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Abstract—Compressed sensing of sparse sources can be imsubject to the constraint = Ax. This minimization problem
proved by incorporating prior knowledge of the source. In this  can be solved efficiently by casting it into a problem of linea
paper we demonstrate a method for optimal selection of weigh o4 ramming. It has recently been shown thaminimization
in weighted ¢; norm minimization for a noiseless reconstruction .
model, and show the improvements in compression that can be also allows perfect reconstruction of sparse sources H], [
achieved. with high probability for large systems provided that the

compression rate is larger than a certain threshold valug

I. INTRODUCTION Furthermore a sharp transition between perfect and imgterfe

Compressed sensing research has the aim of improving fREONStruction is observed at = a., which we call the
efficiency and reliability of source estimation when the mem COMPression threshold.

of measurements taken is smaller than the number of degree¥/e shall consider weighted norms, in which each compo-

of freedom in the source. Although somewhat counterinvejti "eNt in the suml{2) has a different coefficient (weight). The
it turns out that, given some special structure in the squitce consideration of non-uniform weights has been motivated by
is possible to reconstruct accurately all source comparf@ht Bayesian and topological arguments, algorithmic studre a

Owing to the fundamental nature of the problem, it is ndpuch empirical evidence. Numerous results indicate that us

surprising that research and methodology span a numberPbpon-uniform weights can reduce the compression threshol

fields such as image processing, topology, multi-user tetec guarantee opt_imal_ity in a probabilistic sense, or otheswis

and convex optimizatior [2]/ T3]/ [4]15]16]. In this agie mProve algorithmic performancel [10]. [11]. [12]. [13]. A

we also apply methods developed initially within physitmtt 10P0lody based method able to place bounds on weighted

have recently been applied to compressed sensind [7]9B], [reconstructlon was receptly proposed, and_ dgmonstrayed fo
In the canonical model, a real-valued vectorconstitutes the case of a source with two blocks of distinct density of

observations of a real-valued source veotBrvia a measure- NON-Z€ro components [31

ment matrixA as 1. PROBLEM

0
y =Ax". (1) A. Reconstruction with marginal density information

The dimension ofy is M and the dimension ofk® is The problem we address is the following: given a mean
N(> M). The parametenr = M/N quantifies the number density of non-zero components, and some additional prior
of observations per the degree of freedom of the source, dAtprmation on the distribution of non-zero componentsyho
we call it the compression rate. The problem of compressean the weights be chosen so as to minimize the number of
sensing is to reconstruct the sousc® from the observations measurements required to reliably reconstruct the sowsiog u

y and the measurement matcik weighted?; norm (w-/1) minimization.

When the compression rate is smaller than one, the We assume a standard model framework in which compo-
problem amounts to solving an ill-conditioned set of linedtents ofA are independent and identically-distributed random
equations and hence its solution is not unique. However,Vigriables; drawn from a symmetric distribution of finite ivar
the source is suitably structured, then such structuralrinf ance and higher-order moments without finite probabilitgsna
mation may be utilized to overcome the ill-conditionednesat the origin, the Gaussian distribution being one inteitase.
One example is sparsity, whereby the source has many z&fge observationy are also random variables, determined as
components. For reconstruction of sparse sources it is ndyactions of the measurement matrix and a random source
well known that providedh is not too small an accurate re-through [1).

construction of the source’ may be achieved by minimizing In the standard sparse problem a fractibr: p < 1 of all
the ¢, norm source components are non-zero, this subset being selected

]| :Z|xi| (2) uniformly at random. It is instead assumed in this article
! p that a (potentially distinct) marginal probability is knovior


http://arxiv.org/abs/1001.1873v2

every component in the source, so thdtis non-zero with concentrated on valuesthat solve the weighted minimization
probability 0 < p; < 1 independently of other componentsproblem [4). We further define a generating function in the
We call the parameter; the density of componetit The prior large-system limit and its expectation value with respect t
is therefore measurements

