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Abstract—As shown by Tropp, 2008, for the concatenation of
two orthonormal bases (ONBs), breaking the square-root bot-
tleneck in compressed sensing does not require randomization
over all the positions of the nonzero entries of the sparse coef-
ficient vector. Rather the positions corresponding to one of the
two ONBs can be chosen arbitrarily. The two-ONB structure
is, however, restrictive and does not reveal the property that is
responsible for allowing to break the bottleneck with reduced
randomness. For general dictionaries we show that if a sub-
dictionary with small enough coherence and large enough car-
dinality can be isolated, the bottleneck can be broken under the
same probabilistic model on the sparse coefficient vector as in
the two-ONB case.

I. INTRODUCTION

The central idea underlying compressed sensing (CS) is
to recover a sparse signal from as few non-adaptive linear
measurements as possible [1], [2]. Given the measurement
outcome y ∈ CM and the measurement matrix D ∈ CM×N
(M ≤ N ), often referred to as dictionary,1 we want to find
the sparsest coefficient vector x ∈ CN that is consistent with
the measurement outcome, i.e., that satisfies y = Dx. This
problem can be formalized as follows:

(P0) find arg min‖x‖0 subject to y = Dx.

Here, ‖x‖0 denotes the number of nonzero entries of the
vector x. Unfortunately, solving (P0) for practically relevant
problem sizesN,M is infeasible as it requires a combinatorial
search. Instead, the CS literature has focused on the convex
relaxation of (P0), i.e., on the following `1-minimization prob-
lem:

(P1) find arg min‖x‖1 subject to y = Dx

commonly referred to as basis pursuit (BP) [3]–[8]. Here,
‖x‖1 ,

∑N
i=1|xi| denotes the `1-norm of x. Since (P1) can

be cast as a linear program (in the real case) or a second-order
cone program (in the complex case), it can be solved more
efficiently than (P0).

It is now natural to ask under which conditions the solu-
tions of (P0) and (P1) are unique and coincide. A sufficient

1Throughout the paper, we assume that the columns di of D have unit
`2-norm, i.e., ‖di‖2 = 1 for i = 1, . . . , N .

condition for this to happen2 [4]–[6] is ‖x‖0 < S, where the
sparsity threshold S = (1+1/d)/2 depends on the dictionary
coherence d = maxi 6=j

∣∣dHi dj
∣∣. Sparsity thresholds S larger

than (1 + 1/d)/2 can be established if more information
on the dictionary is available [6]–[9], e.g., if the dictionary
consists of the concatenation of two or more orthonormal
bases (ONBs), or—more generally—if a sufficiently large
sub-dictionary with coherence much smaller than d can be
isolated [9]. We emphasize that the results in [4]–[9] apply
to all vectors x with ‖x‖0 < S—irrespective of the positions
and the values of the nonzero entries of x.

The line of work presented in [4]–[9] leads to sparsity
thresholds S that are on the order of 1/d. From the Welch
lower bound [10]

d ≥
√

(N −M)/[M(N − 1)]

we can conclude that the thresholds in [4]–[9] are at best on
the order of

√
M (for N � M ). This scaling behavior is

sometimes referred to as the square-root bottleneck. A better
scaling behavior can be obtained by asking for sparsity thresh-
olds that hold for almost all—rather than all (as in [4]–[9])—
vectors x, or, more precisely, by asking for sparsity thresholds
that hold with high probability, given a probabilistic model
on x.3 Following the terminology used in [11], we refer to
sparsity thresholds that hold for almost all S-sparse vectors x
as robust sparsity thresholds.

The improvements in the scaling behavior that result from
the relaxation to robust sparsity thresholds will, of course, de-
pend on the probabilistic model onx [11]–[13]. A widely used
probabilistic model for n-sparse vectors x is to choose the
positions of the n nonzero entries (i.e., the sparsity pattern)
of x uniformly at random among all possible

(
N
n

)
support

sets of cardinality n. The values of these nonzero entries of x
are drawn from a continuous probability distribution, with the
additional constraint that their phases are i.i.d. and uniformly
distributed on [0, 2π) [11], [12]. For this probabilistic model it

2In the remainder of the paper, whenever we speak of a vector x, we
implicitly assume that this vector is consistent with the observation y, i.e.,
it satisfies y = Dx.

