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Abstract—Compressed sensing of sparse sources can be im-
proved by incorporating prior knowledge of the source. In this
paper we demonstrate a method for optimal selection of weights
in weighted ℓ1 norm minimization for a noiseless reconstruction
model, and show the improvements in compression that can be
achieved.

I. I NTRODUCTION

Compressed sensing research has the aim of improving the
efficiency and reliability of source estimation when the number
of measurements taken is smaller than the number of degrees
of freedom in the source. Although somewhat counterintuitive,
it turns out that, given some special structure in the source, it
is possible to reconstruct accurately all source components [1].

Owing to the fundamental nature of the problem, it is not
surprising that research and methodology span a number of
fields such as image processing, topology, multi-user detection,
and convex optimization [2], [3], [4], [5], [6]. In this article
we also apply methods developed initially within physics, that
have recently been applied to compressed sensing [7], [8], [9].

In the canonical model, a real-valued vectory constitutes
observations of a real-valued source vectorx

0 via a measure-
ment matrixA as

y = Ax0 . (1)

The dimension ofy is M and the dimension ofx0 is
N(≥ M). The parameterα = M/N quantifies the number
of observations per the degree of freedom of the source, and
we call it the compression rate. The problem of compressed
sensing is to reconstruct the sourcex

0 from the observations
y and the measurement matrixA.

When the compression rateα is smaller than one, the
problem amounts to solving an ill-conditioned set of linear
equations and hence its solution is not unique. However, if
the source is suitably structured, then such structural infor-
mation may be utilized to overcome the ill-conditionedness.
One example is sparsity, whereby the source has many zero
components. For reconstruction of sparse sources it is now
well known that providedα is not too small an accurate re-
construction of the sourcex0 may be achieved by minimizing
the ℓ1 norm

‖x‖
1
=
∑

i

|xi| (2)

subject to the constrainty = Ax. This minimization problem
can be solved efficiently by casting it into a problem of linear
programming. It has recently been shown thatℓ1 minimization
also allows perfect reconstruction of sparse sources [4], [7]
with high probability for large systems provided that the
compression rateα is larger than a certain threshold valueαc.
Furthermore a sharp transition between perfect and imperfect
reconstruction is observed atα = αc, which we call the
compression threshold.

We shall consider weighted norms, in which each compo-
nent in the sum (2) has a different coefficient (weight). The
consideration of non-uniform weights has been motivated by
Bayesian and topological arguments, algorithmic studies and
much empirical evidence. Numerous results indicate that use
of non-uniform weights can reduce the compression threshold,
guarantee optimality in a probabilistic sense, or otherwise
improve algorithmic performance [10], [11], [12], [13]. A
topology based method able to place bounds on weighted
reconstruction was recently proposed, and demonstrated for
the case of a source with two blocks of distinct density of
non-zero components [3].

II. PROBLEM

A. Reconstruction with marginal density information

The problem we address is the following: given a mean
density of non-zero components, and some additional prior
information on the distribution of non-zero components, how
can the weights be chosen so as to minimize the number of
measurements required to reliably reconstruct the source using
weightedℓ1 norm (w-ℓ1) minimization.

We assume a standard model framework in which compo-
nents ofA are independent and identically-distributed random
variables; drawn from a symmetric distribution of finite vari-
ance and higher-order moments without finite probability mass
at the origin, the Gaussian distribution being one intuitive case.
The observationsy are also random variables, determined as
functions of the measurement matrix and a random source
through (1).

In the standard sparse problem a fraction0 < ρ̄ < 1 of all
source components are non-zero, this subset being selected
uniformly at random. It is instead assumed in this article
that a (potentially distinct) marginal probability is known for
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every component in the source, so thatx0
i is non-zero with

probability 0 ≤ ρi ≤ 1 independently of other components.
We call the parameterρi the density of componenti. The prior
is therefore

P (x0) =
N
∏

i=1

[

ρiS(x
0
i ) + (1 − ρi)δ(x

0
i )
]

, (3)

whereS(x0
i ) is the conditional prior ofx0

i given that it is
non-zero. The conditional priorS(x0

i ) is assumed unknown
to the observer, but it should have finite moments and should
not have finite probability weight atx0

i = 0. The densities
{ρi} encode prior information about sparsity of the source, are
assumed available to the observer, and will be called marginal
density information. This definition covers the case of block-
structured sources, wherein a source is divided into sets of
components according to their densities, including two blocks
as a special case.

