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Abstract

A new type of distinguishing property, named the zero-sum prop-
erty has been recently presented by Aumasson and Meier [1]. It has
been applied to the inner permutation of the hash function KECCAK
and it has led to a distinguishing property for the KECCAK- f permuta-
tion up to 16 rounds, out of 24 in total. Here, we additionally exploit
some spectral properties of the KECCAK-f permutation and we im-
prove the previously known upper bounds on the degree of the inverse
permutation after a certain number of rounds. This result enables us
to extend the zero-sum property to 18 rounds of the KECCAK-f per-
mutation, which was the number of rounds in the previous version of
KEcCcAK submitted to the SHA-3 competition.

1 Introduction

KEeccAK [2] is a hash function family which has been moved forward to
the second round of the SHA-3 competition launched by the NIST. It is
based on the sponge construction and uses as a building block an iterated
permutation. The KECCAK-f permutation operates on a 1600-bit state; it
consists of 24 rounds of a simpler round transformation which has algebraic
degree 2 with respect to Fo.

The most interesting analysis of this inner permutation until now is a
distinguishing property exhibited by Aumasson and Meier [1]. This type
of distinguishing property, named a zero-sum property, can be seen as a
generalization of an integral property (a.k.a. saturation property) [6, 9].
For a given function F', it corresponds to the existence of some sets of input
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vectors which sum to zero, and which are such that their respective images
by F' also sum to zero.

Such sets of inputs, named zero-sums, can be exhibited if the respective
degrees of the permutation F and of its inverse F~! after a certain number of
rounds is sufficiently low. But, finding a precise estimate for the degree of the
function after several rounds is a difficult problem. This question has been
partly addressed by Canteaut and Videau in [4]: they have shown that in the
special case that all values occurring in the Walsh spectrum of F' are divisible
by a high power of 2, the degree of the function F' o F' grows much slower
than deg(F)?. This result can be used to find upper bounds on the degree of
an iterated function. In particular, it can be applied to improve the trivial
bound on the degree of several rounds of the inverse round transformation
used in KECCAK-f permutation. Combined with another technique, this
enables us to exhibit zero-sums for the KECCAK-f permutation with 18-
rounds, which is the permutation which was initially proposed for the SHA-
3 candidate [2]. Our result then contradicts the so-called hermetic sponge
strategy used by the designers, which aims at using an inner permutation
without any structural distinguishing property. However, the existence of
this distinguishing property for the inner permutation does not seem to
threaten the whole hash function. Moreover, the new version of KECCAK [3]
has 24 rounds.

The rest of the paper is organised as follows. Section 2 presents the
zero-sum property and the principle of the corresponding distinguisher. Sec-
tion 3 recalls some well-known properties of Boolean functions, with a focus
on their spectral representation. The link between the divisibility of the
Walsh coefficients of a function and the degree of the product of its Boolean
components, which is a result due to Canteaut and Videau [4], is also pre-
sented. Section 4 briefly describes the KECCAK hash function and Section 5
presents the new distinguishing property we have found on 18 rounds of the
Keccak-f permutation.

2 The zero-sum property

2.1 Definition

The notion of zero-sum distinguisher has been introduced by J.-P. Aumasson
and W. Meier in [1]. For a function F from F% into F3', a zero-sum is a set
of inputs x1, ...,z in Iy summing to zero such that their respective images
by F' sum also to zero, i.e.,

k k
@Iﬂi = @F(l’z) = 0,
i=1 i=1

where the sum is defined by the addition in F% (and in F3"), i.e., the bitwise
exclusive-or. Since it is expected that a randomly chosen function does not



have many zero-sums, the existence of several such sets of inputs can be
seen as a distinguishing property of F.

2.2 Finding zero-sums

For an iterated function, the existence of many zero-sums is usually due ei-
ther to the particular structure of the round transformation (e.g., a multiset
property like in the AES) or to a low degree. The zero-sum properties exhib-
ited in [1] for the inner permutation used in some hash functions are based
on the algebraic degrees of the round transformation and of its inverse. Ac-
tually, the algebraic degree of F' provides some particular zero-sums, which
correspond to all affine subspaces of F4 with dimension (deg(F') + 1). This
result comes from the following property of higher-order derivatives of a
function.

