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The Diversity-Multiplexing-Delay Tradeoff in

MIMO Multihop Networks with ARQ

Yao Xie, Deniz G̈undüz, Andrea Goldsmith

Abstract

We study the tradeoff between reliability, data rate, and delay for half-duplex MIMO multihop

networks that utilize the automatic-retransmission-request (ARQ) protocol both in the asymptotic high

signal-to-noise ratio (SNR) regime and in the finite SNR regime. We propose novel ARQ protocol

designs that optimize these tradeoffs. In particular, we first derive the diversity-multiplexing-delay

tradeoff (DMDT) in the high SNR regime, where the delay is caused only by retransmissions. This

asymptotic DMDT shows that the performance of anN node network is limited by the weakest three-

node sub-network, and the performance of a three-node sub-network is determined by its weakest link,

and, hence, the optimal ARQ protocol needs to equalize the performance on each link by allocating

ARQ window sizes optimally. This equalization is captured through a novel Variable Block-Length

(VBL) ARQ protocol that we propose, which achieves the optimal DMDT.

We then consider the DMDT in the finite SNR regime, where the delay is caused by both the

ARQ retransmissions and queueing. We characterize the finite SNR DMDT of the fixed ARQ protocol,

when an end-to-end delay constraint is imposed, by derivingthe probability of message error using an

approach that couples the information outage analysis withthe queueing network analysis. The exponent

of the probability of deadline violation demonstrates thatthe system performance is again limited by

the weakest three-node sub-network. The queueing delay changes the consideration for optimal ARQ

design: more retransmissions reduce decoding error by lowering the information outage probability, but

may also increase message drop rate due to delay deadline violations. Hence, the optimal ARQ should
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balance link performance while avoiding significant delay. We find the optimal fixed ARQ protocol by

solving an optimization problem that minimizes the messageerror subject to a delay constraint.

Submitted to IEEE Trans. Info. Theory, April, 2011.

I. INTRODUCTION

Multihop relays are widely used for coverage extension in wireless networks when the di-

rect link between the source and destination is weak. The coverage of relay networks can be

further enhanced by equipping the source, relays and destination with multiple antennas and

using multiple-input-multiple-out (MIMO) techniques forbeamforming. Indeed, MIMO can be

used either for beamforming, which improves the reliability, or for spatial multiplexing, which

increases the data rate [1]. These dual uses of MIMO gives rise to a diversity-multiplexing

tradeoff in point-to-point and multihop MIMO systems, as discussed in more detail below.

Recovery of packets received in error in multihop networks is usually achieved by automatic

retransmission (ARQ) protocols. With an ARQ protocol, on each hop, the receiver feeds back

to the transmitter a one-bit indicator signifying whether the message can be decoded or not. In

case of failure the transmitter retransmits the same message (or incremental information, e.g.,

using a Raptor code [2][3]) until successful packet reception. The ARQ protocol can be viewed

as either a one-bit feedback scheme from the receiver to the transmitter, or as a time diversity

scheme employed by the transmitter. The ARQ protocol improves system reliability at a cost

of increased delay. In order to design an effective ARQ protocol for multihop relay networks

with MIMO nodes, first the fundamental tradeoffs between reliability, data rate, and delay of

such systems must be determined, and then the protocol performance can be compared to this

theoretical performance limit.

A fundamental tradeoff in designing point-to-point MIMO systems is the tradeoff between reli-

ability and data rate, characterized by the diversity-multiplexing tradeoff (DMT). The asymptotic

DMT was introduced in [4] focusing on the asymptotically high SNR regime. The finite SNR

DMT was presented in [5]. The DMT has also been used to characterize the performance of
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classical three-node relay networks, with a direct link between the source and the destination,

when the nodes have single-antenna (SISO) or multiple antennas for various relaying strategies

[6], [7], [8]. The DMTs for the amplify-and-forward (AF) anddecode-and-forward (DF) relaying

strategies are discussed in [6]. Several extensions of the amplify-and-forward strategy have been

proposed recently, including the rotate-and-forward relaying [9] and flip-and-forward relaying

[10] strategies, which employ a sequence of forwarding matrices to create an artificial time-

varying channel within a single slow fading transmission block in order to achieve a higher

diversity gain. A dynamic decode-and-forward (DDF) protocol, in which the relay listens to the

source transmission until it can decode the message and thentransmits jointly with the source, is

proposed in [11] and its DMT performance is shown to dominatethe fixed AF and DF schemes.

The DDF protocol is shown to achieve the optimal DMT performance in MIMO multihop relay

networks in [8]. In this paper, we restrict our attention to multihop networks using the DF

relaying strategy, since it enables us design an optimal ARQprotocol for MIMO multihop relay

networks, as we will show later.

Here we consider the diversity-multiplexing-delay tradeoff (DMDT), which was introduced

in [12] as an extension of the DMT to include the delay dimension. Here the notion of delay

is the time from the arrival of a message at the transmitter until the message is successfully

decoded at the receiver, also known as the “sojourn time” in queueing systems. Delays are

incurred for two reasons: (1) ARQ retransmissions: messages are retransmitted over each hop

until correctly decoded at the corresponding receiver, and(2) queueing delay: ARQ results in a

queue of messages to be retransmitted at the transmitter. Most works on DMDT assume infinite

SNR for the asymptotic analysis, and the queueing delay has been largely neglected. This is

because in the high SNR regime, retransmission is a rare event [13]. With this asymptotic infinite

SNR assumption, [12] presents the DMDT for a point-to-pointMIMO system with ARQ, [14]

studies the DMDT for cooperative relay networks with ARQ andsingle-antenna nodes, and [15]

proves the DMDT-optimality of ARQ-DDF for the multiple access relay and the cooperative

vector multiple access channels with single antenna nodes.However, the asymptotically high

SNR regime does not capture the operating conditions of typical wireless systems in practice,
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where errors during transmission attempts are not rare events [13]. Hence, to fully characterize

the DMDT performance in the finite SNR regime, we must bring the queuing delay into the

problem formulation. For a point-to-point MIMO system witha delay constraint and no feedback

link, the tradeoff between the error caused by outage due to insufficient code length, and the

error caused by delay exceeding a given deadline, has been studied in [16] using large deviation

analysis.

One of the goals of our paper is to study the effects of dynamicARQ on the DMDT in relay

networks. Hence, we consider a line network in which a node’stransmission is only received by

adjacent nodes in the line. This is a reasonable approximation for environments where received

power falls off sharply with distance (i.e., the path loss exponent is large). For this multi-

hop channel model we show that the optimal ARQ protocol requires dynamic allocation of

the ARQ transmission rounds based on the instantaneous channel state, and we obtain its exact

DMDT characterization. The more general case where non-adjacent nodes receive a given node’s

transmission is significantly more complicated, and the optimal DMT is unknown for this case

even with a single relay [14].