To each source component is also associated a weightwi >
0. The estimate of the source is obtained as a solution to an
optimization problem: minimization of the weightedℓ1 norm

min
x

(

∑

i

wi|xi|
)

subject to y = Ax . (4)

We note irrespective of weighting a trivial lower bound on
the compression required for perfect reconstruction:αc ≥ ρ̄.
The lower bound is easily achieved, by a matrix inverse
operation, when the positions of all zeros in the source are
known – or equivalently all the densitiesρi are extremal,0
or 1. Any variation from these extremal values for fixed̄ρ
increases the uncertainty in the source values, and so will
increase the compression threshold.

The principal results in this article are regarding:
(1) The compression thresholdαc for perfect reconstruction,

with high probability, given a set of weights;
(2) The assignment of weights, as a function of the marginal

densities, that achieves a minimalαc, and the value of
this minimum.

III. A NALYSIS FOR W-ℓ1 MINIMIZATION

A. Overview

Rather than directly finding and classifying minima of the
w-ℓ1 minimization problem, an auxiliary probability distribu-
tion may be introduced, for which themaximum a posteriori
(MAP) solutions are equivalent to the solutions of the opti-
mization problem. A parameterβ is introduced to soften the
probability distribution and to allow application of analytic
methods, and this is finally taken to be large so as to recover
the posterior mean coincident with the MAP solution as well
as the solution of the w-ℓ1 minimization. The probability is
the model posterior

P (x|y, A) = 1

Z
δ (Ax− y) exp

(

−β
∑

i

wi|xi|
)

(5)

whereZ is the normalization for the probability distribution.
In the limit of large β the probability measure will be

concentrated on valuesx that solve the weighted minimization
problem (4). We further define a generating function in the
large-system limit and its expectation value with respect to
measurements

f = f(β,N) = − 1

βN
logZ, f̄ = lim

β→∞
lim

N→∞
EA,y[f ] .

(6)
The function f(β,N) is linearly related to a generalized
version of the mutual information between the source and the
observations [14], [15].

Statistics on w-ℓ1 solutions are extracted fromf , or f̄ , by
adding small perturbations to the model posterior and taking
derivatives. Consider adding a small perturbation−βh‖x −
x
0‖22 to the exponent of (5), whereby the normalizationZ

now depends onh as well. Here,‖ · ‖2 denotes theℓ2 norm.
The normalized mean square error (MSE) with respect to the
model posterior (5) is given by

N−1
E[‖x− x

0‖22] = lim
h→0

∂

∂h
f(β,N) , (7)

which in the limit β → ∞ gives the normalized MSE of the
w-ℓ1 solution. If MSE is evaluated to be zero, this implies that
the w-ℓ1 minimization is sufficient for perfect reconstruction.

An analysis off is problematic owing to its definition in
terms of random measurement parameters, but we mitigate for
this by studying the asymptotics. Many interesting statistics,
such as MSE, are found to beself-averaging– the statistics
derived from f for almost all y and A converge to those
derived fromf̄ for largeN . We thus analyze the expectation
valuef̄ in place of the random objectf , expressing the former
in an analytic form at leading orders inN and β, thereby
demonstrating conditions for perfect reconstruction.

In our analysis we assume, besides the self-averaging
property, the validity of exchanging order of limits. We will
solve the problem by the replica method, which introduces
further heuristic assumptions - thereplica symmetric(RS)
solution is developed. We are unable to verify rigorously each
assumption, but the methodology is a standard one [7], [8],
[9], and a catalogue of successes indicates the results herein
should be treated as exact. Some closely related results in
compressed sensing [7] are already known to coincide with
those of rigorous methodologies [4].