Definition 1 (Higher-order derivative). [10] Let F' be a function from
Fy into Fy'. For any a € Iy the derivative of ' with respect to a is the

function
D,F(z) = F(z®a)® F(x).

For any k-dimensional subspace V' of Fy the k-th order derivative of F' with
respect to V' is the function

DyF =Dy, D,, ...D,,F,
where (ai,...,ax) is any basis of V.. Moreover, we have for any x € Fy

Dy F(z) = @ F(x ®v).
veV

In the following, the degree of a Boolean function corresponds to the
degree of its algebraic normal form. Moreover, the degree of a vectorial
function F': F§ — F5* is defined as the highest degree of its coordinates.

It is well-known that the degree of any first-order derivative of a function
is strictly less than the degree of the function and this simple remark leads to
the following useful result, which is also exploited in higher-order differential
attacks [7].

Proposition 1. Let F' be a function from Fy into F5'. Then, for every
subspace V' of dimension (deg F' + 1) we have

DyF(z) =0, forevery x¢€Fy.

The fact that the permutation used in a hash function does not depend
on any secret parameter allows to exploit the previous property starting
from the middle, i.e., from an intermediate internal state. This property
was used by Aumasson and Meier [1] and also by Knudsen and Rijmen in



the case of a known-key property of a block cipher [8]. The only information
needed for finding such zero-sums on the iterated permutation is an upper
bound on the algebraic degrees of both the round transformation and its
inverse.

More precisely, we suppose that F' is a function which operates on an
n-bit state, and that F' is composed of n, smaller transformations:

F=R, o...0R;.

Let di < n be the degree of the function composed of the last r; transfor-
mations, t.e., F., = Ry, o...0 Ry, _, 41 and let do < n be the degree of the
inverse of the first 7o = (n, —r;) transformations, i.e., Gy, = Rfl o.. .oRr_zl.
Then, we can find many zero-sums of size 24+ where d = max(dy, dy) as
follows:

1. Choose a set of (n—d—1) bits in the intermediate state after ro rounds,
and fix them to an arbitrary value;

2. For each of the 29%! possible intermediate states z obtained when the
other (d+1) bits take all possible values, compute r2 rounds backwards
to obtain the 247! input states z = G, (2).

The sum of these input states is then the value of a derivative of or-
der (d + 1) of a function with degree d2 and thus it vanishes. Now, the
images of these input states under F' correspond to the images of the in-
termediate states z under F,. Then, by computing r; rounds forwards, we
obtain 291 output states. The sum of these output states is the value of a
derivative of order (d + 1) of F,,, which has degree less than d. Thus, this
sum vanishes, implying that the z’s form a zero-sum. It is worth noticing
that this technique provides several zero-sums having a particular property.
Actually, for a given choice of the (n — d — 1) fixed bits in the intermedi-
ate state, taking all possible values for the corresponding constant leads to
2n=d=1 zero-sums of sizes 29t which form a partition of the input space
into zero-sums.

3 Walsh Spectrum and Degree of a Composed Func-
tion

The previously known zero-sum properties exploit the degree of an iterated
function after a certain number of rounds. It is obvious that a function whose
degree does not grow very much when the number of rounds is increasing is
a good candidate for this type of attack. The lower the degree is the more
we can extend the attack to a high number of rounds.

It is therefore natural to be interested in the estimation of the degree of
a composed function. If F' and G are two mappings from F% into F3, the



degree of the composition G o F' is bounded by the trivial bound:
deg(G o F) < deg(G)deg(F).

A. Canteaut and M. Videau [4] showed that this trivial bound can be
improved in the special case when the values occurring in the Walsh spec-
trum of F' are divisible by a high power of 2. Here, we recall this result in
order to highlight the underlying property of the function.