The contribution of this paper is two-fold: (1) we characterize the DMDT of multihop MIMO

relay networks in both the asymptotically high SNR regime and in the finite SNR regime where,

in the latter, queuing delay is incorporated into the analysis; (2) we design the optimal ARQ

protocol in both regimes. Our work extends the DMDT analysisof a point-to-point MIMO system

presented in [13] to MIMO multihop relay networks. In the first part of the paper, we derive the

DMDT in the asymptotic high SNR regime, where the delay is caused by retransmissions only.

For a certain multiplexing gain, the diversity gain is foundby studying the information outage

probability. An information outage occurs when the receiver fails to decode the message within

the maximum number of retransmission rounds allowed. Basedon this formulation, for some

multihop relay networks a closed-form expression for the DMDT can be identified, whereas

for general multihop networks, determining the DMDT can be cast as an optimization problem

that can be solved numerically. The DMDT of a general multi-hop network can be studied by

decomposing the network into three-node sub-networks. Each three-node sub-network consists
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of any three neighboring nodes in the network and the corresponding links between them. The

asymptotic DMDT result shows that the performance of the multihop MIMO network, i.e., its

DMDT, is determined by the three-node sub-network with the minimum DMDT. The DMDT of

the three-node sub-network is again determined by its weakest link. Hence, the optimal ARQ

protocol should balance the link DMDT performances on each hop by allocating ARQ window

sizes among the hops. From this insight, we present an adaptive variable block-length (VBL)

ARQ protocol and prove its DMDT optimality.

Next, we study the DMDT in the finite SNR regime, in which the delay is caused by both

retransmissions and queueing. We introduce an end-to-end delay constraint such that a message

is dropped once its delay exceeds this constraint. We characterize the finite SNR DMDT by

studying the probability of message error, which is dominated by two causes: the information

outage event and the missing deadline event, when the block length is sufficiently long [4].

Our approach couples the information-theoretical outage probability [5] with queueing network

analysis. In contrast to the analysis under asymptoticallyhigh SNR, this does not yield closed-

form DMDT expressions; however, it leads to a practically more relevant ARQ protocol design.

The end-to-end delay that takes the queueing delay into consideration introduces one more

factor into the DMDT tradeoff and the associated optimal ARQprotocol design. Specifically,

allocating more transmission rounds to a link may improve its diversity gain and, hence, lower

the information outage probability; however, it also increases the queueing delay and, hence, may

also increase the overall error probability as more messages are dropped due to the violation

of the deadline. Thus, an optimal ARQ protocol in the finite SNR regime should balance these

conflicting goals: our results will show that this leads to equalizing the DMDT performance of

the links.

We formulate the optimal ARQ protocol design as an optimization problem that minimizes

the probability of message error under a given delay constraint. The end-to-end delay constraint

requires us to take into account the message burstiness and queueing delays, which are known

to be the main obstacles in merging the information-theoretical physical layer results with the

network layer analysis [17]. We bridge this gap by modeling the MIMO multihop relay network
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as a queueing network. However, unlike in traditional queueing network theory, e.g., [18], [19],

the multihop network with half-duplex relay nodes is not a standard queue tandem, because node

i along the multihop queue tandem must wait to complete reception of the previous message by

the nodei+2 before it can transmit to nodei+1 in the tandem. Another difference between our

analysis and traditional queueing theory is that we study the amount of time a message waits

in the queue (similar to [13]) rather than just the number of messages awaiting transmission.

This poses a challenge because the distribution associatedwith these random delays is hard

to obtain [20], unlike the distribution of the number of messages for which a product form

solution is available [18]. In [21] delay is studied by usinga closed queue model and diffusion

approximation. We derive the exponent of the deadline missing probability in our half-duplex

multihop MIMO network by adapting the large deviation argument used in [22]. The expression

of the exponent again demonstrates that the system performance (in terms of the exponent) of

multi-hop network with half-duplex relays is determined bythe three-node sub-network with the

minimum exponent.

The remainder of this paper is organized as follows. SectionII introduces the system model

and the ARQ protocol. Section III presents the asymptotic DMDT analysis for various ARQ

protocols while proving the DMDT optimality of the VBL ARQ. Section IV presents the finite

SNR DMDT with queueing delays, including some illustrativeexamples. Finally, Section V

concludes the paper and discusses some future directions.

II. SYSTEM MODEL AND ARQ PROTOCOLS

A. Channel Model

Source

ARQ

M1

H1
Relay

M2

H2
Relay

ARQ

MN-1

HN-1
Destination

MN

HN-2

Fig. 1. MIMO multihop relay network with ARQ. The number of antennas on theith node isMi, andH ∈ CMi+1×Mi is
the channel matrix from nodei to node(i+ 1).
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Consider anN-node multihop MIMO relay network. Node 1 is the source, nodeN is the

destination, while nodes 2 throughN − 1 serve as relays. Nodei hasMi antennas fori =

1, · · · , N. The system model is illustrated in Fig. 1. We denote this MIMOrelay network as

(M1,M2, · · · ,MN ). At the source, the message is encoded by a space-time encoder and mapped

into a sequence ofL matrices,{X1,l ∈ CM1×T : l = 1, · · · , L}, whereT is the block length,

i.e., the number of channel uses of each block, andL is the maximum number of end-to-end

total ARQ rounds that can be used to transmit each message from the source to the destination.

The rate of the space-time code isR.

We define one ARQ round as the transmitter sending a whole block code of the message

to the receiver. We assume that the relays use the DF protocol: node i, 2 ≤ i ≤ N − 1,

decodes the message, and reencodes it with a space-time encoder into a sequence ofL matrices

{X i,l ∈ CMi×T : l = 1, · · · , L}. The channel between nodei and node (i+ 1) is given by:

Y i,l =

√

SNR

Mi
H i,lX i,l +W i,l, 1 ≤ l ≤ L, (1)

where Y i,l ∈ CMi+1×T , i = 1, · · · , N − 1, is the received signal at node(i + 1) in the

lth ARQ round. Channels are assumed to be frequency non-selective, block Rayleigh fading

and independent of each other, i.e., the entries of the channel matricesH i,l ∈ CMi+1×Mi

are independent and identically distributed (i.i.d.) complex Gaussian with zero mean and unit

variance. The additive noise termsW i,l are also i.i.d. circularly symmetric complex Gaussian

with zero mean and unit variance. The forward communicationlinks and ARQ feedback links

only exist between neighboring nodes.

