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Abstract—Due to the broadcast nature of the wireless medium,
wireless networks are highly susceptible to jamming attacks. Such
attacks are often studied in a game theoretic framework under
the assumption of uninterrupted traffic subject to continuous
jamming opportunities. Instead, we analyze the effect of dynam-
ically changing traffic on jamming games for power controlled
medium access. Random packet arrivals raise the possibility that
the transmitter queues may be empty when jamming attacks
start and thus waste the energy of jammers. We consider a non-
cooperative game in which transmitters and jammers select their
transmission power to balance the transmission cost subject to
delay and energy constraints. We show that jammers incur a
significant performance loss when they do not have knowledge of
transmitter queue states. Dynamic traffic increases the immunity
to jamming attacks and gives insights into defense mechanisms.

Index Terms—Jamming; Non-cooperative game; Power con-
trol; Medium access control; Queue stability; Energy; Delay.

I. INTRODUCTION

Wireless networks are inherently based on broadcast trans-
missions thereby increasing their vulnerability to denial of
service attacks via jamming at the medium access control
(MAC) layer. Such jamming problems can be modeled as a
non-cooperative game [1]–[10] in which “selfish” transmitters
try to maximize their own performance, while “malicious”
jamming nodes attempt to degrade the system performance.

It is typically assumed that the (selfish) transmitters always
have packets available to transmit. However, in most networks,
packet traffic will vary dynamically, i.e., transmitters may
receive bursty traffic from applications or may receive random
traffic to be relayed. With dynamic traffic, a jammer will
only be successful when the transmitter queues are not empty.
However, in a distributed wireless network, jammers may not
have access to the queue state of transmitters, and transmitters
may benefit from concealing this information from jammers.
In this paper we consider game theoretic models for jamming
in wireless networks with dynamic traffic and asses the effect
of random traffic on the effectiveness of jamming attacks.
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We assume that transmitters are sending randomly arriving
traffic to receivers and jammers attempt to interfere with these
transmissions in form of a denial of service attack. We assume
a power controlled MAC where nodes select their individual
transmission powers. The interactions between transmitters
and jammers are modeled as a non-cooperative game. In these
games, each transmitter seeks to minimize its average energy
cost subject to a target rate constraint, which can be modeled
as an upper bound on the average packet delay. On the other
hand, each jammer seeks to maximize the average energy costs
of transmitters subject to its own average energy constraint.

We start by focusing on a single transmitter-jammer pair at
one receiver and subsequently generalize the model to arbitrary
sets of transmitters and jammers communicating to a single
receiver and then to multiple channels and receivers. In the
latter cases, we allow a transmitter-jammer pair to choose at
which channels and receivers they transmit and interfere. In
each case, we compare the performance when jammers know
the queue state of transmitters and do not.

This performance is measured by evaluating the Nash
equilibrium strategies of the resulting games and calculating
the maximum feasible throughput of the selfish nodes in stable
operation. We show that jammers experience performance loss
(i.e., the feasible throughput is larger and the average energy
cost is smaller for transmitters) without knowledge of whether
the transmitter queues are empty or not, i.e., traffic uncertainty
is beneficial to transmitters in power control games (Similar
results apply to other MAC models, e.g., random access games
where nodes select their transmission probabilities [8].). This
phenomenon is similar to the performance loss of jammers
under type uncertainty [9], i.e., when nodes do not know
whether the opponents are selfish or malicious.

In terms of related work, an information-theoretic frame-
work has been considered in [1], where a transmitter-jammer
pair balances the mutual information as the objective function.
The model has been extended as a non-cooperative game to
MIMO fading channels [2] and to MAC channels with two
users in the presence of a jammer [3]. The energy cost has
been incorporated into jamming games over multiple Gaussian
channels in [4], where the jammer signal is treated as noise,



and the effects of random channels on jamming games have
been analyzed in [5]. In addition, power control games have
been considered in [6], [7] where transmitters and jammers
choose their transmission powers to balance their throughput
rewards and energy costs. All this previous work was based
on the common assumption of backlogged transmitters.