3An alternative approach, which we do not pursue in this paper, is to
introduce a probabilistic model on the dictionary D [1], [2].
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is shown in [12] that the square-root bottleneck can be broken.
More specifically, the main result in [12] states that, assuming
a dictionary with coherence on the order of 1/

√
M , a robust

sparsity threshold on the order ofM/(logN) can be obtained.
Put differently, this result shows that to recover almost all
vectors x with S nonzero entries, the required number of
non-adaptive linear measurements M is (order-wise) S logN
instead of S2.

Remarkably, for dictionaries that consist of the concate-
nation of two ONBs, robust sparsity thresholds on the order
of M/(logN) can be obtained with reduced randomness as
compared to the case of general dictionaries. Specifically, it
was found in [11], [12] that it suffices to pick the positions of
the nonzero entries ofx corresponding to one of the two ONBs
uniformly at random, while the positions of the remaining
nonzero entries can be chosen arbitrarily. The probabilistic
model on the values of the nonzero entries ofx (corresponding
to both ONBs) remains the same as for the general dictionaries
considered in [12].

Contributions: The two-ONB result in [11], [12] is in-
teresting as it shows that one need not choose the locations of
all the nonzero entries of the sparse vector randomly to break
the square-root bottleneck. However, the two-ONB structure
is restrictive and does not reveal which property of the dic-
tionary is responsible for allowing to break the square-root
bottleneck with reduced randomness. The two ONBs are on
equal footing.

The purpose of this paper is twofold. First, we extend the
two-ONB result in [11], [12] to general dictionaries. Second,
by virtue of this extension, we show that—for a general dic-
tionary D with low coherence d—the fundamental property
needed to break the square-root bottleneck with reduced ran-
domness is the presence of a sufficiently large sub-dictionary
A with coherence much smaller than d. The positions of
the nonzero entries of x corresponding to A can be chosen
arbitrarily, and the positions of the remaining nonzero en-
tries must be chosen randomly. Naturally, the larger the sub-
dictionary A, the more significant the reduction in random-
ness becomes. Randomization over the remaining part of the
dictionary ensures that the sparsity patterns that cannot be
recovered through BP occur with small enough probability.
More formally, we prove the following result. Consider a
general dictionary D with coherence on the order of 1/

√
M

that contains a sub-dictionary A with coherence on the or-
der of (logN)/M and cardinality at least on the order of
M/(logN). Then, a robust sparsity threshold on the order
of M/(logN) can be established—and hence the square-root
bottleneck is broken—under the same probabilistic model on
the vector x as in the two-ONB case, whenever the spectral
norms of A and of the sub-dictionary containing the remain-
ing columns of D satisfy certain technical conditions. These
technical conditions are trivially satisfied, e.g., for dictionaries

that consist of two tight frames.
Our analysis relies heavily on the mathematical tools de-

veloped in [12] for the two-ONB setting.
Notation: Throughout the paper, we use lowercase bold-

face letters for column vectors, e.g., x, and uppercase bold-
face letters for matrices, e.g., D. For a given matrix D, we
denote its conjugate transpose by DH and di stands for its
ith column. The spectral norm of a matrix D is ‖D‖ =

√
λ,

where λ is the maximum eigenvalue of DHD. The minimum
and maximum singular value of a matrix D are denoted by
σmin(D) and σmax(D), respectively, rank(D) stands for the
rank of D, and ‖D‖1,2 = maxi{‖di‖2}. We use In to
denote the n × n identity matrix and 0 stands for the all-
zero matrix of appropriate size. The natural logarithm is de-
noted as log. For two functions f(M) and g(M), the notation
f(M) = O(g(M)) means that limM→∞|f(M)| /|g(M)| is
bounded above by a finite constant, and f(M) = Θ(g(M))
means that there exist two positive finite constants k1 and k2
such that k1 ≤ limM→∞|f(M)| /|g(M)| ≤ k2. Whenever
we say that a vector x ∈ CN has a randomly chosen sparsity
pattern of cardinality n, we mean that the support set of x is
chosen uniformly at random among all

(
N
n

)
possible support

sets of cardinality n.

II. BRIEF REVIEW OF PREVIOUS RELEVANT RESULTS

Robust sparsity thresholds for dictionaries consisting of two
ONBs were first obtained in [11] and later improved in [12].
In Theorem 1 below, we restate the result in [12] in a slightly
modified form, which is better suited to draw parallels to
the more general case. The theorem follows by combining
Theorems D, 13, and 14 in [12].