Other assumptions we have made for the channel model are as follows:

(i) We consider half-duplex relays, that is, the relays cannot transmit and receive at the same

time.

(ii) We assume a short-term power constraint at each node foreach block code, given by

E{tr(X†
i,lX i,l)} ≤ Mi, ∀i, l. HereE{·} denotes expectation, and† denotes the Hermitian

transpose. A long-term power constraint would allow us to adapt the transmit power and

achieve power control gain, as we briefly discuss later in the paper. In the following results
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we assume a short-term power constraint in order to focus on the diversity gain achieved

by the ARQ protocol.

(iii) We consider both the long-term static channel model, in which H i,l = H i for all l, i.e.

the channel state remains constant during all the ARQ roundsfor a hop and is independent

from hop to hop; and the short-term static channel model, where H i,l are i.i.d. but not

identical for the samel. The long-term static channel assumption is the worst-casein terms

of the achievable diversity with a maximum ofL ARQ rounds [12], because there is no

time diversity gain. The long-term static channel model maybe suitable for modeling indoor

applications such as Wi-Fi, while the short-term static channel model suits applications with

higher mobility, such as outdoor cellular systems.

B. Multihop ARQ Protocols

Consider a family of multihop ARQ protocols, in which the following standard ARQ protocol

is used over each hop. The receiver in each hop tries to decodethe message after or during

one round, depending on whether the synchronization is per-block based or per-channel-use

based. Once it is able to decode the message, a one bit acknowledgement (ACK) is fed back

to the transmitter that triggers the transmission of the next message. After one ARQ round,

if the receiver cannot decode the message, a negative acknowledgement (NACK) is fed back

to the transmitter. Then the transmitter sends the next block of the code that carries additional

information for the same message. The retransmission over the ith hop continues for a maximum

number ofLi rounds, called the ARQ window size. Once the ARQ window size is reached

without successful decoding of the message, the message is discarded, causing an information

outage. Then the next message is transmitted. The sum of the ARQ window sizes is upper

bounded byL > 0, where
N−1
∑

i=1

Li ≤ L. (2)

We consider several ARQ protocols with different ways to allocate the available ARQ windows

among different hops:

(i) A fixed ARQ protocol, which allocates a fixed ARQ window size of Li for the transmitter
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of nodei, i = 1, · · · , N − 1 such that
∑N−1

i=1 Li = L.

(ii) An adaptive ARQ protocol, in which the allocation of theARQ window size per hop is not

fixed but adapted to the channel state. The transmitter of a node can keep retransmitting

as long as the total ARQ window size ofL has not been reached. We further consider two

types of adaptive ARQs based on different synchronization levels:

(1) Fixed-Block-Length (FBL) ARQ protocol: The synchronization is per-block based. The

transmission of a message over each hop spans an integer number of ARQ rounds.

(2) Variable-Block-Length (VBL) ARQ protocol: The synchronization is per-channel-use

based. The receiver can send an ACK as soon as it can decode themessage, and the

transmitter starts transmitting a new message without waiting until the beginning of the

next channel block. VBL has a finer time resolution than FBL and is more efficient in

using the available channel block, at a cost of higher synchronization complexity.

We assume that the ARQ feedback links has zero-delay and no error.

III. A SYMPTOTIC DMDT

We characterize the tradeoff among the data rate (measured by the multiplexing gainr), the

reliability (measured by the diversity gaind), and the delay by the asymptotic DMDT of a system

with ARQ. Following the framework of [4] and [12], we assume that the rate of transmission

depends on the operating SNRρ, and consider a family of space time codes with block rate

R(ρ) scaling with the logarithm of SNR as

R(ρ) = r log ρ. (3)

A. Diversity Gain

In the high SNR regime, the diversity gain is defined as the SNR exponent of the message

error probability [4]. It is shown in [4] that the message error probabilityPe(ρ) is dominated

by the information outage probabilityPout(ρ) when the block-length is sufficiently large. In

the following we make this assumption. Theinformation outage event is the event that the

accumulated mutual information at the receiver within the allowed ARQ window size does not
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meet the data rate of the message and, therefore the receivercannot decode the message. Hence,

the diversity gain for a family of codes is defined as:

d(r) , − lim
ρ→∞

logPe(ρ)

log ρ
. (4)

The DMT of an M1 × M2 MIMO system is denoted byd(M1,M2)(r) and defined as the

supremum of the diversity gaind(r) over all families of codes. DMT of a point-to-point MIMO

system is characterized in [4] by the following theorem:

Theorem 1. For a sufficiently long block-length, the DMT d(M1,M2)(r) is given by the piece-wise

linear function connecting the points (r, (M1 − r)(M2 − r)), for r = 0, · · · ,min(M1,M2).

B. Asymptotic DMDT

To characterize the asymptotic DMDT for a multihop network in the high SNR regime, we

need the following quantity. Assume that the channel inputsat both the source and the relays are

Gaussian with identity covariance matrices. DefineM∗
i = min{Mi,Mi+1}, for i = 1, · · · , N−1.

For the long-term static channel, letλi,1, · · · , λi,M∗
i

be the nonzero eigenvalues ofH iH
†
i , for

i = 1, · · · , N − 1. Supposeλi,j = ρ−αi,j , for j = 1, · · · ,M∗
i , i = 1, · · · , N − 1. At high SNR,

we can approximate the channel capacitiesCi(H i) , log det
(

I + ρ
Mi

H iH
†
i

)

as Ci(H i)
.
=

log ρSi(αi) 1, where

Si(αi) ,

M∗
i

∑

j=1

(1− αi,j)
+, (5)

(x)+ , max{x, 0}, and the vectorαi , [αi,1 · · ·αi,M∗
i
]. This Si(αi) plays an important role

in the asymptotic DMDT analysis. The closer the SNR exponents αi,j ’s are to unity, the closer

the channel matrix is to being singular. Similarly, we can define {αl
i,j} in the short-term static

channel model and the corresponding matrixαi ∈ R
M∗

i ×L as [αi]k,l , αl
i,k.

