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Abstract—In this contribution, an algorithm for evaluating  (see e.g.[[3],[[4]) with independent paths. In this contéx,
the capacity-achieving input covariance matrices for fregiency eigenvectors of the optimum transmit covariance matrixehav
selective Rayleigh MIMO channels is proposed. In contrast 4 ¢josed expressions, so that both the eigenvalues and the

with the flat fading Rayleigh cases, no closed-form expressis . . .
for the eigenvectors of the optimum input covariance matrix eigenvectors of the matrix have to be evaluated numerically

are available. Classically, both the eigenvectors and eigealues FOr this, it is possible to adapt the approachlof [5] devedope
are computed numerically and the corresponding optimizaton in the context of correlated Rician channels. However, the

algorithms remain computationally very demanding. ~ corresponding algorithms are computationally very derrand
In this paper, it is proposed to optimize (w.r.t. the input coari- - 55 they heavily rely on intensive Monte-Carlo simulations.

ance matrix) a large system approximation of the average muial . . .
information )derivgd gy Mousrigkas and Simon. An eﬁgorithm We therefore propose to optimize the approximation of the

based on an iterative water filling scheme is proposed, andst EMI, derived by Moustakas a_nd Simon (_[4]). in principle aali
convergence is studied. Numerical simulation results showhat, when the number of transmit and receive antennas converge

even for a moderate number of transmit and receive antennashe to infinity at the same rate, but accurate for realistic nursbe
new approach provides the same results as direct maximizath  of gntennas. This will turn out to be a simpler problem.
approaches of the average mutual information. We mention that, while[]4] contains some results related
to the structure of the argument of the maximum of the

EMI approximation, [[4] does not propose any optimization
When the channel state information is available at bofigorithm.

the receiver and the transmitter of a MIMO system, the

problem of designing the transmitter in order to maximize We first review the results of_[4] related to the large
the (Gaussian) mutual information of the system has begystem approximation of the EMI. The expression of the
addressed successfully in a number of papers. This prolslenapproximation depends on the solutions of a non linear syste
however more difficult when the transmitter has the knowdeddhe existence and the uniqueness of the solutions is not
of the statistical properties of the channel, a more realistaddressed iri [4]. As our optimization algorithm needs teeol
assumption in the context of mobile systems. In this caghis system, we clarify this crucial point. Next, we present

the mutual information is replaced by the average mutualaximization algorithm of the EMI approximation. It is base
information (EMI), which, of course, is more complicated t@n an iterative waterfilling algorithm which, in some sense,
optimize. can be seen as a generalization[of [6] devoted to the Rayleigh

The optimization problem of the EMI has been aloldresscantext and of [[[7] devoted to the correlated Rician case:

extensively in the case of certain flat fading Ravleiah cledsin %4ch iteration will be devoted to solve the above mentioned
y g raylelg s?(stem of nonlinear equations as well as a standard wategfill

|. INTRODUCTION

In the context_of the so-called Kronecker model, it _has bee oblem. It is proved that the algorithm converges towahes t
shown by various authors (see e.gl [1] for a review) that .. . : ; ;

. . e ) . optimum input covariance matrix as long as it convetges
the eigenvectors of the optimal input covariance matrix tmus

coincide with the eigenvectors of the transmit correlation 1o paper is organized as follows. Sectlgh Il is devoted
matrix. It is therefore sufficient to evaluate the eigenealof to the presentation of the channel model, the underlying as-
the optimal matrix, a problem which can be solved by using,mptions, the problem statement. The maximization proble

standard optimization algorithms. Similar results haverbe y¢ the EM| approximation is studied in sectibml Ill. Numetica
obtained for flat fading uncorrelated Rician channels ([2]) |aosults are provided in sectigallV.

In this paper, we consider this EMI maximization problem
in the case of popular frequency selective MIMO channelstNote however that we have been unable to prove formally ilv@gence.
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Il. PROBLEM STATEMENT C. Ergodic capacity of the channel.