Theorem 1: Assume that4 N > 2. Let D ∈ CM×N be the
concatenation of two ONBs A and B for CM (i.e.,N = 2M )
and denote the coherence of D as d. Fix s ≥ 1. Let the vector
x ∈ CN have an arbitrarily chosen sparsity pattern of na
nonzero entries corresponding to columns of sub-dictionaryA
and a randomly chosen sparsity pattern of nb nonzero entries
corresponding to columns of sub-dictionary B. Suppose that

na + nb < min
{
c d−2/(s logN), d−2/2

}
(1)

where c is no smaller than 0.004212. If the values of all
nonzero entries of x are drawn from a continuous probability
distribution, x is the unique solution of (P0) with probability
exceeding (1−N−s). Furthermore, if na and nb, in addition
to (1), satisfy

na + nb ≤ d−2/[8(s+ 1) logN ] (2)

and the phases of all nonzero entries of x are i.i.d. and uni-
formly distributed on [0, 2π), then x is the unique solution of
both (P0) and (P1) with probability exceeding (1− 3N−s).

4In [12] M ≥ 3 (and hence N ≥ 6) is assumed. However, it can be shown
that N > 2 is sufficient to establish the result.



Interpretation of Theorem 1: Assume that D has co-
herence d = O(1/

√
M). As a consequence of (1) and (2),

Theorem 1 establishes (under certain technical conditions on
the values of the nonzero entries of x) the robust sparsity
threshold5 S > na + nb = Θ(M/(logN)).

This result is interesting as it shows that we do not need the
entire sparsity pattern of x to be chosen at random but rather
the positions of the non-zero entries corresponding to one of
the two ONBs can be chosen arbitrarily.

In the following section, we first present (in Theorem 2)
an extension of the two-ONB result in [11], [12] to general
dictionaries. As a consequence of Theorem 2, we then es-
tablish that—for a general dictionary D with low coherence
d—the fundamental property that allows to break the square-
root bottleneck with reduced randomness is the presence of
a sufficiently large sub-dictionary A with coherence much
smaller than d.

III. MAIN RESULTS

Consider a dictionary D = [A B], where the sub-
dictionary A has Na elements (i.e., columns) and coherence
a and the sub-dictionary B has Nb = N − Na elements
and coherence b. The set of all such dictionaries is denoted
as D(d, a, b). Correspondingly, we view the vector x as the
concatenation of the two vectors xa ∈ CNa and xb ∈ CNb

such that y = Dx = Axa + Bxb. Since A and B are sub-
dictionaries of D, we have a, b ≤ d. We now state our main
result.

Theorem 2: Assume that N > 2. Let D = [A B] be a
dictionary in D(d, a, b). Fix s ≥ 1 and γ ∈ [0, 1]. Consider
a random vector x =

[
xTa xTb

]T
where xa has an arbitrarily

chosen sparsity pattern of cardinality na such that

6
√

2
√
nad2s logN + 2(na − 1)a ≤ (1− γ)e−1/4 (3)

and xb has a randomly chosen sparsity pattern of cardinality
nb such that

24
√
nbb2s logN +

4nb
Nb
‖B‖2 + 2

√
nb
Nb
‖A‖‖B‖ ≤ γe−1/4.

(4)
Furthermore, assume that the total number of nonzero entries
of x satisfies

na + nb < d−2/2. (5)

Then, if the values of all nonzero entries of x are drawn from
a continuous probability distribution, x is the unique solution
of (P0) with probability exceeding (1 −N−s). Furthermore,
if na and nb, in addition to (3)–(5), satisfy

na + nb ≤ d−2/[8(s+ 1) logN ] (6)

5Whenever for some function g(M,N) we write Θ(g(M,N)) or
O(g(M,N)), we mean that the ratio N/M remains fixed while M →∞.

and the phases of all nonzero entries of x are i.i.d. and uni-
formly distributed on [0, 2π), then, x is the unique solution of
both (P0) and (P1) with probability exceeding (1− 3N−s).

Proof: The proof is based on the following lemma, which
is the main technical result of this paper and whose proof can
be found in Appendix A.

Lemma 1: Fix s ≥ 1 and γ ∈ [0, 1]. Let S be a sub-
dictionary of D = [A B] ∈ D(d, a, b) that contains na
arbitrarily chosen columns of A and nb columns of B cho-
sen uniformly at random. If na and nb satisfy conditions (3)
and (4), then, the minimum singular value σmin(S) of the sub-
dictionary S obeys

P
{
σmin(S) ≤ 1/

√
2
}
≤ N−s.