The rest of this paper is organized as follows. Section II
introduces the system model for one transmitter-jammer pair
at a single receiver. The case without queue state information
at the jammer is studied in Section III and it is followed in
Section IV by the case where the jammer has access to the
transmitter’s queue state information. Section V imposes an
average packet delay constraint on the equilibrium strategies
derived in Sections III-IV, and the feasible rate performance is
compared. Then, we extend the analysis to an arbitrary number
of transmitters and jammers in Section VI, and we consider the
case with multiple channels at different receivers in Section
VII. We conclude the paper in Section VIII.

II. SINGLE TRANSMITTER-JAMMER PAIR MODEL

We start by examining a scenario with one transmitter (node
1) and one jammer (node 2). Packets randomly arrive at node
1 and are buffered in a queue until they can be transmitted
to a single receiver over a single channel. Node 2 does not
have its own traffic and simply wants to jam the transmissions
of node 1. We make two simplifying assumptions: (A1) we
assume a synchronous slotted system, in which each packet
transmission (or jamming attempt) takes one time slot, and
(A2) we assume that the packet arrivals are independent and
identically distributed over time with rate λ (packets per slot).1

We consider a non-cooperative game in which the two nodes
are players. Each player i spreads their signal over a common
frequency band with power Pi and treats interference as noise.
The objectives of node 1 are: (i) to meet a target minimum
rate constraint r(λ,D) which could depend on a Quality of
Service parameter D,2 and (ii) minimize the average energy
cost subject to constraint (i). The objectives of node 2 are: (i)
to maximize the average transmission cost of node 1, and (ii)
satisfy an upper bound E2 on its own average energy cost.

Node 1 transmits with power P1 only if it has a packet in
its queue. Node 2 transmits at a constant power P2 creating
interference that is treated as noise by node 1. We model the
resulting service rate using the Shannon rate:

µ(P1, P2) =
1

2
log2

(

1 +
h1P1

h2P2 +N

)

, (1)

where hi is the channel gain for user i and N is the noise

1Both of these limit the ability of the jammer; for example. (A1) precludes
the jammer from waiting to detect the start of a transmission before jamming,
while (A2) makes it more difficult for the jammer to infer the queue state of
the transmitter than, for example, a case where packets arrive in batches.

2In Section V, we look at a specific model where D corresponds to a packet
delay constraint, however the following results hold for any such function for
which r(λ,D) > λ, which ensures that when this constraint is satisfied, node
1’s queue is stable.

power.3 The transmission energy cost of node i = 1, 2 is the
power Pi, whenever node i transmits. All parameters hi, Ei,
i = 1, 2, and N are fixed and known to each node.

III. NO QUEUE STATE INFORMATION AT JAMMER

We assume that jammer node 2 does not know whether
transmitter node 1 has a packet to transmit, or not. We consider
a one-shot game in which the jammer chooses a fixed strategy
P2 for all time. Packets of node 1 are served with rate
µ(P1, P2) given by (1). The probability that there exists a
packet in node 1’s queue is given by the utilization factor

λ
µ(P1,P2)

according to Little’s result [12]. Node 1’s average
transmission cost is λ

µ(P1,P2)
P1. Hence, node 1’s objective in

the game is to solve the following optimization problem

max
P1≥0

u1(P1, P2) := − λ

µ(P1, P2)
P1

subject to µ(P1, P2) ≥ r(λ,D). (2)

Node 2 chooses power P2 ≥ 0 to maximize the average
energy cost of node 1 subject to its own energy constraint
P2 ≤ E2, namely solves the following optimization problem

max
P2≥0

u2(P1, P2) :=
λ

µ(P1, P2)
P1

subject to P2 ≤ E2. (3)