A. General Notations Let Q(e*™) be thet x t spectral density matrix of the
transmit signak(n), which is assumed to verify the transmit

In this paper, the notations, x, M, stand for scalars, "
power condition

vectors and matrices, respectively. As usuy@d| represents
the Euclidian norm of vectok, and | M|, p(M) and |M| 1t Yimy

respectively stand for the spectral norm, the spectralisaaind 2/0 Tr(Q(e™™))dv =1 (4)
the determinant of matri®d. The superscripté.)” and (.)?

represent respectively the transpose and transpose abejugl-
The trace ofM is denoted byTr(M). The mathematical
expectation operator is denoted By-)

All along this papery andt stand for the number of receive
and transmit antennas. Certain quantities will be studigtie
asymptotic regimeé — oo, r — oo in such a way thayr —
¢ € (0,00). In order to simplify the notationg, — oo should
be understood from now on @s— oo, r — oo andt/r —
¢ € (0,00).

Several variables used throughout this paper depend

hen, the (Gaussian) ergodic mutual informatidé(Q(.))
etween the transmitter and the receiver is defined as

1(Q(.) =Ew [/Ollog du] (5)

whereEw[.| = Ew,),_, ,[]- The ergodic capacity of the
MIMO channel is equal to the maximum &{Q(.)) over the
set of all spectral density matrices satisfying the coirgtra
(@). The hypotheses formulated on the statistics of the mflan
allow however to limit the optimization to the set of positiv
fatrices which are independent of the frequencyThis is

various parameters, e.g. the number of antennas, the NYSRause the probability distribution of matrBl(e2™) is

Iejvel,.the covariance matrix of the transmitter, et(;. Ineortd clearly independent of the frequency More precisely, the
simplify the notations, we may not always mention all thesﬁutual informationI(Q(.)) is also given by

dependencies.

1
B. Channel model 1(Q(.)) = En [/O log

We consider a wireless MIMO link witht transmit and

L . .
r receive antennas corrupted by a multi-paths propagatiwner?H = 2o Hl = H(1). Using the concavity of the
channel. The discrete-time propagation channel between {ﬂgaf'thmv we obtain that

transmitter and the receiver is characterized by the i t 1 1
Y ihe topay 1+ H ([ o) may |
0

equation 1(Q(.) <Enu {bg
L We denote byC the cone of non negative hermitian matrices,
y(n) = ZHIS(”_Z'*‘U‘*'“(") = [H(z)l]s(n)+n(n) (1) and by ¢, the subset of all matrice of C satisfying
=1 %Tr(Q) = 1. If Q is an element of;, the mutual information
where s(n) = (si(n),...,s:(n))T represents the transmit/(Q) reduces to
vector at timen, y(n) = (yi(n),...,y-(n))T the receive
vector, and whera(n) is an additive Gaussian noise such that I(Q) =En [log

[—C
E(n(n)n(n)¥) = 021. H(z) denotes the transfer function of _ .
the discrete-time equivalent channel defined by It is strictly concave on the convex sé€{ and reaches its

maximum at a unique eleme®@. € C;. It is clear that if

I+ SHO)QUH()"

I+ $H<1>Q<.>H<1>H] ]

1
I, + HQH"
g

L 2imvy i iafyi i
B —(-1) Q(e ) is any spectral density satisfyinlg (4), then the matrix
H(z) = Z H, 2 2) fl Q(e*™)dv is an element of’;. Therefore,
1=1 0
Each coefficientH; is assumed to be a Gaussian random 1(Q(1) < 1(Q.)

matrix given by for each spectral density matrix verifyirig (4). This showatt
1

(\1/2 = ()\1/2 the maximum of functiod over the set of all spectral densities
H, = \/g(c ) EWI(C) ©) satisfying [(4) is reached on the s@t. The ergodic capacity