N 1 5 :

P) =] [piSG) + (1= poad)] . @ S=fBN)=—gglsz f=lm [ Baylf] "

i=1 6
where S(z?) is the conditional prior ofz? given that it is The function f(5,N) is linearly related to a generalized
non-zero. The conditional priaf(z?) is assumed unknown Version of the mutual information between the source and the
to the observer, but it should have finite moments and sho@servations [14]/[15]. .
not have finite probability weight at? = 0. The densities ~ Statistics on wé, solutions are extracted from, or f, by
{p:} encode prior information about sparsity of the source, afélding small perturbations to the model posterior and gakin
assumed available to the observer, and will be called margiflerivatives. Consider adding a small perturbatiofih|x —
density information. This definition covers the case of kloc X"|I3 to the exponent off{5), whereby the normalizatign
structured sources, wherein a source is divided into sets¥W depends ot as well. Here,| - ||, denotes the’; norm.
components according to their densities, including twekéo The normalized mean square error (MSE) with respect to the

as a special case. model posterior[{5) is given by
To each source component is also associated a weight o ona ;)
0. The estimate of the source is obtained as a solution to an N7 E[|lx —x"||3] = %lgb %f(ﬂ,N) ; (7)

optimization problem: minimization of the weightéd norm which in the limit 3 — co gives the normalized MSE of the

. . w-¢; solution. If MSE is evaluated to be zero, this implies that
o <Z wi|xi|> subjectto  y=Ax. (4) e w+, minimization is sufficient for perfect reconstruction.
A ) o o An analysis off is problematic owing to its definition in
We note irrespective of weighting a trivial lower bound oRerms of random measurement parameters, but we mitigate for
the compression required for perfect reconstruction> p.  this by studying the asymptotics. Many interesting stesst
The lower bound is easily achieved, by a matrix invers§,cn as MSE, are found to teelf-averaging- the statistics
operation, When_ the positions of all zeros in the source &grived from f for almost ally and A converge to those
known — or equivalently all the densitigs are extremal) gerived from for large N. We thus analyze the expectation
or 1. Any variation from these extremal values for fixed value f in place of the random obje¢t, expressing the former
increases the uncertainty in the source values, and so will 3, analytic form at leading orders iV and j3, thereby
increase the compression threshold. demonstrating conditions for perfect reconstruction.
The principal results in this article are regarding: In our analysis we assume, besides the self-averaging
(1) The compression threshald for perfect reconstruction, property, the validity of exchanging order of limits. We Wil
with high probability, given a set of weights; solve the problem by the replica method, which introduces
(2) The assignment of weights, as a function of the margin@irther heuristic assumptions - theplica symmetric(RS)
densities, that achieves a minimal, and the value of splution is developed. We are unable to verify rigorousighea
this minimum. assumption, but the methodology is a standard 6ne [7], [8],
[1I. ANALYSIS FOR W-/; MINIMIZATION [Q], and a catalogue of successes indicates the resultinhere_
should be treated as exact. Some closely related results in

compressed sensingl [7] are already known to coincide with
Rather than directly finding and classifying minima of thehose of rigorous methodologiés [4].

w-¢; minimization problem, an auxiliary probability distribu-

tion may be introduced, for which thmaximum a posteriori B. The replica method

(MAP) solutions are equivalent to the solutions of the opti- The expectation with respect to the random variatiles (6) is
mization problem. A parametet is introduced to soften the taken by a standard approach. The generating function may

probability distribution and to allow application of antity finally be expressed in an extremization form, as
methods, and this is finally taken to be large so as to recover

the posterior mean coincident with the MAP solution as well f — Extr,, , 4. 5.4 {aw T+ — 4 XX
as the solution of the w; minimization. The probability is . X 22

the model posterior B {/ ((1 = )8 (@) wle (AT wi )

P(x]y, A) = %6(Ax—y) exp (—BZwI%I) (5) + piS(xO)wfe((\/EHmxo)/wi,@) mdxo}} . (8)