The proof of Theorem 2 is then obtained from Lemma 1
and the results in [12] as follows. The sparsity pattern of
x assumed in the statement of Theorem 2 induces a sub-
dictionary S of D containing na arbitrarily chosen columns
of A and nb randomly chosen columns of B. As a conse-
quence of Lemma 1, the smallest singular value of S exceeds
1/
√

2 with probability at least (1 − N−s). This property
of the sub-dictionary S, together with condition (5) and the
requirement that the values of all nonzero entries of x are
drawn from a continuous probability distribution, implies, as
a consequence of [12, Thm. 13], that x is the unique solution
of (P0) with probability at least (1 − N−s). If, in addition,
condition (6) is satisfied and the phases of all nonzero entries
of x are i.i.d. and uniformly distributed on [0, 2π), we can
apply [12, Thm. 14] (with δ = N−s) to infer that x is the
unique solution of both (P0) and (P1) with probability at least
(1−N−s)(1− 2N−s) ≥ (1− 3N−s).

Interpretation of Theorem 2: We next present an in-
terpretation of our result and reveal the fundamental prop-
erty that allows to break the square-root bottleneck with re-
duced randomness. In particular, we determine conditions
on the dictionary such that both na = Θ(M/(logN)) and
nb = Θ(M/(logN)). As a consequence, a robust sparsity
threshold S > na + nb = Θ(M/(logN)) is established. In
the following, for clarity of exposition, we only consider the
dependency of na and nb on the dictionary parameters d, a,
b, Na, Nb, and the spectral norms of A and B, and absorb all
constants that are independent of these quantities in c(γ, s),
where γ and s are defined in Theorem 2. Note that c(γ, s) can
change its value at each appearance. Condition (3) together
with na ≤ Na yields the following constraint on na:

na ≤ c(γ, s) min
{
d−2/(logN), a−1, Na

}
.

This constraint is compatible with na = Θ(M/(logN)), if
the following three requirements are fulfilled:

i) the coherence of D satisfies d = O(1/
√
M)



ii) the coherence of A satisfies a = O((logN)/M)
iii) the cardinality of A satisfies Na ≥ cM/(logN)

where c is a constant that can change at each appearance.
Condition (4), which can be rewritten as

nb ≤ c(γ, s) min

{
b−2

logN
,
Nb

‖B‖2
,

Nb

‖A‖2 ‖B‖2

}
(7)

is more laborious to interpret. For the constraint (7) to be
compatible with nb = Θ(M/(logN)), we need requirement
i) above to be fulfilled (recall that b ≤ d), together with the
following two requirements on the spectral norms of B and
A, namely

iv) ‖B‖2 ≤ cNb(logN)/M
v) ‖A‖2 ≤ cNb(logN)/(‖B‖2M).

We finally note that when the requirements i) – v) are met, con-
ditions (5) and (6), which can then be rewritten as na + nb ≤
cM andna+nb ≤ cM/(logN), respectively, are compatible
with both na = Θ(M/(logN)) and nb = Θ(M/(logN)).

Hence, a robust sparsity threshold S > na + nb =
Θ(M/(logN)) can be established under the same probabilis-
tic model on x as in the two-ONB case; namely, the positions
of the nonzero entries of x corresponding to B have to be
chosen randomly, while the positions of the nonzero entries
of x corresponding to A can be chosen arbitrarily.

The requirements iv) and v) are difficult to interpret because
they depend on the spectral norms of the sub-dictionaries A
and B. To get more insight into these two requirements, we
consider the special case of A and B being tight frames for
CM [14] (with the frame elements `2-normalized to one).
Then, ‖A‖2 = Na/M and ‖B‖2 = Nb/M , so that iv) is triv-
ially satisfied and v) reduces to Na ≤ cM logN . However,
because of the Welch lower bound [10] condition ii) puts a
more stringent restriction on the cardinality of Na for large
M . Hence, a robust sparsity threshold of Θ(M/(logN)) is
obtained, under the same probabilistic model on the vector x
as in the two-ONB case, if the coherence of sub-dictionary A
satisfies a = O((logN)/M).

A simple dictionary that satisfies i) - v): For M = pk,
with p prime and k ∈ N+, a dictionary D with coherence
equal to 1/

√
M can be obtained by concatenating M + 1

ONBs for CM [6]. Since D constitutes a tight frame for CM ,
by [12] a robust sparsity threshold of Θ(M/(logN)) is ob-
tained by randomizing over all positions of the nonzero entries
of x. Note, however, that we can write D = [A B], where A
is an ONB (a = 0) andB is the concatenation of the remaining
M ONBs and hence a tight frame for CM . As Na = M
the requirements iii) and v) are satisfied. Therefore, by the
results of the previous paragraph, a robust sparsity threshold
of Θ(M/(logN)) is obtained by randomizing only over the
positions of the nonzero entries of x corresponding to B.