. . . ., Cg of the channel is thus equal to
whereW; is ar x t random matrix whose entries are inde-

pendent and identically distributed complex circular Gars Cp = max I(Q)
. ) ! ) QeC;
random variables, with zero mean and unit variance. The
matricesC() and C)) are positive definite, and account forf the matrices C(")),—; _;, coincide with a matrixC, matrix
the receive and transmit antenna correlation. We also assuHh follows a Kronecker model with transmit and receive
that for eachk # [, matricesH; andH; are independent.  covariance matricegfz1 C® andC respectively([8]. In this
In the context of this paper, the channel matrices are asse, the eigenvectors of the optimum ma@jix coincide with
sumed perfectly known at the receiver side. However, ordy tthe eigenvectors oElel C®. The situation is similar if the
statistics of theH, )1, i.e. matricegC®, C®),_; , transmit covariance matricg®C("),_; ; coincide. In the
are available at the transmitter side. most general case, the eigenvectoranf have however no



1(Q) =log |1 + log

L
+2 aQc?

L L
I+Q <Z 51(Q)c(l)> | —o’t <Z 51(Q)51(Q)> ()
=1 =1

closed form expression. The evaluation@f and of the chan-  2) Uniqueness: In order to simplify the notations, we
nel capacityCg is thus a more difficult problem. A possibleconsider in this part the cagg = I. In order to address the
solution consists in adapating the Vu-Paulraj approadh (6 general case, it is sufficient to change matn(ﬁiél) )i=1,....L
the present context. However, the algorithm presented]in [&to (Ql/QC DQ'/2),_;... 1 in what follows. Let(d, ) and

is very demanding since the evaluation of the gradient aed t{}s ,5 be two solutions of the canonical equatidn (8). We
Hessian ofl(Q) requires intensive Monte-Carlo simulationsdenote(nrf) and (T’,T') the associated matrices defined

D. The large system approximation of 1(Q). by (). Introducinge = 6 — &' = (e1,...,er)” we have:
Whent andr converge tax whilet/r — ¢, ¢ € (0, 00), [4] 1 ) —1 ANy
showed thaf (Q) can be approximated bf(Q) defined by[(¥) a=3Tr {C T(T " —T)T }

t
at the top of the page, whefé,(Q),...,d.(Q))" = 6(Q) o2 kL
and (6,(Q),...,6.(Q))” = §(Q) are the positive solutions - > (0, — )T (C(Z)Tc(k)T/) (12)
k=1
o
L

of the system onL equations:

k1= fi(R) ®) Similarly, withe = 6 — § = (é1,...,é.)7,
Ky = fl(K’a Q) o2
with & = (k1,...,k)" andk = (&4, ...,7)T, and ek = v ;(52 —6)Tx (C(k)TC(”T/) (13)
g)— L O7(& B
{ filR) = T [COT(R)] (9) And (12) and[(IB) can be written together as
7 _1 17260 O1/27
fils, Q) = 1T [Q2E0 QT (x, Q)] . AT (] o
where o?A(T,T’) I e |
T (R) =0 (T+ i 7)) o) With Au(T,T) = 1Tr (COTCOT) and Ay (T.T) =
1k, Q) =0 (I Yk H_Ql/QC(j)Ql/Q) FTr(CHTCHT). We will now prove thaip(M) < 1, with
7 7=t M = o*A(T, T')A(T, T’). This will imply that matrix M

[4] is based on the replica method, a useful and simple trigk invertible, and thus that = & = 0.

whose mathematical relevance is not yet proved in the ptesen

context. However, using large random matrix technics simil

to those of ([9], [[7]), it is possible to prove rigorously tha M| =

under mild technical extra assumptiofi$Q) = 1(Q)+O(}).

This point is outside the scope of the present paper. AL o
We also mention that [4] assumed implicitely the exis- < _22‘ Tr(CHTCOT

tence and the unigueness of positive solutiond bf (8) withou j=1

O e Areacio"e Precise fie imporiant PAMA fhanks to the inequaliyT(AB)| < v/ Tr(AARTi (BB

. . e we have
evaluated using a fixed point algorithm.