B. The replica method

The expectation with respect to the random variables (6) is
taken by a standard approach. The generating function may
finally be expressed in an extremization form, as

f̄ = Extrm,χ,q,m̂,χ̂,q̂

{

α
ρ̄− 2m+ q

χ
+mm̂− qq̂

2
+

χχ̂

2

+ E{ρi,wi}

[

∫

(

(1− ρi)δ(x
0)w2

i ǫ(λ
√

χ̂/wi, q̂)

+ ρiS(x
0)w2

i ǫ((
√

χ̂λ+ m̂x0)/wi, q̂)
)

Dλdx0

]}

, (8)

whereDλ = (2π)−1/2e−λ2/2dλ is a standard Gaussian mea-
sure, whereE{ρi, wi}[· · · ] = N−1

∑N
i=1

(· · · ) is an empirical



average with respect to the densities and weights of source
components, and where the functionǫ(·, ·) is defined as

ǫ(a, b) = − (|a| − 1)2

2b
Θ(|a| > 1) . (9)

A solution is the extremum where the partial derivatives with
respect to the six order parameters are zero, and the set of self-
consistent equations describing the order parameters are called
the saddle-point equations. Note that for the special case of
uniform weights and GaussianS(x0

i ), (8) becomes identical to
results derived in the absence of marginal prior knowledge [7].

The order parameters for the correct solution of (8) co-
incide with informative quantities:q is the mean-squared
estimateN−1

E[‖x‖22]; m is the overlap of source and estimate
N−1

E[x · x0]; and χ is a statistic on the pair correlation
functions. The mean square error isN−1

E[‖x − x
0‖22] =

ρ̄− 2m+ q.
The six saddle-point equations are easily reduced to three

equations on the conjugate parameters (denoted by hat)m̂, q̂
and χ̂, and further to two equations by identifyinĝq = m̂.
Given a specific parameterization of the weights and mea-
surement process these might be solved numerically. However,
given our noiseless model (1) it is known that the mean square
error will be zero in some range of largeα, and reasonable
weights. This perfect reconstruction solution was found inthe
unweighted case with1/m̂ = 0 [7], and generalizes to the
weighted case.

We can solve the equations to leading order in1/m̂. At
leading order many features ofS(x0

i ), the prior on non-zero
components, are inconsequential. It is convenient to definetwo
functions ofχ̂

g1(χ̂) = ρ̄+ E[(1 − ρi)2Q(ui)] , (10)

whereui = wi/
√
χ̂ is a rescaled weight, and

g2(χ̂) = ρ̄+ E[ρi(ui)
2]− E

[

(1 − ρi)ui

2 exp
(

−u2
i /2
)

√
2π

]

+ E

[

(1 − ρi)(1 + (ui)
2)2Q(ui)

]

, (11)

whereQ(z) =
∫∞

z Dλ is the conventional Q-function. The
two saddle-point equations may be expressed at leading order
as

m̂−1 = m̂−1

(

α

g1(χ̂)

)−1

, (12)

and

χ̂ = χ̂
αg2(χ̂)

(g1(χ̂))2
, (13)

where the latter equation can be solved numerically.

C. Stability criteria

For the RS solution of the replica method a local stability
analysis gives necessary criteria for the validity of any solu-
tions found, and can be studied by three eigenvalues derived
from the full, rather than RS (8), saddle-point form [16].
Two eigenvalues relate to instabilities consistent with the RS
saddle-point equation (8), and can be evaluated within the RS

framework, by analysis of (12) and (13). The final ’replicon’
eigenvalue can indicate a failure of the RS assumption yielding
(8), but cannot be derived from (8). When the RS assumption
fails in this sense, a symmetry breaking approximation should
be required.

Stability within the RS framework requires that a small fluc-
tuation in the order parameters of the right-hand side of (12)
and (13) decays to zero under iteration of the equations. Small
fluctuations inχ̂ and m̂−1 about the perfect reconstruction
solution are stable provided that

α > g1(χ̂) . (14)

It can be seen that for largeα and smallρ̄ these conditions
will be met. The replicon eigenvalue is consistent with the
stability of the solution.