Proofs for the asymptotic DMDT analysis rely on the notion ofdecoding time, which is the

time at which the accumulated information reachesR(ρ). In the case of the short-term static

1Here the exponential equality
.
= is defined asf(ρ)

.
= ρc, if limρ→∞

log f(ρ)
log ρ

= c. The exponential inequalitieṡ≤ and≥̇ are
defined similarly.
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channel, for the FBL ARQ and other block-based ARQ protocols, the decoding time for theith

node is given by

ti , inf

{

t ∈ Z
+ :

t
∑

l=1

Ci(H i,l) ≥ r log ρ

}

.
= inf

{

t ∈ Z
+ :

t
∑

l=1

Si(α
l
i) ≥ r

}

, (6)

whereZ
+ denotes the set of positive integers. For the VBL ARQ and other non-block-based

ARQ protocols, the decoding time is given by

ti , inf







t ∈ R :

⌊t⌋
∑

l=1

Si(α
l
i) + (t− ⌊t⌋)Si(α

⌊t⌋+1
i ) ≥ r







, (7)

where⌊x⌋ denotes the largest integer smaller thanx. Similarly we can define the decoding time

for the long-term static channel model. We can view the accumulated mutual information as a

random walk with random incrementsSi(α
l
i) > 0 and stopping boundaryr.

In the following, we first state our results for the three-node network(M1,M2,M3), and then

extend them to the generalN-node network.

1) Long-Term Static Channel: The DMDT of the fixed ARQ protocol in the case of the

long-term static channel is given by the following theorem:

Theorem 2. With the long-term static channel assumption, the DMDT of the fixed ARQ protocol

for a three-node MIMO multihop network with window sizes L1 and L2, Li ∈ Z
+, L1+L2 ≤ L,

is given by:

d
(M1,M2,M3)
F (r, L1, L2|L1 + L2 ≤ L) = min

i=1,2

{

d(Mi,Mi+1)

(

r

Li

)}

. (8)

Proof: See Appendix A.

Consistent with our intuition, (8) shows that the performance of a three-node network is limited

by the weakest link. This implies that if there were no constraint for theLi’s to be integers, the

optimal choice should equalize the diversity-multiplexing tradeoff of all the links, i.e.,

d(M1,M2)

(

r

L1

)

= d(M2,M3)

(

r

L2

)

. (9)

With the integer constraint we choose the integerLi’s such that the minimum ofd(Mi,Mi+1)
(

r
Li

)
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for i = 1, 2 is maximized.

The DMDT of the FBL ARQ protocol is a piece-wise linear function characterized by the

following theorem:

Theorem 3. With the long-term static channel assumption, the DMDT of the FBL ARQ protocol

for a three-node MIMO multihop network is given by

d
(M1,M2,M3)
FBL (r, L) = min

li∈Z+:l1+l2=L−1

{

d(M1,M2)

(

r

l1

)

+ d(M2,M3)

(

r

l2

)}

. (10)

Proof: See Appendix B.

The DMDT of the VBL ARQ protocol cannot always be expressed inclosed-form, but can

be written as the solution of an optimization problem, as stated in the following theorem.

Theorem 4. With the long-term static channel assumption, the DMDT of the VBL ARQ protocol

for a three-node MIMO multihop network is given by

d
(M1,M2,M3)
V BL (r, L) = inf

(α1,α2)∈O
h({αi,j}), (11)

where h({αi,j}) ,
∑2

i=1

∑M∗
i

j=1(2j − 1 + |Mi −Mi+1|)αi,j . The set O is defined as

O ,
{

(α1,α2) ∈ R
M∗

1 × R
M∗

2 :

αi,1 ≥ · · · ≥ αi,M∗
i
≥ 0, i = 1, 2,

S1(α1)S2(α2)

S1(α1) + S2(α2)
<

r

L

}

,
(12)

and this is the optimal DMDT for a three-node network in the long-term static channel.

Proof: See Appendix C.

Note that the DMDT of the VBL ARQ protocol in the three-node network, under the long-

term static channel assumption, is similar to the DMT of DDF without ARQ given in [8], with

proper scaling of the multiplexing gain. The optimization problem in (11) can be shown to be

convex using techniques similar to Theorem 3 in [8].

We have closed-form solutions for some specific cases wherethe optimization problem in

(11) has a simple form and can be solved analytically. For example, for a(M1, 1,M3) network



13

(11) becomes

d
(M1,1,M3)
V BL (r, L) = inf

α1,1,α2,1

M1α1,1 +M3α2,1

subject to
(1− α1,1)

+(1− α2,1)
+

(1− α1,1)+ + (1− α2,1)+
<

r

L
,

αi,1 ≥ 0, i = 1, 2. (13)

The DMDT for this case (and two other special cases) is given by the following corollary:

Corollary. With the long-term static channel assumption the DMDT of the VBL ARQ protocol

(1) for a (M1, 1,M3) MIMO multihop network is given by

d
(M1,1,M3)
V BL (r, L) =







min{M1,M3}
1−2r/L
1−r/L

, 0 ≤ r ≤ L/2;

0, otherwise.
(14)

(2) for a (1,M, 1) MIMO multihop network is given by

d
(1,M,1)
V BL (r, L) =







M 1−2r/L
1−r/L

, 0 ≤ r ≤ L/2;

0, otherwise.
(15)

(3) for a (2, 2, 2) MIMO multihop network is given by

d
(2,2,2)
V BL (r, L) =



































2(4−5r/L)
2−r/L

, 0 ≤ r ≤ L/2;

3−4r/L
1−r/L

, L/2 ≤ r ≤ 2L/3;

4(1−r/L)
2−r/L

, 2L/3 ≤ r ≤ L;

0, otherwise.

2) Short-Term Static Channel: The DMDT of the fixed and the FBL ARQ under the short-

term static channel assumption are similar to those under the long-term static channel assumption,

with additional scaling factors for DMDTs of each hop due to the time diversity gain.

Theorem 5. With the short-term static channel assumption, the DMDT of the FBL ARQ protocol

for a three-node MIMO multihop network is given by

d
(M1,M2,M3)
FBL (r, L) = min

li∈Z+:l1+l2=L−1

{

2
∑

i=1

lid
(Mi,Mi+1)

(

r

li

)

}

.
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Proof: See Appendix D.

Theorem 6. With the short-term static channel assumption, the DMDT of the VBL ARQ protocol

for a three-node MIMO multihop network is given by

d
(M1,M2,M3)
V BL (r, L) = inf

(α1,α2)∈G
h̃
({

αl
i,j

})

, (16)

where h̃
({

αl
i,j

})

,
∑2

i=1

∑M∗
i

j=1

∑L
l=1 (2j − 1 + |Mi −Mi+1|)α

l
i,j , and the set G is defined as

G ,
{

(α1,α2) ∈ R
M∗

1×L × R
M∗

2×L :

αl
i,1 ≥ · · · ≥ αl

i,M∗
i
≥ 0, ∀i, l, t1 + t2 > L

}

. (17)

The ti’s, defined in (7), depend on the αi’s. This is the optimal DMDT for a three-node MIMO

multihop network in the short-term static channel.