We characterize the outcome of this game by finding the
Nash equilibrium strategies P ∗

i of node i = 1, 2, which satisfy

ui(P
∗
i , P

∗
−i) ≥ ui(Pi, P

∗
−i), (P ∗

i , P
∗
−i) ∈ C, i = 1, 2, (4)

for any strategy Pi, i = 1, 2, where P−i is the strategy of the
node other than node i and C is the constraint set given by

C = {Pi ≥ 0, i = 1, 2, µ(P1, P2) ≥ r(λ,D), P2 ≤ E2}. (5)

At Nash equilibrium, node 2 continuously transmits with
the largest possible power P2 = E2 that satisfies the average
energy constraint. Given a choice of P2, node 1’s utility is
strictly decreasing in P1 and so node 1 will select its power
P1 to satisfy µ1(P1, P2) = r(λ,D). Hence, in this case there
is always a unique Nash equilibrium given by

P ∗
1 =

1

h1

(

22r(λ,D) − 1
)

(h2E2 +N), P ∗
2 = E2. (6)

The model assumes that the jammer transmits with a fixed
power P2. If the jammer chooses P2 randomly, the utility
functions need to be formulated as expected payoffs over
P2. In that case, the jammer seeks to maximize its expected
utility E[u2(P1, P2)] or to minimize the expected service rate
E[µ(P1, P2)] of the transmitter, where the expectation is taken
over P2. Since µ(P1, P2) is convex in P2, E[µ(P1, P2)] ≥
µ(P1, E[P2]) follows from Jensen’s inequality. Therefore, the

3This rate can be approached only under sufficiently long blocks of codes.
However, the performance gap of practical codes from the information-
theoretic limits is small for fading channels with sufficiently long coherence
times [11]. We use (1) as the maximum reference rate. The results would
extend to other (suboptimal) rate formulations depending on the Signal-to-
Interference-plus-Noise-Ratio given by h1P1

h2P2+N
.



average service rate cannot be reduced by randomizing P2

and the best strategy for the jammer is to choose a fixed
transmission power under the average energy constraint.

Next, we introduce an average energy constraint E1 on node
1 given by λ

r(λ,D)P1 ≤ E1 (since it transmits with power P1

with probability λ
r(λ,D) only when its queue is not empty).

Then, from (6) the set of node 1’s feasible rates S is

S =

{

λ ≥ 0 : λ ≤ h1E1r(λ,D)
(

22r(λ,D) − 1
)

(h2E2 +N)

}

. (7)

If the arrival rate is not feasible, then the transmitter cannot
satisfy the target rate and delay constraints, and the Nash
equilibrium does not exist for the jamming game.

IV. QUEUE STATE INFORMATION AT JAMMER

Now we turn to the case, where the jammer node 2 knows
whether transmitter node 1 has a packet to transmit, or not.
This also includes the special case when the transmitter queue
is backlogged. In this case, node 2 can adjust its strategy so as
to conserve energy (by not transmitting) when node 1 does not
have a packet. Node 2 transmits with power P2 ≥ 0 only if the
queue of node 1 is not empty, which occurs with probability

λ
µ(P1,P2)

; otherwise, node 2 stays idle. Therefore, node 2 now
seeks to solve the following optimization problem

max
P2≥0

u2(P1, P2) :=
λ

µ(P1, P2)
P1

subject to
λ

µ(P1, P2)
P2 ≤ E2. (8)

This is accomplished by choosing the largest possible P2.
Node 1 faces the same objective as in (2) and thus again will
choose P1 to satisfy µ(P1, P2) = r(λ,D). Hence, the unique
Nash equilibrium for this game is given by

P ∗
1 =

1

h1

(

22r(λ,D) − 1
)

(

h2E2
r(λ,D)

λ
+N

)

, (9)

P ∗
2 = E2

r(λ,D)

λ
. (10)

Given the average energy constraint λ
r(λ,D)P1 ≤ E1, the set

of feasible arrival rates for node 1 is given by

S =

{

λ ≥ 0 : λ ≤ h1E1r(λ,D)
(

22r(λ,D) − 1
) (

h2E2
r(λ,D)

λ
+N

)

}

. (11)

The maximum feasible rate in (11) is smaller than the
maximum feasible rate in (7), showing that the jamming attack
is more effective given the queue state information. The stable
rates in (7) and (11) approach each other, as λ increases to
r(λ,D). In this limit, the transmitter queue becomes saturated
and so queue state information is of little value.