In the following, the usual scalar product of two vectors x and y will be
denoted by x -y. For any a € Fy, ¢, will be the linear Boolean function of
n variables x — a - x.

For every Boolean function f of n variables, we associate the following
quantity derived from the Hamming weight of f:

F(f) =3 ()0 =2" —wi(f).
z€Fy
We use this quantity to define the Walsh spectrum of a Boolean func-
tion. The Walsh spectrum of a Boolean function f measures the correlation
between f and the linear functions ¢,,a € Fy. It then corresponds to the
multiset:
{F(f +¢a),a € Fy}.
The Walsh spectrum of a vectorial function F': F§ — F§ consists of the
Walsh spectra of all Boolean functions ¢, o F', b € F5, b # 0, i.e., of all
nonzero linear combinations of its coordinates. Therefore, it corresponds to

the multiset
{Flopo F +¢a),b € Fy \ {0},a € Fy}.

Definition 2. The Walsh spectrum of a function F' from Yy into F5 is said
to be 2¢-divisible if all of its values are divisible by 2°.

The divisibility of the Walsh spectrum of a vectorial function F' may
provide an upper bound on the degree of G o F', where G is a function from
F5 into F5. In some cases, this bound improves the trivial bound.

Theorem 1. [}] Let F be a function from Fy into F5 such that its Walsh
spectrum is 2°-divisible. Then, for any function G from FY into FY, we have

deg(Go F) <n—{+ deg(G).

In order to prove this result, one has to analyze the algebraic normal
form of G o F. Let F; (resp. G;) be the i-th Boolean coordinate of F' (resp.
of G). The i-th Boolean coordinate of the composition is then equal to
G;i(Fy,..., F,) and therefore the algebraic normal form of any coordinate of
G o F can be written as a sum of terms of the form >_; [];c; F}-

The study of the Walsh spectrum of the product of Boolean functions
becomes thus necessary. The following lemma, which establishes a relation-
ship between the Walsh spectrum of a product of Boolean functions and the
Walsh spectrum of its sum, is proved in [5].



Lemma 1. Let f1,..., fi be k Boolean functions of n variables, with k > 0.
We have

k

Fo =2 [0 1]+ 3 (AT A

i=1 IC{1,.. k} il

Moreover, for any nonzero a € Fy, we have

k
F(Zfi""ﬂa) = Z (_2)II‘_1f(Hfi+90a)'
=1

Ic{1,...,k} iel

Using this lemma, Canteaut and Videau proved in [4] the following theo-
rem that provides a bound on the degree of the product of Boolean functions,
if it is known that the Walsh spectrum of their sum is 2¢-divisible.

Theorem 2. [}] Let f1,..., fr be k Boolean functions of n variables, with
k > 0. Suppose that for any subset I of {1,...,k} we have

Vo € Fy, ]:(Z fi+¢a) =0 mod 2°.
i€l

Then, for any subset I C {1,...,k} of size at most { we have

Vo € Fy, f(H fi+¢a) =0 mod 2011,
iel

Therefore,

deg (Hfl) <n—L+|I].
icl

By remarking that the degree of G o F' cannot exceed the degree of
a product of deg(G) Boolean components of F, the proof of Theorem 1
comes directly from this last result. Here, it is worth noticing that some
information on the Walsh spectra of the coordinates of Go F' may be deduced
from Theorem 2, but in most cases, it is not possible to derive the whole
Walsh spectrum of G o F', because it requires the knowledge of the Walsh
spectra of all linear combinations of the coordinates of Go F'. For this reason,
in the general case, Theorem 2 cannot be iterated several times in order to
get a direct bound on the degree of F" for r > 2.

4 The KEcCcAK-f Permutation

KECCAK [2] is a family of hash functions submitted to the SHA-3 competi-
tion launched by NIST for finding a new hash function standard. It is one of
the fourteen functions selected by NIST for the second round of the compe-
tition. The mode of operation of the KECCAK hash functions is the sponge



construction. KECCAK’s building block is then a permutation, composed of
several iterations of very similar round transformations.