Proof: See Appendix E.

C. DMDT of an N-Node Network and Optimality of VBL

Next, we extend our DMDT results to generalN-node MIMO multihop networks. Note that

in our model, since each transmitted signal is received onlyby the next node in the network,

the transmission over theith hop does not interfere with other transmissions. We will show

the DMDT of this more general network is a minimization of theDMDTs of all its three-

node sub-networks, due to half-duplexing and multihop diversity. The multihop diversity [8]

captures the fact that we allow simultaneous transmissionsof multiple node pairs in half-duplex

relay networks. For example, while nodei is transmitting to node(i+1), node(i+2) can also

transmit to node(i+3). This effect allows us to split a message into pieces, which are transmitted

simultaneously in the network to increase the multiplexinggain. Using this rate-splitting scheme,

we can prove the DMDT optimality of the VBL ARQ protocol. Due to their fixed block length,

we are only able to provide upper and lower bounds for DMDTs offixed ARQ and FBL ARQ

in anN-node network.

Theorem 7. With the long-term or short-term static channel assumption, the DMDT of the VBL
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ARQ for an N-node MIMO multihop network is given by

d
(M1,··· ,MN )
V BL (r, L) = min

i=1,··· ,N−2
d
(Mi,Mi+1,Mi+2)
V BL (r, L), (18)

and this is the optimal DMDT for an N-node network.

Proof: See Appendix F.

Theorem 7 says that the DMDT of anN-node system is determined by the smallest DMDT

of its three-node sub-networks. The minimization in Theorem 7 is over all possible three-node

sub-networks instead of pairs of nodes, due to the half-duplex constraint: each low-rate piece of

message has to wait for the previous piece to go through two hops before it can be transmitted.

Theorem 7 also says that the VBL ARQ is the optimal ARQ protocol in the general multi-hop

network.

Theorem 8. With the long-term or short-term static channel assumption, the DMDT of fixed

ARQ for an N-node network is lower bounded and upper bounded, respectively, by

d
(M1,··· ,MN )
F (r, L1, · · · , LN−1) ≥ min

i=1,··· ,N−2
d
(Mi,Mi+1,Mi+2)
F

(

Lmax

L
r, Li, Li+1

∣

∣

∣

∣

Li + Li+1 ≤ Lmax

)

,

(19)

and

d
(M1,··· ,MN )
F (r, L1, · · · , LN−1) ≤ min

i=1,··· ,N−2
d
(Mi,Mi+1,Mi+2)
V BL (r, L), (20)

where Lmax , maxN−2
i=1 {Li + Li+1}.

Proof: See Appendix G.

Theorem 9. With the long-term or short-term static channel assumption, the DMDT of the FBL

ARQ for an N-node network is lower bounded and upper bounded, respectively, by

d
(M1,··· ,MN )
FBL (r, L) ≥ min

i=1,··· ,N−2
d
(Mi,Mi+1,Mi+2)
V BL (r, L−N), (21)

and

d
(M1,··· ,MN )
FBL (r, L) ≤ min

i=1,··· ,N−2
d
(Mi,Mi+1,Mi+2)
V BL (r, L). (22)
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Proof: See Appendix H.

An intuitive explanation for the DMDT optimality of the VBL ARQ is as follows. Recall that

ti is the number of channel blocks, including retransmissions, needed to decode the message

over theith hop. For a three-node network, we can illustrate the information outage region in

the region oft1 × t2 values as in Fig. 2. The outage region of the VBL ARQ is smallerthan

those of the fixed and the FBL ARQ. Due to its per-block based synchronization, the outage

region boundary of the FBL ARQ is a piecewise approximation to that of the VBL ARQ. In the

high SNR regime, we formalize the above intuition in the following corollary to Theorem 9.

�����

�����

�����

�����

�����

t1

��

Outage region for fixed ARQ

Outage region for adaptive ARQ

L1

L2

t2

( t1+t2=L ), VBL

( t1+t2> L)

( t1>L1 or t2> L2)

( t1+t2=L ), FBL

Fig. 2. Outage regions of the fixed ARQ, and two adaptive ARQs: the FBL and the VBL ARQs, withL1 + L2 = L.

Corollary. With the long-term or short-term static channel assumption, for an N-node MIMO

multihop network, the DMDT of the FBL ARQ converges to that of the VBL ARQ when L → ∞.
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Proof: Using (21) and (22), whenL → ∞,

min
i=1,··· ,N−2

d
(Mi,Mi+1,Mi+2)
V BL (r, L) ≥ d

(M1,··· ,MN )
FBL (r, L) ≥ min

i=1,··· ,N−2
d
(Mi,Mi+1,Mi+2)
V BL (r, L[1−N/L])

L→∞
−−−→ min

i=1,··· ,N−2
d
(Mi,Mi+1,Mi+2)
V BL (r, L).

(23)

D. Power Control Gain with Long Term Power Constraint

With the long-term power constraint and channel state information at the transmitter (CSIT),

we can employ a power control strategy to further improve diversity. Let the SNR in thelth

round beρ(l) = ρg(l), whereρ is the average SNR, andg(l) is the function defining the power

control strategy. In the high SNR regime, similar to (5) we can approximate channel capacities

asCi(H i)
.
= log ρS

′
i(αi), whereS ′

i(αi) =
∑M∗

i
j=1 (g(l)− αi,j)

+. Hence, with power control, all

the asymptotic DMDT results in the previous sections hold with Si(αi) replaced byS ′
i(αi).

E. Examples for Asymptotic DMDT

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3
DMDT of (4,1,3) multi−hop system, long−term static, L = 4

r

d(
r)

 

 

VBL ARQ
Fixed ARQ, L

1
 = L

2
 = L/2

Fixed ARQ, optimal L
1
 L

2

FBL ARQ

Fig. 3. The DMDT for a (4,1,3) multihop network withL = 4.

In this section we show some illustrative examples for the asymptotic DMDT. We first consider

the long-term static channel model. For a three-node(4, 1, 3) multihop network withL = 4, Fig.
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DMDT of (2,2,2) multihop relay system, long−term static, L = 4

r

d(
r)

 

 

VBL ARQ
Fixed ARQ, L

1
 = L

2
 = L/2

Fixed ARQ, optimal L
1
 L

2

FBL ARQ

Fig. 4. The DMDT for a (2,2,2) multihop network withL = 4.

3 shows the DMDT of the fixed ARQ withL1 = L2 = L/2, of the per-hop-performance-

equalizingL1 andL2 satisfying (9), as well as the DMDTs of the FBL and the VBL ARQs.