V. JAMMING GAMES UNDER A DELAY CONSTRAINT

In this section, we examine a simple model for relating
the target rate constraint r(λ,D) in the previous games to
an average delay constraint D. This provides an example to
show how the resulting equilibria may vary depending on

such a delay constraint. The service time of node 1’s packets
is deterministic and given by µ(P1, P2). Then, with Poisson
arrivals node 1’s packets can be viewed as waiting in a M/D/1
queue. Using the Pollaczek-Khinchin formula [12], the average
total packet delay T (λ, P1, P2) is given by

T (λ, P1, P2) =
2µ(P1, P2)− λ

2µ(P1, P2)(µ(P1, P2)− λ)
. (12)

Hence, the delay constraint T (λ, P1, P2) ≤ D corresponds
to the service rate constraint µ(P1, P2) ≥ r(λ,D), where

r(λ,D) =
λD + 1 +

√
λ2D2 + 1

2D
. (13)

The maximum feasible throughput rates (7) and (11) are
compared in Figure 1. The transmitter can significantly im-
prove its maximum feasible throughput if the jammer does not
know the transmitter queue state and when the delay constraint
is small. However, this rate improvement decreases and the
maximum feasible rate for the two cases approach each other,
as D increases and the transmitter queue becomes backlogged.
A similar behavior is also observed as h2 decreases such that
the jamming effect disappears.
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1

with queue information (E1 = 20, E2 = 10)

1

without queue information (E1 = 10, E2 = 10)

1

with queue information (E1 = 10, E2 = 10)

1

without queue information (E1 = 1, E2 = 10)

1

with queue information (E1 = 1, E2 = 10)

1

Fig. 1. The maximum feasible throughput for h1 = 1, h2 = 1, and N = 0.1.

VI. EXTENSION TO AN ARBITRARY NUMBER OF NODES

Next we consider nT nodes transmitting to a single receiver
and nJ jammer nodes with the objectives of interfering with
the packet transmissions. We assume a symmetric system, in
which the transmitters and jammers are subject to common
average energy costs ET and EJ , respectively. The total arrival
rate is λ and it is equally shared by nT transmitters. Each
transmitter is subject to the same target rate constraint of
r( λ

nT
, D), which again could depend on a delay parameter

D. We focus on characterizing symmetric equilibria, under
which all transmitters or jammers chose the same strategy.

All transmitters and jammers transmit with powers PT and
PJ over channels with gains hT and hJ , respectively. The
service rate of any transmitter queue is given by

µ(PT , PJ ) =
1

2
log2

(

1 +
hTPT

P̃ (PT , PJ )

)

, (14)



where the total interference and noise power, P̃ , is

P̃ (PT , PJ) = hT (nT − 1)PT + hJ nJPJ +N. (15)

The symmetric equilibrium strategy for any transmitter is

P ∗
T =

1

hT

(

2
2r
(

λ
nT

,D

)

− 1
)

P̃ (P ∗
T , P

∗
J ), (16)

and the symmetric equilibrium strategy for any jammer is

P ∗
J = EJ , (17)

if jammers do not have the queue state information of the
transmitters. Otherwise, jammers transmit with higher power

P ∗
J =

EJ nT r
(

λ
nT

, D
)

λ
. (18)

Hence, as with the single transmitter-jammer pair model,
the transmission power of jammers is increased compared to
the case without queue state information. This reduces the
maximum feasible rates of the transmitters (each with average
energy constraint ET ), as shown in Figure 2 for nT = 1.
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Fig. 2. The maximum feasible throughput for ET = 10, EJ = 10, hT = 1,
hJ = 1, and N = 0.1.