A. Overview

where Z is the normalization for the probability distribution.where DX = (27r)‘1/2e‘k2/2d/\ is a standard Gaussian mea-
In the limit of large 5 the probability measure will be sure, whereg,, ,,3[---] = N~* Zf;l(---) is an empirical



average with respect to the densities and weights of soufc@mework, by analysis of (12) an@{13). The final 'replicon’

components, and where the functief, -) is defined as eigenvalue can indicate a failure of the RS assumptioniyigld
(Ja| - 1)2 (8), but cannot be derived frorhl(8). When the RS assumption
e(a,b) = —T®(|a| >1). (9) fails in this sense, a symmetry breaking approximation khou
be required.

A solution is the extremum where the partial derivativeshwit Stability within the RS framework requires that a small fluc-

respect to the six order parameters are zero, and the séf-0f §§ation in the order parameters of the right-hand siddof (12
consistent equations describing the order parametersiegic 5 [13) decays to zero under iteration of the equationsliSma

the saddle-point equations. Note that for the special casesgctyations iny and 7~ about the perfect reconstruction
uniform weights and Gaussiai(z?), (8) becomes identical to solution are stable provided that

results derived in the absence of marginal prior knowle@je [
The order parameters for the correct solution [df (8) co- a>g1(x) - (14)

incide with informative quantitiesy is the mean-squared

estimateN —! E[||x||3]; m is the overlap of source and estimatét,Can be seen that fqr Iargg and smal_lﬁ thesg condlt!ons
N-'E[x - x°; and x is a statistic on the pair correlationW'" be met. The replicon eigenvalue is consistent with the

functions. The mean square error ¥ ' E[|x — x°|2] = Stability of the solution.
p—2m+q. _ _ , IV. MAIN RESULTS

The six saddle-point equations are easily reduced to three
equations on the conjugate parameters (denoted byrinag) A- Threshold equations
and x, and further to two equations by identifying= 7. Stability and uniqueness of the perfect reconstruction so-
Given a specific parameterization of the weights and meation implies success of W; reconstruction up to errors
surement process these might be solved numerically. Howest order 1/N, with high probability. The instability criterion
given our noiseless modél (1) it is known that the mean squagemet asa is decreased from one so that there exists a
error will be zero in some range of large and reasonable compression threshold, < 1. A pair of equations describe
weights. This perfect reconstruction solution was founth& the threshold in terms of only one order parameer
unweighted case with /7o = 0 [7], and generalizes to the
weighted case. ac=g1(x) and  g3(x) = g2(%) —g1(x) =0. (15)

We can solve the equations to leading orderljfin. At
leading order many features 6f(z?), the prior on non-zero
components, are inconsequential. It is convenient to define
functions ofy

The latter equality is a consequence [ofl(13) combined with
(I4), and is independent ofi.. Aside from the explicit
dependence o#, there is a dependence on the densities and
weights. The two equationg_(|15) provide implicit expressio
g1(X) = p+E[(1 — pi)2Q(w;)] , (10) for the dependences of the compression threshgldn the
set{p;, w; } of densities and weights.

whereu; = w;/+/ is a rescaled weight, and If one assumes uniform weights, the compression threshold

o 2 exp (—u2/2 a, is described as an implicit function @f by
92(%) = P+ Elpi(u:)?] —E | (1 - Pz‘)ui#
V27 o T 1 1
a, =1+ —exp | =— | |1 -20 | —= , (16)
+E[(1—pi) (1 + (us)*)2Q(us)] (11) 2% 2% N
where Q(z) = [° DX is the conventional Q-function. The@nd _ -
two saddle-point equations may be expressed at leading orde L_ = /2_X exp <_LA) - 20 (L) ) (17)
as . L-p ™ 2X VX
ml =yl ( O‘A > ’ (12) For an inhomogeneous system of fixgd any knowledge
91(X) of the marginal densities constitutes additional infoliorat
and R Incorporation of non-uniform weights introduces addidbn
S o ag2(X) (13) degrees of freedom in the model that can be exploited to
(1(x))? reducea,. It also means that it is necessary to specify the
where the latter equation can be solved numerically. weights according to the given set of densities in order td fin

the optimum value ofy,.