Note that the DMDT of the VBL ARQ in Fig. 3 is the optimal DMDT for the (4, 1, 3) network.

We also consider a (2, 2, 2) network, whose DMDTs are shown in Fig. 4.

Fig. 5 presents the three-dimensional DMDT surface of the VBL and the FBL ARQs, re-

spectively, for the(4, 1, 3) multihop network. Note that asL increases, the diversity gain at a

given r increases for both the FBL and the VBL ARQ protocols. Also note that the DMDT

surface of the FBL ARQ is piecewise and that of the VBL ARQ is smooth due to their different

synchronization levels. Fig. 6 illustrates the cross sections of the surfaces in Fig. 5 atL = 2 and

L = 10, which demonstrates the convergence of the DMDTs proved in Theorem III-C.

Next we consider the short-term static channel model. The DMDT of the (4,1,3) multihop

network using the FBL ARQ is shown in Fig. 7. Note that the asymptotic DMDT in the short-

term static channel model is not necessarily a multipleL of the corresponding DMDT in the

long-term static channel model, which differs from the point-to-point MIMO channel [12], where

the asymptotic DMDT in the short-term static channel model is a multipleL of the corresponding

DMDT in the long-term static channel model.
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Fig. 5. The three-dimensional DMDT surface for a (4,1,3) network, with the FBL ARQ (left) and the VBL ARQ (right).
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Fig. 6. The slices of the DMDT surface in Figure 5 atL = 2 (left) and atL = 10 (right).
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Fig. 7. The DMDT for a (4, 1, 3) multihop network in the long-term static channel versus that in the short-term static channel.
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IV. FINITE SNR DMDT WITH DELAY CONSTRAINT

In analyzing the finite SNR DMDT, we add a practical end-to-end delay constraint: each

message has to reach the destination before the deadline; otherwise it is discarded. We char-

acterize the finite SNR DMDT by studying the probability of message error. With the delay

constraint brought into the picture, the probability of message error has two components: the

information outage probability and thedeadline missing probability, which we analyze using

the finite SNR DMT introduced in [5] and the queueing network analysis, respectively. In the

finite SNR regime, the multiplexing gain is defined as:

r ,
R

log2(1 +Mrρ)
, (24)

whereMr is the number of antennas at the receiver. In the following weonly consider the

long-term static channel model and the fixed ARQ protocol. We first introduce the queueing

network model.

A. Queueing Network Model

The messages enter the network at the source node and exit from the destination node, forming

an open queue. Messages arrive at the source node as a Poissonprocess with a mean message

inter-arrival time ofλ blocks. As in the previous sections, the unit of time is one block of the

channel consisting ofT channel uses. The end-to-end delay constraint isk blocks. Each node

can be viewed as a service station transmitting (possibly with several retransmissions) a message

to the next node. The time nodei spends to successfully transmit a message to node(i+ 1) is

called the service time of theith node, which depends on the channel state and is upper bounded

by the ARQ window sizeLi. The allocated ARQ window sizes satisfy
∑

i Li ≤ k.

As an approximation, we assume that the random service time at nodei for each message is

i.i.d. with an exponential distribution of meanµ(Li) (the actual service time has value distributed

in the interval of[0, Li]). Hereµ(Li), which we derive later, is the actual average service time of

the ARQ process when the ARQ window size isLi. With these assumptions we can treat each

node as anM/M/1 queue. This approximation makes the problem tractable and characterizes
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the qualitative behavior of MIMO multihop networks. The messages enter the buffer and are

processed based on the first-come-first-served (FCFS) rule. We assumeµ(Li) + µ(Li+1) < λ,

i = 1, · · · , N − 2, so the queues are stable, i.e., the waiting time at a node does not grow

unbounded.

Burke’s theorem (see [18]) says that in anM/M/1 queue with Poisson arrivals, the messages

leave the server as a Poisson process. Hence messages arriveat each relay (and the destination

node) as a Poisson process with rate(1 − pi)/λ, wherepi is the probability that a message is

dropped. When the SNR is reasonably high, we can assume the message drop probability is

small and hence1− pi ≈ 1.

B. Probability of Message Error

Denote the total queueing delay experienced by thenth message transmitted from the source

to the destination asWn, and the number of transmissions needed by nodei to transmit the

nth message to node(i + 1) as tin, if the transmitter can use any number of rounds. For the

nth message, if it is not discarded due to information outage,the total “service time” isSn =
∑N−1

i=1 min{tin, Li} and the random end-to-end delay isDn = Wn+Sn. Recall for the fixed ARQ,

the message is dropped once the number of retransmissions exceeds the ARQ window size of

any hop, or the end-to-end delay exceeds the deadline. Hence, the message error probability of

the nth message can be written as

Pe = P
{

∪N−1
i=1 {tin > Li}

}

+ P
{

∩N−1
i=1 {tin ≤ Li} ∩ {Dn > k}

}

. (25)

The first term in (25) is the message outage probability:

Pout({Li}|ρ) , P
{

∪N−1
i=1 {tin > Li}

}

, (26)

which is identical for any messagen since channels are i.i.d. The second term in (25) is related

to the deadline missing probability, and can be rewritten as

P
{

∩N−1
i=1 {tin ≤ Li} ∩ {Dn > k}

}

= [1− Pout({Li}|ρ)]P
{

Dn > k
∣

∣∩N−1
i=1

{

tin ≤ Li

}}

. (27)
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Define the stationary deadline missing probability:

Pdeadline ({Li}|ρ, k) , lim
n→∞

P
{

Dn > k
∣

∣∩N−1
i=1

{

tin ≤ Li

}}

. (28)

In the following we derive (26) and (28).