IV. M AIN RESULTS

A. Threshold equations

Stability and uniqueness of the perfect reconstruction so-
lution implies success of w-ℓ1 reconstruction up to errors
of order1/N , with high probability. The instability criterion
is met asα is decreased from one so that there exists a
compression thresholdαc ≤ 1. A pair of equations describe
the threshold in terms of only one order parameterχ̂

αc = g1(χ̂) and g3(χ̂) = g2(χ̂)− g1(χ̂) = 0 . (15)

The latter equality is a consequence of (13) combined with
(14), and is independent ofαc. Aside from the explicit
dependence on̂χ, there is a dependence on the densities and
weights. The two equations (15) provide implicit expressions
for the dependences of the compression thresholdαc on the
set{ρi, wi} of densities and weights.

If one assumes uniform weights, the compression threshold
αc is described as an implicit function of̄ρ by

α−1
c = 1 +

√

π

2χ̂
exp

(

1

2χ̂

)[

1− 2Q
(

1√
χ̂

)]

, (16)

and
ρ̄

1− ρ̄
=

√

2χ̂

π
exp

(

− 1

2χ̂

)

− 2Q
(

1√
χ̂

)

. (17)

For an inhomogeneous system of fixed̄ρ, any knowledge
of the marginal densities constitutes additional information.
Incorporation of non-uniform weights introduces additional
degrees of freedom in the model that can be exploited to
reduceαc. It also means that it is necessary to specify the
weights according to the given set of densities in order to find
the optimum value ofαc.

B. Optimization ofαc by weight selection

In order to select optimally the weights, we consider the
optimization problem of minimizing the compression thresh-
old with respect to the weights. For this purpose we can take
χ̂ and{ρi} to be fixed parameters and minimizeαc = g1 with
respect to the weights{wi} subject to the constraint thatg3



is zero (see (15)). The constraint can be dealt with via the
Lagrange multiplier method as

min
{wi},λ

(g1 − λg3) . (18)

The derivative with respect towi leads to the following criteria

ui exp
(

u2
i /2
)

(

ρi
1− ρi

+ 2Q(ui)

)

=
1 + λ

λ
√
2π

, (19)

combined with the derivative with respect toλ, which reads

1√
2π

E

[

ui(1− ρi) exp(−u2
i /2)

]

(

1 + λ

λ
− 2

)

= 0 , (20)

yielding λ = 1. Therefore the set of equations (19), each of
which determines one weight, are independent givenχ̂ andρi.

Using this independence it is possible to optimally set
the weights for an arbitrary density distribution{ρi} by the
following procedure. Solve (19) forui, and the solution is
a function ofρi only. The set of solutions{ui} defines the
optimal weights up to the overall scaling. Observing that the
w-ℓ1 minimization problems are invariant under the overall
scaling, every weight can be assigned straightforwardly as
wi = ui. This set of weights will minimizeαc.

To evaluate the minimum ofαc, one observes from (10)
and (15) thatαc = E[α(ρi)] holds, whereα(ρi) = ρi +
(1 − ρi)2Q

(

ui(ρi)
)

. This expression can be understood as
if each component of the source, with densityρ, would
require a compression rate at leastα(ρ) for its perfect re-
construction, and the lower bound of the total compression
rate is the empirical average of this componentwise bound
over all components. This interpretation would further suggest
a possibly fundamental importance of the quantityα(ρ) as
a measure of some sort of information associated with a
random variable that takes non-zero values with probability
ρ. One can also confirm, by particularizing our results to the
unweighted system, thatα(ρ) gives the compression threshold
of the unweighted system with densityρ. Thus, evaluation of
αc for the weighted system only requires the densities{ρi} of
the system and the curveα(ρ) for the unweighted system.
Moreover, the curve for the unweighted system is convex
upward, so that Jensen’s inequality tells us thatαc is below
α(ρ̄), except when the density distribution is concentrated at
a single point, implying that the w-ℓ1 minimization improves
the compression threshold over the unweighted counterpart.

It should also be noted that, when a block structure can
be assumed for the source, the minimumαc is equal to
the compression rate that would be achievable if each block
were measured separately with the optimum compression
rate for that block and then reconstructed individually from
other blocks. This observation implies that introduction of
optimal weights successfully compensates degradation dueto
intermixing of blocks of different densities in measurements.