C. Stability criteria

For the RS solution of the replica method a local stabilit
analysis gives necessary criteria for the validity of anluso In order to select optimally the weights, we consider the
tions found, and can be studied by three eigenvalues derivagatimization problem of minimizing the compression thresh
from the full, rather than RS[]8), saddle-point forin J[16]old with respect to the weights. For this purpose we can take
Two eigenvalues relate to instabilities consistent with RS x and{p;} to be fixed parameters and minimiag = ¢; with
saddle-point equatiof](8), and can be evaluated within tBe Respect to the weight§w;} subject to the constraint that

9. Optimization ofa,. by weight selection



is zero (see[(15)). The constraint can be dealt with via the 1 ; : : : . . .

Lagrange multiplier method as oo | 560005
. 5080
{Iﬁlfl)\ (g1 — Ags) - (18) . 08f Simulation ]
g
The derivative with respect to; leads to the following criteria £ 07 T il
2 08 | |
2 pi 1+ g oo g ]
w; exp (us /2 ( + QQ(ui)) =—, (19) 5 06 I 1
( ) 1—p; AV 2 § 05 [ oal Ik
combined with the derivative with respect 4o which reads 04l 02 b 1]
’ ) Optimgl 6(6) """""
1 1+ A I 0 o |
——E [ui(1 = pi) exp(—u; /2)] (% - 2> =0, (20) 03 ‘ ‘ ‘ 0 02 04 06 08 1
v 2m 03 035 04 045 05 055 06 065 0.7
yielding A = 1. Therefore the set of equatioris{19), each of mean density,p

which determines one Welght, are mdependent QWMdpi- Fig. 1. (color online) Compression threshald as a function of density

Using this independence it is possible to optimally qu.é < p < 0.7, 6p = 0.3} for various sw. Four curves are highlighted
the weights for an arbitrary density distributidp;} by the from a range0 < dw < 0.99. The lower hull of all curves indicates the

; ) : i« Minimum a. achievable by optimal weight selection. Inset: The hull bf a
fOllOWIhg procedure. SOIVemg) fou;, and the solution is curves (corresponding to the maximum compression) can h&remted from

a function of p; only. The set of solutiongu;} defines the the unweighted Jw = 0) curve by a simple linear construction.
optimal weights up to the overall scaling. Observing that th
w-{; minimization problems are invariant under the overall
scaling, every weight can be assigned straightforwardly fsrm of (13)
w; = u;. This set of weights will minimizey..
To evaluate the minimum of..,, one observes fron_(1L0) 2 exp (—u?/2)
and [I5) thata, — E[a(p;)] holds, wherea(p:) = pi + pifL=p) 25—
(1 — pi)2Q(us(p;)). This expression can be understood as
if each component of the source, with densjy would V. A TWO-BLOCK EXAMPLE
require a compression rate at leastp) for its perfect re- )
construction, and the lower bound of the total compressidh Setting

rate is the empirical average of this componentwise boundag 4 simple case we consider the source consisting of two
over all components. This interpretation would furtherggess equally-sized blocks labeletd = +1, such that components

a possibly fundamental importance of the quantityp) as i, the block —1 are non-zero with some uniform lower

a measure of some sort of information associated with pRobability than components of block1. A corresponding
random variable that takes non-zero values with probgbiliésymmetry in the weights can be assumed, but weights must
p- One can also confirm, by particularizing our results to thas, e yniform within any block. This case allows a deal of

unweighted system, that(p) gives the compression thresholdyition and has been studied previously owing to its senpl
of the unweighted system with density Thus, evaluation of gt cture 3].

