approximately 2−32 for our case. Figure 3 makes
the comparison between the number of marked packets needed
for the usual non-incremental traceback and the incremental
version for deterministic path encoding. As observed, the
incremental version of traceback proves to be better - the
number of marked packets is far smaller and the rate of growth
of marked packets needed, with d increasing, is also smaller
than non-incremental traceback.

The average number of marked packets needed for random-
ized path encoding for both the non-incremental and incre-
mental traceback versions is also shown in Figure 3. Here, we
consider the case when the nodes mark packets independently
of each other with probability q = 0.04 (qi = q ∀i). This
gives f0 = (1 − q)d = (0.96)d and f1 = q(1 − q)d−1 =
0.04(0.96)d−1. The average number of marked packets needed
by the conventional traceback is d

(
1−f0
f1

)
and the average

number of packets needed by the incremental traceback is
d log2 d
log2 p

+ 2e
(

1−F0

F1

)
. In this case, the average number of

marked packets needed for incremental traceback increases
significantly compared to the deterministic path encoding case,
but it is still less than the number needed by conventional

9

5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

d (Length of path P)

N
u

m
b

e
r

o
f
m

a
rk

e
d

 p
a
c
k
e
ts

 r
e

q
u

ir
e
d

Deterministic (Conventional)

Deterministic (Incremental)

Randomized (Conventional)

Randomized (Incremental)

Fig. 3. Comparison of the number of marked packets needed for determining
P for both deterministic and randomized full path encoding versions.

randomized path encoding version of traceback.
We next analyze the performances of Schemes 1 and 2

(Section V-A) in reducing the average order of marked packets
needed and compare it with the scheme in [7] i.e., where all
nodes mark packets with same probability (let us call this
Scheme 0). For both the Schemes 1 and 2, we assume h0 = 5
i.e., once a node sees a marked packet of hop-count 5 or more,
it does not mark it. We consider q = 0.2 for Scheme 0 and
1, α = 0.5 for Scheme 2. Then for d ≥ h0 = 5, the fraction
of unmarked packets are 32% and 30% for Schemes 1 and
2 respectively, which seems reasonable. Figure 4 depicts the
variation of 1−F0

F1
with d. Clearly for Schemes 1 and 2, the

value becomes a constant while for Scheme 0, it continues to
grow in value. Thus, Schemes 1 and 2 reduce the average order
of number of marked packets needed to perform traceback.

VIII. CONCLUSION AND REMARKS

In this paper, we present a mechanism of performing incre-
mental algebraic traceback in networks with a topology that
is changing much slower than its rate of communication. We
initialize the system using an established algebraic traceback
mechanism, and then track the network as it evolves using
an efficient incremental traceback mechanism. The decoding
process is altered from a traditional traceback scheme. This
decoding mechanism actively searches for a change in network
topology in the incoming packets, and when one is detected,
it determines what the change is (insertion or deletion), where
it has occurred in the network and what the new ID, if any,
of the inserted node is. We also show that, for the case with
no ID spoofing among nodes, the resulting algorithm requires
O(log d) marked packets and a complexity of O(d log d) be-
fore it can declare success in determining the ID of the change
in a path of d nodes. We also show, very straightforwardly,
that this packet overhead is order-wise optimal.

5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

d (Length of path P)

(1
−

F
0
)/

F
1

Scheme 0

Scheme 1

Scheme 2

Fig. 4. Comparison of the quantity (1 − F0)/F1 and its variation with
respect to d for various marking schemes.

Note that our proof mechanisms closely resemble random
coding proofs in information theory for discrete additive mem-
oryless channels. Algorithms I through III can be viewed as
“achievability” proofs from conventional information theory,
while, in this case, the converse is straightforward. A final
remark is that, when we swap a more stringent probability
1 (zero error) requirement for tracking the changing path in
a dynamic network with a arbitrarily small error constraint,
the resulting time taken and complexity of the incremental
traceback algorithm decreases substantially.

REFERENCES

[1] A. Belenky and N. Ansari, “On IP Traceback,” IEEE Communications
Magazine, Vol. 41, Issue 7, pp. 142-153, July 2003.

[2] H. Burch and B. Cheswick, “Tracing Anonymous Packets to their
Approximate Source,” Unpublished paper, Dec. 1999.

[3] I.Y. Kim and K.C. Kim, “A Resource-Efficient IP Traceback Technique
for Mobile Ad-hoc Networks Based on Time-Tagged Bloom Filter,”
ACM International Conference on Convergence and Hybrid Information
Technology (ICCIT), Vol. 2, pp. 549-554, 2008.

[4] S. Savage, D. Wetherall, A. Karlin and T. Anderson, “Practical Network
Support for IP Traceback,” ACM SIGCOMM, Aug. 2000.

[5] D. Song and A. Perrig, “Advanced and Authenticated Marking Schemes
for IP Traceback,” IEEE INFOCOM, Vol. 2, pp. 878-886, Apr. 2001.

[6] S.M. Bellovin, M. Leech and T. Taylor, “The ICMP Traceback Message,”
Internet draft available at http://www.cs.columbia.edu/∼smb/papers/draft-
ietf-itrace-04.txt (work in progress), Oct. 2001.

[7] D. Dean, M. Franklin and A. Stubblefield, “An Algebraic Approach to
IP Traceback,” ACM Transactions on Information and System Security
(TISSEC), Vol. 5, Issue 2, pp. 119-137, May 2002.

[8] M. Adler, “Tradeoffs in Probabilistic Packet Marking for IP Traceback,”
ACM Symposium on Theory of Computing (STOC), 2002.

[9] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tchakountio,
S.T. Kent, and W.T. Strayer, “Hash-Based IP Traceback,” IEEE/ACM
Transactions on Networking (TON), Vol. 10, Issue 6, Dec. 2002.

[10] V.L.L. Thing and H.C.J. Lee, “IP Traceback for Wireless Ad-hoc
Networks,” IEEE VTC, Vol. 5, pp. 3286-3290, Sept. 2004.

[11] T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd
Edition, Wiley Series in Telecommunications and Signal Processing.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to
Algorithms, 2nd Edition, MIT Press and McGrawHill.

	I Introduction
	I-A Background on Traceback

	II System Model
	III Review: Algebraic Traceback
	III-A Deterministic Path Encoding
	III-B Randomized Path Encoding

	IV Inc. Traceback: Deterministic Path Encoding
	IV-A Node Addition
	IV-B Node Deletion

	V Inc. Traceback: Randomized Path Encoding
	V-A Reducing the requirement on number of marked packets
	V-A1 Scheme 1
	V-A2 Scheme 2

	VI Traceback for Network Coding
	VI-A Faulty/Malicious Nodes in Network-Coded Systems

	VII Numerical Results
	VIII Conclusion and Remarks
	References