Within the KEccAK-family, the function which has been submitted to
the SHA-3 competition operates on a 1600-bit state, which is represented
by a 3-dimensional binary matrix of size 5 x 5 x 64. The authors have
given some names to the different parts of the state, in order to facilitate
the description of every individual mapping that operates on the state. In
particular, we can see the state as 64 parallel slices, each one containing
5 rows and 5 columns. KECCAK’s permutation is denoted by KECCAK-f[b],
where b is the size of the state. So, for the SHA-3 candidate, b = 1600.

Keccak-f[1600] is an iterated permutation, consisting of a sequence of
n, rounds R. The number of rounds, n,, was 18 in the original submis-
sion [2], and it has been updated to 24 for the second round of the compe-
tition [3].

Every round R consists of a sequence of 5 permutations modifying the
state.

R=toxomopod.

The functions 6, p, 7, ¢ are transformations of degree 1 providing diffusion
in all directions of the 3-dimensional state. x is a nonlinear permutation
operating on a 5-bit word, and it is applied to each row of the KECCAK’s
1600-bit state.

x:F3 — F3,
with
To + T2 + X172
xr1 + x3 + x2x3
X(xo, 1, X2, x3,24) = | X2 + T4 + T374
xr3 + Ty + T4
T4+ T1 + ToT1

In other words, 320 parallel applications of x are implemented in order
to provide confusion. Then, x is a permutation of degree 2. The inverse
permutation, denoted by y~!, is a permutation of degree 3. We will be
interested in the sequel in estimating the degree of several iterations of this
round transformation and of its inverse.

5 Zero-sum Distinguisher for the Keccak-f[1600]
Permutation

5.1 Previous Results

Aumasson and Meier [1] have used the method described in Section 2 and
have found many zero-sums for 16 rounds of the permutation. They use



the trivial bound on the degree of a composed function. It worth noticing
that this bound only depends on the degree of ¥, since the other four per-
mutations all have degree 1. Then, Aumasson and Meier deduced from the
trivial bound that the degree of the permutation after 10 rounds is at most
210 = 1024 and that the degree of the inverse permutation after 6 rounds
is at most 3% = 729. Thus, they fix 1600 — 1025 = 575 bits in an interme-
diate state after 6 rounds to some arbitrary value and compute 6 rounds
backwards. This method leads to many zero-sums of size 219%°.

5.2 The Walsh Spectrum of the KECCAK-f Permutation

Now, we extend the result by Aumasson and Meier by noticing that the
degree of the inverse of KECCAK-f permutation after 7 rounds is much lower
than the trivial bound min (3" = 2187, 1599).

For this, we need to compute the divisibility of the Walsh spectrum of
the round transformation. We have computed the Walsh spectrum of the
nonlinear permutation x and we have found that its Walsh spectrum is
divisible by 23. Since the Walsh spectra of a permutation and of its inverse
are the same, we deduce that the Walsh spectrum of x ! is divisible by 23.
It is worth noticing that 2" is the lowest possible divisibility for the Walsh
spectrum of a quadratic permutation of F5, n odd. Then, the fact that the
Walsh spectrum of y~! is divisible by 2% holds for any other choice of the
quadratic permutation x over F3. Now, a lower bound on the divisibility
of the Walsh spectrum of the function x applied on the entire state can be
easily deduced thanks to the following well-known lemma.

Lemma 2. Let F,G be two functions from F5 into Fy and let H be the
function from F§ x Fy into F5 x Fy defined by

($17--'7xn7y17"'7yn) — (F($17-~-7$n)7G(yl7--~,yn))-

Let a = (a1,a2),b = (b1,b2) in Fy x Fy. Then, we have that
F(ppo H + ¢a) :F(@ln OF+§0a1)f(¢b2 0 G+ @Pa,)-

In KECCAK-f round transformation, there are 320 parallel applications
of the permutation y. Similarly, for the inverse permutation, y ! is applied
320 times. As the Walsh spectra of y and x ™! are both divisible by 23, we
deduce from the above lemma that the Walsh spectra of xy and x~! applied
on the whole 1600-bit state are divisible by 23320 = 2960,

As x is the only nonlinear transformation in the KECCAK-f permuta-
tion we have that the Walsh spectrum of the round transformation is 2960-
divisible since the Walsh spectrum remains invariant by composition with a
linear permutation.