o, for the weighted system only requires the densiies of
the system and the curve(p) for the unweighted system.
Moreover, the curve for the unweighted system is conv
upward, so that Jensen’s inequality tells us thatis below Let the density and the weight of block = +1 be
a(p), except when the density distribution is concentrated gf = 5 + bdp and w, = 1 — bdw, respectively, with
a single point, implying that the Wr minimization improves g§w, 6p > 0. Figure[l demonstrates the result for a variety of
the compression threshold over the unweighted counterparnveight asymmetryyw given a density asymmetgp = 0.3.
It should also be noted that, when a block structure c@ince the density in each block must be(in1) the relevant
be assumed for the source, the minimum is equal to values ofp are confined to the intervdD.3,0.7). Curves for
the compression rate that would be achievable if each blogk< §w < 0.99 are plotted, with four labeled cases, the
were measured separately with the optimum compressigppermost curve being the unweighted case. It can be seen tha
rate for that block and then reconstructed individuallyniro the compression threshold is reduced by allowing asymmetri
other blocks. This observation implies that introductioin owveights, and that the lower envelope of all curves indicates
optimal weights successfully compensates degradatiortaluehe achievable performance by optimal selection amongst th
intermixing of blocks of different densities in measurensen weights. For the systerfp, 1, p_1) = (0.8, 0.2) the midpoint
Finally we can note an interesting asymptotic in the reswf the line connectingp. 1, a(p+1)) and(p_1, a(p_1)) co-
applicable in the case thatis close to one{ small). In this incides with the lower envelope @at= 0.5 corresponding to
case the optimal weights are assigned according to a sietplifthe optimal compression rate for the two-block model.

(21)

& The large-system limit



0.84 : , , , The method relied on the replica method and a saddle-point

Optimally weighted
0.82

Compression rate, a

Unweighted —+— formulation, which although complicated in origin provida
concise and intuitive saddle-point framework from which to
derive results.

0g L | The analysis presented has been verified in experiment and
provides a mechanism that may be immediately incorporated
in practical problems where marginal density informatisn i

0.78 b . - N .
available. A complete description of the replica analysid a
various extensions will be forthcoming in an article under

076 1 | preparation.
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represents the mean threshold from® trials each with independently
generated measurements, error bars are small by compawisionsymbol
size. The data is fitted by? regression.

(1]

C. Numerical verification 2
To test the theory we have generated a number of instances
of the problem for various system sizes and solved these by
linear programming. Components df and non-zero compo-
nents ofx® were sampled from normal distributions. Optimally
weighted, and unweighted; minimization problems were [4]
solved to determine the compression threshold where optima
reconstruction failed. Figulg 2 demonstrates result fova t [5]
block system with a uniform weightingy,; = w_; and
optimized weighting. It can be seen that the thresholds are
distinct with a significant improvement in performance foe t
optimally weighted case. 7]
Results of fitting these numerical data with second-order
polynomials in 1/N, obtained byx? regression, are also 8
plotted in Fig[. Extrapolation to/N — 0 yields an estimate
of the compression threshold. = 0.74273 4+ 0.000 06 for
the optimally weighted case, which is in agreement with the”
analytical resulty, = 0.742 72. The extrapolated result for the[10]
unweighted case. = 0.831 32+0.000 06 is also in agreement
with the analytical resultv. = 0.831 30. [11]

VI. CONCLUSION

This paper has demonstrated a method for optimal selectfof]
of weights in the wé¢; minimization utilizing prior knowledge
about densities, and thereby providing the optimal thrieshd13]
for compression. The result is a simple one with decoupling
structure for source components, and described by a singlg
order parameter in the case of perfect reconstruction. The
threshold in the compression rate for which perfect recanst
tion is possible in a system of known marginal densities can
be straightforwardly derived from the threshold curve foe t
unweighted system with a simple graphical procedure. THS!
work should in future be extended to consider the effect of
noise and of correlations between the source components.
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