APPENDIX A
PROOF OF LEMMA 1

Since the minimum singular value σmin(S) of the sub-
dictionary S can be lower-bounded as σ2

min(S) ≥ 1 −∥∥SHS− Ina+nb

∥∥, we have

P
{
σmin(S) ≤ 1/

√
2
}

= P
{
σ2

min(S) ≤ 1/2
}

≤ P
{

1−
∥∥SHS− Ina+nb

∥∥ ≤ 1/2
}

= P
{∥∥SHS− Ina+nb

∥∥ ≥ 1/2
}
. (8)

Next, we quantify the tail behavior of the random variable
H =

∥∥SHS− Ina+nb

∥∥, which will then lead to an upper
bound on the probability of σmin(S) falling below 1/

√
2. To

this end the following lemma will be useful.
Lemma 2 ([12, Prop. 10]): If the moments of the non-

negative random variable R can be upper-bounded as
[E(Rq)]1/q ≤ α

√
q + β for all q ≥ Q ∈ Z+

0 , where
α, β ∈ R+

0 , then,

P{R ≥ e1/4(αu+ β)} ≤ e−u
2/4

for all u ≥
√
Q.

To be able to apply Lemma 2 to H =
∥∥SHS− Ina+nb

∥∥,
we first need an upper bound on [E(Hq)]1/q that is of the
form α

√
q + β. We start by writing the sub-dictionary S as

S = [Sa Sb], where Sa and Sb denote the matrices containing
the columns chosen arbitrarily from A and randomly from B,
respectively. We then obtain

SHS− Ina+nb
=

[
SHa Sa − Ina

SHa Sb
SHb Sa SHb Sb − Inb

]
.

Applying the triangle inequality for operator norms, we can
now upper-bound H according to

H =

∥∥∥∥[SHa Sa − Ina SHa Sb
SHb Sa SHb Sb − Inb

]∥∥∥∥
≤
∥∥∥∥[SHa Sa − Ina

0
0 SHb Sb − Inb

]∥∥∥∥+

∥∥∥∥[ 0 SHa Sb
SHb Sa 0

]∥∥∥∥
≤ max

{∥∥SHa Sa − Ina

∥∥ ,∥∥SHb Sb − Inb

∥∥}+
∥∥SHa Sb

∥∥
≤
∥∥SHa Sa − Ina

∥∥+
∥∥SHb Sb − Inb

∥∥+
∥∥SHa Sb

∥∥ (9)

where the second inequality follows because the spectral norm
of both a block-diagonal matrix and an anti-block-diagonal
matrix is given by the largest among the spectral norms
of the individual nonzero blocks. Next, we define Ha =∥∥SHa Sa − Ina

∥∥, Hb =
∥∥SHb Sb − Inb

∥∥, and Z =
∥∥SHa Sb

∥∥.
It then follows from (9) that for all q ≥ 1

[E(Hq)]
1/q ≤ [E((Ha +Hb + Z)

q
)]
1/q

≤ [E(Hq
a)]

1/q
+ [E(Hq

b )]
1/q

+ [E(Zq)]
1/q

≤ Ha + [E(Hq
b )]

1/q
+ [E(Zq)]

1/q (10)



where the second inequality is a consequence of the triangle
inequality for the norm [E(|·|q)]1/q (recall that q ≥ 1), and in
the last step we used the fact that Ha is a deterministic quan-
tity. All expectations in (10) are with respect to the random
choice of columns from sub-dictionary B.

We next upper-bound the three terms on the right-hand
side (RHS) of (10) individually. Applying Geršgorin’s disc
theorem [15, Th. 6.1.1] to the first term, we obtain

Ha =
∥∥SHa Sa − Ina

∥∥ ≤ (na − 1)a. (11)

For the second term on the RHS of (10) we can use [12, Eq.
6.1] to get

[E(Hq
b )]

1/q
=
[
E
(∥∥SHb Sb − Inb

∥∥q)]1/q
≤
√

144b2nbr1 + 2nb‖B‖2/Nb (12)

where r1 = max{1, log(nb/2 + 1), q/4}. Assuming that
q ≥ max{4 log(nb/2 + 1), 4} and hence r1 = q/4, we can
simplify (12) to

[E(Hq
b )]

1/q ≤ 6
√
b2nb
√
q +

2nb
Nb
‖B‖2 . (13)