VII. JAMMING AT MULTIPLE RECEIVERS

We now extend the model in Section II (for a single
transmitter-jammer pair) to one with n receivers with inde-
pendent channels from transmitter node 1 and jammer node
2. Node 1 allocates its transmission resources among these n
channels and node 2 attempts to jam the transmissions on each
channel. Node 2 is limited by an average cost over all chan-
nels. This may also model transmissions to a single receiver
over multiple sub-carriers as in orthogonal frequency division
multiplexing (OFDM) systems. Node 1 buffers the incoming
packets to be transmitted on each channel i ∈ {1, ..., n} in a
separate queue with arrival rate λi and service rate µi. The
packet traffic is split to the individual channels (e.g., with
different priorities or Quality of Service requirements) such
that

∑n

i=1 λi = λ. We assume that the packets transmitted on
channel i are subject to the target service rate ri(λi, Di).

A. Fixed Traffic Rates on Channels
First, we assume that the traffic rates {λi}ni=1 and delay

constraints {Di}ni=1 are predetermined with the target service
rates {ri(λi, Di)}ni=1 so that we have λi < ri(λi, Di) for each
channel i = 1, ..., n. The service rate on channel i is given by

µi(P1,i, P2,i) =
1

2
log2

(

1 +
h1,iP1,i

h2,iP2,i +Ni

)

, (19)

where Pj,i and hj,i are the transmission power and the gain of
node j on channel i, respectively, and Ni is the noise power on
channel i. All these system parameters are fixed and known to
both nodes. Node 1 chooses the transmission powers P1,i ≥ 0,
i = 1, ..., n, to maximize the utility

u1 ({P1,i, P2,i}ni=1) = −
n
∑

i=1

λi

µi(P1,i, P2,i)
P1,i

subject to µi(P1,i, P2,i) ≥ ri(λi, Di).(20)

Given the equilibrium power P ∗
2,i of node 2, node 1 chooses

in Nash equilibrium the smallest possible power P ∗
1,i =

(22ri(λi,Di)−1)
(

h2,iP
∗

2,i+Ni

h1,i

)

to satisfy the rate constraint on
each channel i with equality, i.e., µ(P ∗

1,i, P
∗
2,i) = ri(λi, Di).

If node 2 does not know whether node 1 has a packet to
transmit on each channel or not, it maximizes the utility

u2 ({P1,i, P2,i}ni=1) =

n
∑

i=1

λi

µi(P1,i, P2,i)
P1,i

subject to
n
∑

i=1

P2,i ≤ E2. (21)

If equilibrium strategies P ∗
1,i and P ∗

2,i satisfy µ(P ∗
1,i, P

∗
2,i) =

ri(λi, Di), average energy is
∑n

i=1 f1(λi, Di)
(

P ∗
2,i+

Ni

h2,i

)

for

node 1, where f1(λi, Di) =
(22ri(λi,Di)−1) h2,i

hi,1

(

λi

ri(λi,Di)

)

.
From (20), node 2 assigns all available power to one particular
channel i∗ to maximize node 1’s average energy:

P ∗
2,i∗ = E2 for i∗ = arg max

i=1,...,n
f1(λi, Di), (22)

If node 2 knows whenever node 1 has a packet to transmit
on each channel, then the utility of node 2 is changed to

u2 ({P1,i, P2,i}ni=1) =

n
∑

i=1

λi

µi(P1,i, P2,i)
P1,i

subject to
n
∑

i=1

λi

µi(P1,i, P2,i)
P2,i ≤ E2. (23)

The jammer assigns all power to a particular channel i∗:

P ∗
2,i∗ = E2

ri∗(λi∗ , Di∗)

λi∗
for i∗ = arg max

i=1,...,n
f2(λi, Di), (24)

where f2(λi, Di) =
(22ri(λi,Di)−1) h2,i

hi,1
such that node 1’s

average energy is written as
∑n

i=1 f2(λi, Di)
(

P ∗
2,i +

Ni

h2,i

)

,
In both cases with and without queue state information at

the jammer, if i∗ is not unique in (22) and (24), the jammer
divides its power arbitrarily among channels i∗. For P ∗

2,i given
by (22) or (24), node 1 chooses P ∗

1,i to satisfy the target rate
constraint on each channel i with equality.