4 L o _
0_2 Z Tr(c(k)Tc(J)T/)Tr(C(g)TC(l)T/)
j=1

) ‘Tr(C(j)TC(l)T’) (15)

2T @OTEDT)| < \[Ay (T, T)AL (T, T)  (16)

1) Existence: Using analytic continuation technique and
results of [10], it can be shown that the following fixed point
algorithm, initialized as follows, converges:

« Initialization: 6{” >0, 5" >0,1=1,..., L.
« Evaluation of thes"™" and 5" from 6
@™, 6T andd™ = (60, 5T

5 = fie™, Q) with A(T) = A(T,T) and A(T) = A(T,T). And, using
Cauchy-Schwarz inequality,

1 .
. TH(COTCOT)| < \/Ajl(T,T)Ajl(T’,T’) (17)

Using [16) and[(1]7) in((15) gives

L
Mul < 0* S (/A (T) A, (F) Aju(T) A, (T)

Besides, it can be proved that the limit @T("),S(n)) when
n — oo satisfies equatiori(8), and that all the entries of this $ < L
s masm)

limit are positive. Hence, the convergence of the algorithiivy,| < o*
yields the existence of a solution {d (8).



Hence, we havéMy,| < Py, Vk,l, where the matrixP is is equivalent to maximizing functio® — V(Q,d*,fi*) by
defined byP, — \/(U4A(T)A(T))kl \/(U4A(T")A(T’))kl. (I39). The proof is then based on the observation that

Theorem 8.1.18 of_ [11] then yieldg(M) < p(P). Besides, Y 05 }
Lemma 5.7.9 of[[12] used on the definition Bf gives: o C t(fi(k, Q) — 1) (20)
- . 2% _
pP) <\ [0 (HAMAM) o (o AT AT) o7, =~ (R — ) @)
We now introduce the following lemma: are zero at pointd(Q), 8(Q)). This implies that for eacPP €
Lemma 1: p (U4A(T>A<T>) <1 C1, (VI(Q,), P—Q,) coincides with(VqV(Q,, 4., 6.), P
_ Q,). As functionQ — V(Q, ., 8..) is strictly concave 016,’1,
Proof: The §, can be written as: (I8) implies that its argmax of; coincides withQ,. O
5 = lTr(C(l)TT_lT) Proposition[1L shows that the optimum matrix is solution
t . of a waterfilling problem associated to the covariance matri
2 2 i i i i
_ % (e® a* (D) rpe(k) C(d.). Although this result provides some insight on the
Tt Tr(CHTT) + t Z Tr(CHTCHT) structure of@Q,, it cannot be used to evaluate it because matrix

h=1 C(4.) depends itself 0§, . We now introduce an optimization

And §; = "TTr(C(”TT) + UT Sr L G Tr(COTCHT)  algorithm of 7(Q); the iterative scheme is the following:

similarly, thus: « Initialization: Qo = I
51 L[ 0 A ) . Evaluation ofQ; fromQ,_i: (6*,5") is defined as
5|77 | AT o 51TV the unique solution of[{8) in whiclQ = Q;_;. Then

Qi is defined as the maximum of functio® ~—

This equality is of the forru = B , where the entries ~
quatry uty log‘I—i—QC(é(k)) onc.

of u andv are positive, and where the entriesBfare non-
negative. A direct application of Corollary 8.1.29 bf [1hen

implies p(B) < 1 — E::(Zzl < 1. Noticing that (p(B))? = We now etitabl?tsh a result vvthichihows that if the algorithm
p(c*A(T)A(T)) ends the proof of Lemna 1. o converges, then it converges towards.
We also have of coursp(c*A(T')A(T’)) < 1, so that  Proposition 2: Assume that
finally: B o
p(M) < p(P) < 1. lim 6® —6¢-D = 1im 5% 5%V —0 (22
k—o0 k—o0