To bound the third term on the RHS of (10), we use the upper
bound on the spectral norm of a random compression [12,
Thm. 8] combined with rank(SHa Sb) ≤ nb. This yields

[E(Zq)]
1/q

=
[
E
(∥∥SHa Sb

∥∥q)]1/q
≤ 3
√
r2
∥∥SHa B

∥∥
1,2

+

√
nb
Nb

∥∥SHa B
∥∥ (14)

where r2 = max{2, 2 log nb, q/2}. Assuming that q ≥
max{4 log nb, 4}, we can further bound the RHS of (14) to
get

[E(Zq)]
1/q ≤ 3√

2

√
q
∥∥SHa B

∥∥
1,2

+

√
nb
Nb

∥∥SHa B
∥∥

≤ 3√
2

√
d2na

√
q +

√
nb
Nb

∥∥SHa B
∥∥ (15)

≤ 3√
2

√
d2na

√
q +

√
nb
Nb
‖A‖‖B‖ (16)

where (15) follows from the fact that the magnitude of each
entry of SHa B is upper-bounded by d and, thus,

∥∥SHa B
∥∥
1,2
≤√

d2na. To arrive at (16) we used
∥∥SHa B

∥∥ ≤ ∥∥SHa ∥∥‖B‖ ≤
‖A‖‖B‖, which follows from the sub-multiplicativity of the
spectral norm and the fact that the spectral norm of the subma-
trix Sa of A cannot exceed that of A. We can now combine
the upper bounds (11), (13), and (16) to obtain

[E(Hq)]
1/q ≤ (na − 1)a+ 6

√
b2nb
√
q +

2nb
Nb
‖B‖2 +

+
3√
2

√
d2na

√
q +

√
nb
Nb
‖A‖‖B‖

=
(

6
√
b2nb + 3

√
d2na/2

)
︸ ︷︷ ︸

α

√
q+

+ (na − 1)a+
2nb
Nb
‖B‖2 +

√
nb
Nb
‖A‖‖B‖︸ ︷︷ ︸

β
= α
√
q + β

for all q ≥ Q1 = max{4 log(nb/2 + 1), 4 log nb, 4}.
Hence, Lemma 2 yields

P{H ≥ e1/4(αu+ β)} ≤ e−u
2/4

for all u ≥
√
Q1. In particular, under the assumption N ≥

e ≈ 2.7, it follows that the choice u =
√

4s logN satisfies
u ≥
√
Q1 for any s ≥ 1. Straightforward calculations reveal

that conditions (3) and (4) ensure that e1/4(αu + β) ≤ 1/2,
which together with (8) then leads to

P
{
σmin(S) ≤ 1/

√
2
}
≤ P{H ≥ 1/2}

≤ P{H ≥ e1/4(αu+ β)}
≤ e−u

2/4 = N−s.

REFERENCES

[1] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[2] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[3] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[4] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–2862,
Nov. 2001.

[5] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization,” Proc. Natl. Acad.
Sci. USA, vol. 100, no. 5, pp. 2197–2202, Mar. 2003.

[6] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3320–3325, Dec.
2003.

[7] M. Elad and A. M. Bruckstein, “A generalized uncertainty principle
and sparse representation in pairs of bases,” IEEE Trans. Inf. Theory,
vol. 48, no. 9, pp. 2558–2567, Sep. 2002.

[8] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxi-
mation,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, Oct.
2004.

[9] P. Kuppinger, G. Durisi, and H. Bölcskei, “Improved sparsity thresholds
through dictionary splitting,” Proc. IEEE Inf. Theory Workshop (ITW),
Taormina, Italy, pp. 338–342, Oct. 2009.

[10] L. Welch, “Lower bounds on the maximum cross correlation of signals,”
IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 397–399, 1974.

[11] E. J. Candès and J. Romberg, “Quantitative robust uncertainty principles
and optimally sparse decompositions,” Foundations of Comput. Math.,
vol. 6, no. 2, pp. 227–254, Apr. 2006.

[12] J. A. Tropp, “On the conditioning of random subdictionaries,” Appl.
Comp. Harmonic Anal., vol. 25, pp. 1–24, 2008.

[13] R. Calderbank, S. Howard, and S. Jafarpour, “Construction of a large
class of deterministic sensing matrices that satisfy a statistical isometry
property,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 358–
374, Apr. 2010.

[14] O. Christensen, An Introduction to Frames and Riesz Bases. Boston,
MA. U.S.A.: Birkhäuser, 2003.
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