B. Optimal Traffic Rates on Channels

Next, we consider the case in which node 1 further
optimizes the channel rates {λi}ni=1. Node 1 chooses the
transmission powers {P1,i}ni=1 and channel rates {λi}ni=1,
where P1,i ≥ 0, λi ≥ 0 and

∑n

i=1 λi = λ, to maximize
the utility u1 ({P1,i, λi, P2,i}ni=1) = −

∑n

i=1
λi

µi(P1,i,P2,i)
P1,i,

where P1,i = (22ri(λi,Di) − 1)
(h2,iP2,i+Ni

h1,i

)

, subject to
µi(P1,i, P2,i) ≥ ri(λi, Di) and λi < µi(P1,i, P2,i).

If node 2 does not have the queue state information, it maxi-
mizes the utility u2 ({P1,i, λi, P2,i}ni=1) =

∑n

i=1
λi

ri(λi,Di)
P1,i

subject to
∑n

i=1 P2,i ≤ E2. In Nash equilibrium, node 1
chooses {λi}ni=1 to make node 2 indifferent to its strategies
{P2,i}ni=1. This is realized by choosing the multiplying terms
{f1(λi, Di)}ni=1 of {P2,i}ni=1 in utility u2 ({P1,i, λi, P2,i}ni=1)
equal to each other subject to

∑n

i=1 λi = λ. At Nash equi-
librium node 2 chooses {P ∗

2,i}ni=1 such that
∑n

i=1 P
∗
2,i = E2

and the equilibrium strategies {λ∗
i }ni=1 of node 1 minimize its

average energy cost
∑n

i=1 f1(λi, Di)
(

P ∗
2,i +

Ni

h2,i

)

.
If the jammer has the queue state information, the energy

constraint is changed to
∑n

i=1
λi

µi(P1,i,P2,i)
P2,i ≤ E2 and

f1(λi, Di) is replaced by f2(λi, Di), as given in Section VII-
A. In both cases, node 1 chooses P1,i to satisfy µi(P1,i, P

∗
2,i) =

ri(λ
∗
i , Di) for the equilibrium strategies P ∗

2,i and λ∗
i .

For illustration purposes, we consider two receivers. The
Nash equilibrium solutions are shown in Figures 3 and 4 for
different gains h1,2 of node 1 on channel 2, where λ = 1,
E2 = 1, h1,1 = h2,1 = h2,2 = 1, Ni = 0.1 and Di = D,
i = 1, 2. The results again show that the jamming attack is
less successful, if the packet traffic is random and the jammer
does not know node 1’s queue state information. Node 1
assigns higher traffic rate to a channel with larger gain. As
the channel gains approach each other, the rate assignments
become equivalent and the total transmission power of node
1 decreases. If the queue state information is not available at
jammer, the total power of node 1 (to sustain the target rate
and delay) is smaller for all channel gains, and the feasible rate
increases, which indicates a performance loss for the jammer.
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Fig. 3. The equilibrium channel rates of node 1 (where D = 5).
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Fig. 4. The total equilibrium transmission power of node 1.

VIII. CONCLUSIONS

We studied the effects of dynamic traffic on jamming attacks
in power controlled MAC. The Nash equilibrium is evaluated
for jamming games with delay and energy cost constraints.
The results show significant performance loss for jammers
(i.e., transmitters improve feasible throughput) if they do not
know the queue state information. Dynamic traffic serves as an
example that wireless networks are more immune to jamming
attacks under uncertainty. This model should be extended to
network layer attacks, where the jammer performance depends
on the instantaneous availability of packet flows.
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