1) Information Outage Probability: Since channels in different hops are independent, (26)

becomes

Pout ({Li}|ρ) =

N−1
∑

i=1

P
{

tin > Li

}

=

N−1
∑

i=1

P {LiCi(H i) < r log2(1 +Mi+1ρ)}

,

N−1
∑

i=1

Pout,i (Li|ρ) ,

(29)

which is a sum of the per-hop outage probabilitiesPout,i (Li|ρ). Using results in [5] for point-

to-point MIMO, we have

Pout,i (Li|ρ) = sup
(b1,···bM∗

i
)∈Bi

M∗
i
∏

l=1

γ
(

Mi+1 −Mi + 2l − 1, Mi

ρ
[(1 +Mi+1ρ)

bl − (1 +Mi+1ρ)
bl−1 ]

)

Γ(Mi+1 −Mi + 2l − 1)
,

(30)

where the setBi is given by

Bi =







(b1, · · · , bM∗
i
)

∣

∣

∣

∣

∣

bl−1 < bl <
r
Li

−
∑l−1

k=1 bk

M∗
i − l + 1

, l = 1, · · ·M∗
i − 1; bM∗

i
=

r

Li

−

M∗
i −1
∑

k=1

bk







,

(31)

γ(m, x) ,
∫ x

0
tm−1e−tdt is the incomplete gamma function, andΓ(m) , (m− 1)! for a positive

integer m. For orthogonal space-time block coding (OSTBC), we can derive a closed-form

Pout,i(Li|ρ) using techniques similar to [5]:

Pout,OSTBC ({Li}|ρ) =
N−1
∑

i=1

P

{

rsLi log2

(

1 +
ρ

Mi

‖Hi‖
2
F

)

≤ r log2(1 +Mi+1ρ)

}

, (32)

where‖A‖ denotes the Frobenius norm of a matrixA, and the spatial code raters is equal

to the average number of independent constellation symbolstransmitted per channel use. For

example,rs = 1 for the Alamouti space-time code [23]. WhenH i is Rayleigh distributed, its
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Frobenius norm has the Gamma(1,Mi ·Mi+1) distribution. Hence, (32) becomes:

Pout,OSTBC({Li}|ρ) =

N−1
∑

i=1

1

(Mi ·Mi+1 − 1)!
γ

(

Mi

ρ
[(1 +Mi+1ρ)

r
rsLi − 1],Mi ·Mi+1

)

. (33)

2) Deadline Missing Probability: For a three-node network with half-duplex relay, there is

only one queue at the source that incurs the queueing delay. For givenr andρ, we can derive

the stationary deadline missing probability using a martingale argument:

Theorem 10. For a half-duplex three-node MIMO multihop network with Poisson arrival of rate

λ and ARQ rounds L1 and L2, the probability that the end-to-end delay exceeds the deadline k

is given by

Pdeadline ({Li}|ρ, k) =
µ(L1) + µ(L2)

λ
e
−k

(

1
µ(L1)+µ(L2)

− 1
λ

)

. (34)

Proof: See Appendix I.

For general multihop networks with any number of half-duplex relays, the analysis for (28) is

more involved. Due to half-duplexing the neighboring linkscannot operate simultaneously, and

this effect is not captured in the standard queueing networkanalysis. Here we adapt the proof

in [22], which uses large deviation techniques, to derive the following theorem for the exponent

of the deadline missing probability in half-duplex relay networks:

Theorem 11. For a half-duplex N-node MIMO multihop network, with Poisson arrival of rate λ

and ARQ rounds Li’s, the probability that the end-to-end delay exceeds the deadline k is given

by

lim
k→∞

lim
n→∞

1

k
P
{

Dn > k
∣

∣∩N−1
i=1

{

tin ≤ Li

}}

= −θ∗, (35)

where θ∗ = min1≤i≤N−2 θi, and θi = 1/[µ(Li) + µ(Li+1)]− 1/λ, i = 1, · · · , N − 2.

Proof: See Appendix J.

This theorem again demonstrates that the performance of theN-node multihop network with

a half-duplex relay (here the performance metric is in termsof the deadline-missing probability

exponent) is determined by the smallest exponent of each three-node sub-network. By Theorem
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11, for finite k we can approximate (28) as

Pdeadline({Li}|ρ, k) ≈ e−kθ∗. (36)

Also note that in the special case withN = 3 nodes, for finitek

Pdeadline({Li}|ρ, k) ≈ e
−k

(

1
µ(L1)+µ(L2)

− 1
λ

)

, (37)

which is identical with (34) up to a multiplicative constant[µ(L1) + µ(L2)]/λ. This constant is

typically not identifiable by large deviation techniques such as the one used in Theorem 11.

3) Mean Service Time Calculation: The above analysis requiresµ(Li), which we will derive

in this section. For a givent and messagen, the cumulative distribution function (CDF) oftin

is given by

P
{

tin ≤ t
}

= P {tCi(H i) ≥ r log2(1 +Mi+1ρ)} = 1− Pout,i(t|ρ), (38)

wherePout,i(t|ρ) is given in (30) (or a term in the summation in (33) for OSTBC).Differentiating

(38) gives the desired probability density function (PDF):

P
{

tin = t
}

=
Mir

ρrst2(Mi ·Mi+1 − 1)!
f
Mi·Mi+1−1
i e−fi(1 +Mi+1ρ)

r/t
rs log2(1 +Mi+1ρ), (39)

wherefi ,
Mi

ρ

[

(1 +Mi+1ρ)
r/t
rs − 1

]

. Using this we have

µ(Li) =

∫ Li

t=1

tP
{

tin = t
}

dt+ Li

∫ ∞

t=Li

P
{

tin = t
}

dt. (40)

C. Optimal Fixed ARQ Design at Finite SNR

Based on the above analysis, we formulate the optimal fixed ARQ design in the finite SNR

regime as an optimization problem that allocates the total ARQ window size among hops to

minimize the probability of message error subject to the queue stability and the end-to-end
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delay constraintk:

min
{Li}

Pout({Li}|ρ) + [1− Pout({Li}|ρ)]Pdeadline({Li}|ρ, k)

subject to 1 ≤ µ(Li) ≤ λ,
N−1
∑

i=1

Li ≤ k.

(41)

The terms in (41) are given by (29), (33), (34), and (36). Thisoptimization problem can be

solved numerically. In particular, for a three-hop networkwith OSTBC, (41) becomes

min
{Li}

2
∑

i=1

1

(MiMi+1 − 1)!
γ

(

Mi

ρ
[(1 + ρ)

r
rsLi − 1],MiMi+1

)

+
µ(L1) + µ(L2)

λ
e
−k

(

1
µ(L1)+µ(L2)

− 1
λ

)

subject to 1 ≤ µ(Li) ≤ λ,
N−1
∑

i=1

Li ≤ k. (42)

As we demonstrate in the following examples, the information outage probability is decreasing

in Li, and the deadline missing probability is increasing inLi. Hence the optimal ARQ window

size allocationLi at each nodei should trade off these two terms. Moreover, the optimal ARQ

window size allocation should equalize the performance of each link.

D. Numerical Example

We first consider a point-to-point (2, 2) MIMO system at the source and the destination.

Assumeρ = 3 dB andλ = 2 blocks. An OSTBC withrs = 1 is used, for which the information

outage probability is given in (33). The deadline constraint is k = 5 blocks. Forr = 1, the

information outage probability (26) and the deadline missing probability (28) are shown in Fig.