[1I. M AXIMIZATION ALGORITHM
Then, the algorithm converges torwards maigx.
Using the same methods as[13] section IV, the approxima-

tion 7(Q) can be shown to be a strictly concave function ovétroof: Due to the lack of space, we just outline the proof
the compact sef;. Therefore it admits a unique argmax thawhich is similar to the proof of Proposition 6 of![7]. As
we denoteQ,. As C; is convex, it is well known thaQ, is C; is compact, we have just to verify that each convergent
characterized by the property subsequenc(aQw k) )ken extracted from(Qy)ren converges
(VI(@,),P-Q.) <0 (18) towardsQ, . For this, we denote wa . the limit of the above

subsequence, and prove that this matrix ver|f|es propedy (1
for each matrixP_€ Ci, where(VI(Q),P — Q) represents e first remark that sequencé’zﬁ("“)+1 and3” ™" converge
the limit of A~ (1(Q + A(P — Q)) — I(Q)) whenA = 0, qwards vectors denoted ™ andd” ™" respectively. Moreover,
A > 0. We now consider the functiol(Q, , &) defined by: (6¢=*,3¢’*) is solution of system({8) in which matriQ co-

V(Q, k, k) =log |T + C(i)| + log [T + QC(k)| incides withQ,, .. Therefore, using relations (20) arid(21) as
(19) in the proof of Propositioh]1, we obtain thé? 1(Q,, ..), P
- a%Zm%l Q,..) coincides with (VQV(Qy.. 0y 8y.). P — Q).

It remains to show that this term is negative for edho
whereC (k) = Zz kGO and C(R) = Zz L7 CO. Note complete the proof. For this, we use g:%p,(k) is the argmax
that we haveV(Q,(Q),5(Q)) = 1(Q). We have then the overC; of functionQ — V(Q, 5%, 5" ). Therefore,

following result: (VoV(Q 5 S )P — Quum) <0 (23)
Proposition 1: Denote d, = §(Q.) and 3, = &(Q.). B e e

Matrix Q. is the solution of the standard waterfilling problempy (232), sequenceséw k))k>0 and (511; k))k>0 converge to-

maximize overQ € C; the functionlog I + QC(d.)]. wards 6% and 8" respectively. Taking the limit of (23)

Proof: Due to lack of space, only the key points are given. Wehen & — oo shows that(VQV(Qw w1 0y, *,5¢ ), P —
first remark that maximizing functio — log [T+ QC(d.)| Qw,*> < 0 as required. O



TABLE |
16 T T T T T T T T T PATHS ANGULAR PARAMETERS(in radians)

EMI without optimization
EMI with presented optimization
—e— EMI with Vu-Paulraj optimization| =1 =2 =3 =4 l=5

mean departure anglg 6.15 3.52 4.04 2.58 2.66
departure angle spread 0.06 0.09 0.05 0.05 0.03
mean arrival angle | 4.85 3.48 1.71 5.31 0.06
arrival angle spread | 0.06 0.08 0.05 0.02 0.11

141

Expected mutual information [bps/Hz]

TABLE Il
o | AVERAGE EXECUTION TIME (in seconds)
% 2 4 6 8 10 12 14 1 18 20 L=3 L=4 L=5
SNR [dB] -
Vu-Paulraj 903 1245 1649

New algorithm | 7,0.10=3 | 7,4.10~3 | 8,3.10=3

Fig. 1. Comparison with Vu-Paulraj algorithm

To conclude, if the algorithm is convergent, that is, if thg’ablelll gives for both algorithms the average executioretim

- : seconds to obtain the input covariance matrix, on a 3.16GH
sequence ofQ)ren converges towards a certain matrix, thell! . K
the 6l(k) — 5,(Qx_1) and the&l(k) — 5,(Qx_y) converge as Intel Xeon CPU with 8GB of RAM, for a number of paths

well when k — oo. (22) is verified, hence,if the aIgoritth =3 L=4andL =5.
is convergent it converges toward,. Although the con- V. CONCLUSION

vergence of the algorithm has not been proved, this resulty this paper we have addressed the evaluation of the

is encouraging and suggests that the algorithm is reliable. capacity achieving covariance matrices of frequency tietec

converging. In any case, conditidn {22) can be easily ctieckgpproximation of the EMI, and have introduced an attractive
If it is not satisfied, it is possible to modify the initial pui jterative algorithm.

Qo as many times as needed to ensure the convergence.
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