Finally we can note an interesting asymptotic in the result
applicable in the case that̄ρ is close to one (̂χ small). In this
case the optimal weights are assigned according to a simplified

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

C
om

pr
es

si
on

 r
at

e,
 α

mean density,ρ

δω=0
δω=0.05

δω=0.6
δω=0.99

Simulation

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

Optimal δω
δω=0

Fig. 1. (color online) Compression thresholdαc as a function of density
{0.3 < ρ̄ < 0.7, δρ = 0.3} for various δw. Four curves are highlighted
from a range0 ≤ δw ≤ 0.99. The lower hull of all curves indicates the
minimum αc achievable by optimal weight selection. Inset: The hull of all
curves (corresponding to the maximum compression) can be constructed from
the unweighted (δw = 0) curve by a simple linear construction.

form of (19)

ρi/(1− ρi) ∼
√

2

π

exp
(

−u2
i /2
)

u3
i

. (21)

V. A TWO-BLOCK EXAMPLE

A. Setting

As a simple case we consider the source consisting of two
equally-sized blocks labeledb = ±1, such that components
in the block −1 are non-zero with some uniform lower
probability than components of block+1. A corresponding
asymmetry in the weights can be assumed, but weights must
also be uniform within any block. This case allows a deal of
intuition and has been studied previously owing to its simple
structure [3].

B. The large-system limit

Let the density and the weight of blockb = ±1 be
ρb = ρ̄ + b δρ and wb = 1 − b δw, respectively, with
δw, δρ ≥ 0. Figure 1 demonstrates the result for a variety of
weight asymmetryδw given a density asymmetryδρ = 0.3.
Since the density in each block must be in(0, 1) the relevant
values ofρ̄ are confined to the interval(0.3, 0.7). Curves for
0 ≤ δw ≤ 0.99 are plotted, with four labeled cases, the
uppermost curve being the unweighted case. It can be seen that
the compression threshold is reduced by allowing asymmetric
weights, and that the lower envelope of all curves indicates
the achievable performance by optimal selection amongst the
weights. For the system(ρ+1, ρ−1) = (0.8, 0.2) the midpoint
of the line connecting(ρ+1, α(ρ+1)) and (ρ−1, α(ρ−1)) co-
incides with the lower envelope at̄ρ = 0.5 corresponding to
the optimal compression rate for the two-block model.
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C. Numerical verification

To test the theory we have generated a number of instances
of the problem for various system sizes and solved these by
linear programming. Components ofA and non-zero compo-
nents ofx0 were sampled from normal distributions. Optimally
weighted, and unweighted,ℓ1 minimization problems were
solved to determine the compression threshold where optimal
reconstruction failed. Figure 2 demonstrates result for a two-
block system with a uniform weightingw+1 = w−1 and
optimized weighting. It can be seen that the thresholds are
distinct with a significant improvement in performance for the
optimally weighted case.

Results of fitting these numerical data with second-order
polynomials in 1/N , obtained byχ2 regression, are also
plotted in Fig. 1. Extrapolation to1/N → 0 yields an estimate
of the compression thresholdαc = 0.742 73 ± 0.000 06 for
the optimally weighted case, which is in agreement with the
analytical resultαc = 0.742 72. The extrapolated result for the
unweighted caseαc = 0.831 32±0.000 06 is also in agreement
with the analytical resultαc = 0.831 30.

VI. CONCLUSION

This paper has demonstrated a method for optimal selection
of weights in the w-ℓ1 minimization utilizing prior knowledge
about densities, and thereby providing the optimal threshold
for compression. The result is a simple one with decoupling
structure for source components, and described by a single
order parameter in the case of perfect reconstruction. The
threshold in the compression rate for which perfect reconstruc-
tion is possible in a system of known marginal densities can
be straightforwardly derived from the threshold curve for the
unweighted system with a simple graphical procedure. This
work should in future be extended to consider the effect of
noise and of correlations between the source components.

The method relied on the replica method and a saddle-point
formulation, which although complicated in origin provides a
concise and intuitive saddle-point framework from which to
derive results.

The analysis presented has been verified in experiment and
provides a mechanism that may be immediately incorporated
in practical problems where marginal density information is
available. A complete description of the replica analysis and
various extensions will be forthcoming in an article under
preparation.
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