5.3 The Degree of the Inverse KECCAK-f Permutation after
7 rounds

We now use the high divisibility of the round transformation of the KECCAK-
f permutation to compute the degree of the inverse KECCAK-f permutation
after 7 rounds.

We denote by R~! the inverse of the round transformation. We exploit
the trivial bound which shows that 6 rounds of the inverse permutation have
degree at most 3% = 729. Then, we use Theorem 1 and prove the following:

deg(R™") = deg(R %0 R™!) <1600 — 960 + deg(R~%)
< 1600 — 960 + 729
= 1369.

Therefore we see that, after 7 rounds, the degree of the permutation is
at most 1369. This new bound then leads to many zero-sums of size 21370
for the KECCAK-f permutation with 17 rounds.

5.4 Extending the Zero-sum property to One More Round

Now, we show that some of the previously found zero-sums can be extended
to 18 rounds. Actually, the previous zero-sums are obtained from a set of
intermediate states after 7 rounds, which is the set Z of all states having
1600 — 1370 = 230 bits fixed to an arbitrary value (the other 1370 bits take
all possible values). Then, Z corresponds to a coset of a 1370-dimensional
subspace V', Z = a + V for some constant a. Such a zero-sum is obtained
for any choice of the constant, and for any choice of the 230 positions.
However, we now suppose that those positions correspond to a collection of
any 46 rows. Then, since x applies to the rows separately, variables from
different rows are not mixed after the application of x. This means that
x(a+ V) =b+V, for some b where y is considered on the whole 1600-bit
state. Then, we can find zero-sums for the KECCAK-f permutation after
18 rounds as follows.

Finding zero-sums for KECCAK-f with 18 rounds

1. Choose any 46 rows in the internal state and fix the corresponding
230 bits to an arbitrary value.

2. For the 2'370 possible values for the remaining bits, compute 7! o

p~! o6~ followed by 7 rounds backwards of the round transformation
to obtain 2!370 initial states.

Then, we have that



e these 21370 initial states sum to zero as the corresponding sum is the
value of a derivative of order 1370 of a function of degree at most 1369.

e Their images by 18 rounds of the KECCAK- f transformation sum also
to zero, since this sum is the value of a derivative of order 1370 of the
function ¢ o Rg o Rigo...o Ryg which has degree at most 1024.

Moreover, exactly as in [1], this algorithm leads to several partitions of the
input space F16% into zero-sums of size 2'370, which is clearly a structural
distinguishing property. Therefore, this result contradicts, for the original
version of KECCAK, the "hermetic sponge” design principle.

6 Conclusions

We have extended to 18 rounds the zero-sum property found by Aumasson
and Meier. We have explored the spectral properties of the round trans-
formation of KECCAK-f and we have shown that the use of a quadratic
round transformation which applies of the 5-bit rows of the internal state
separately leads to a high divisibility of its Walsh spectrum. This property
implies that the degree of several iterations of the inverse round transforma-
tion does not grow as fast as the trivial bound deg(R~!)". Taking benefit
of this situation, we are able to exhibit many zero-sums for the KECCAK- f
permutation with 18 rounds, while the existence of such zero-sums was only
known up to 16 rounds. It is worth noticing that 18 rounds was the initial
parameter proposed for the SHA-3 candidate KECCAK, but this value has
been increased to 24 rounds by the designers. However, even if it points
out that KECCAK-f with 18 rounds does not have an ideal behaviour, this
property does not seem to affect the security of KECCAK.
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