8. Note that (26) decreases, while (28) increases with the ARQ window size.

Next we consider the (4, 1, 3) MIMO multihop network. Assumeρ = 20 dB andλ = 10

blocks. An OSTBC withrs = 1 is used. The optimal fixed ARQ protocol is obtained by solving

(42). Forr = 1 and a deadline constraint ofk = 5 blocks, the optimal fixed ARQ hasL1 = 2

and L2 = 3, and the optimal probability of message error is 0.1057. Forr = 1 and k = 10

blocks, the optimal fixed ARQ hasL1 = 4 andL2 = 6, and the optimal probability of message

error is 0.0355. For allr andk, the probability of message error is plotted as a surface in Fig.

9. This surface is the DMDT for the three-node network in the finite SNR regime, which has



26

an interesting similarity to the high SNR asymptotic DMDT surface in Fig. 6, since indeed the

high SNR DMDT represents the SNR exponent of the finite SNR DMDT.
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Fig. 8. The information outage probability and the deadlinemissing probability for a (2, 2) point-to-point MIMO system, with
rs = 1, r = 1, and SNRρ = 3 dB, k = 5 blocks andλ = 2 blocks. The minimum probability of message error is0.4147 and
is achieved byL = 2.
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Fig. 9. The probability of message error for the optimal fixed ARQ protocol in a (4, 1, 3) multihop network as a function of
multiplexing gainr and delay constraintk; rs = 1, SNRρ = 20 dB andλ = 10 blocks.

V. CONCLUSIONS

We have analyzed the asymptotic diversity-multiplexing-delay tradeoff (DMDT) for theN-

node MIMO multihop relay network with ARQ, under both long-term and the short-term static

channel assumptions. We show that the asymptotic DMDT can becast into an optimization prob-

lem that can be solved numerically in general, and closed-form asymptotic DMDT expressions

are obtained in some special cases. We also proposed the VBL ARQ protocol which adapts
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the ARQ window size among hops dynamically and proved that itachieves the optimal DMDT

under both channel assumptions. We also show that the DMDT for general multihop networks

with multiple half-duplex relays can be found by decomposing the network into three-node sub-

networks such that each sub-network consists of three neighboring nodes and its corresponding

two hops. The DMDT of the relay network is determined by the minimum of the DMDTs of the

three-node sub-networks. We have also shown that the DMDT ofthe three-node subnetwork is

determined by its weakest link. Hence, the optimal ARQ should equalize the link performances

by properly allocating the per-hop ARQ window sizes dynamically.

We then studied the DMDT in the finite SNR regime for fixed ARQprotocols. We introduced

an end-to-end delay constraint such that a message is dropped once its delay exceeds the delay

constraint. Since in the finite SNR regime retransmission is not a rare event, we incorporated

the queueing delay into the system model, and modeled the system as a queueing network.

The finite SNR DMDT is characterized by the probability of message error, which consists of

the information outage probability and the deadline missing probability. While the information

outage probability can be found through finite SNR DMDT analysis, we have also found the

exponent for the deadline missing probability. Our result demonstrates that the performance

of a multihop network with half-duplex relays in the finite SNR regime is also determined

by the performance of the weakest three-node sub-network. It has been shown that, based on

these analyses, the optimal fixed ARQ window size allocation can be solved numerically as an

optimization problem, which should balance the per-hop diversity performance and avoid a long

per-hop delay.

The difficulty in merging the network layer analysis with thephysical layer information

theoretic results stems from the bursty nature of the sourceand the end-to-end delays. By

modeling the multihop relay network with ARQ as a queuing network, we have tried to answer

a question posed at the end of [13]: how to couple the fundamental performance limits of

general multihop networks with queueing delay. Our work provides a step towards bridging the

gap between network theory and information theory. Future work includes developing an optimal

dynamic ARQ protocol that can adapt to the channel state and the message arrival rate. The
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problem can be formulated as a dynamic programming problem or analyzed using a heavy traffic

approximation.

APPENDIX A

PROOF OFTHEOREM 2

With fixed-ARQ protocol and half-duplex relays, the systemis in outage if any hop is in

outage. The probability of message errorPe(ρ), using the decoding time definition in (6), can

be written as:

Pe(ρ)
.
= P {{t1 > L1} ∪ {t2 > L2}} (43)

= P {t1 > L1}+ P {t2 > L2} (44)

.
= P {L1S1(α1) < r}+ P {L2S2(α2) < r} (45)

.
=

2
∑

i=1

ρ
−d(Mi,Mi+1)

(

r
Li

)

(46)

.
= ρ

−mini=1,2 d
(Mi,Mi+1)

(

r
Li

)

, (47)

where (44) is due to the independence of each link, and (46) follows from the method used in

[4], and the fact that

P {ti > Li} = P

{

Li
∑

l=1

Si(α
l
i) < r

}

, (48)

sinceSi(α
l
i) ≥ 0 andSi(α

l
i) = Si(αi) for the long-term static channel. The last equality follows

since when SNR is high, the dominating term is the one with thesmaller SNR exponent. Using

(47) and the definition of diversity in (4) we obtain the DMDTstated in Theorem 2.

APPENDIX B

PROOF OFTHEOREM 3

For the FBL ARQ protocol with two hops, the probability of message error is given by

Pe(ρ)
.
= P {t1 + t2 > L} =

L−1
∑

k=1

P {t1 = k}P {t2 > L− k}+ P {t1 ≥ L} . (49)
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In the long-term static channel model we have

P {t1 = k} = P {(k − 1)C1(H1) < r log ρ ≤ kC1(H1)}

= P

{

C1(H1) <
r

k − 1
log ρ

}

− P
{

C1(H1) ≤
r

k
log ρ

}

.
= ρ−d(M1,M2)( r

k−1) − ρ−d(M1,M2)( r
k) .

= ρ−d(M1,M2)( r
k−1),

(50)

which follows from the fact thatd(M1,M2)(r) is monotone decreasing, i.e.,d(M1,M2)
(

r
k−1

)

≤

d(M1,M2)
(

r
k

)

. If we plug (50) into (49) we get

Pe(ρ)
.
= P {C1(H1) ≥ r log ρ}P

{

C2(H2) ≤
r log ρ

L− 1

}

+
L−1
∑

k=2

P {(L− k)C2(H2) < r log ρ}P (t1 = k) + P

{

C1(H1) <
r log ρ

L− 1

}

(51)

.
= ρ−mink=2,··· ,L−1{d(M1,M2)( r

L−1),d(M1,M2)( r
k−1)+d(M2,M3)( r

L−k),d(M2,M3)( r
L−1)}

= ρ
−minl1+l2=L−1,l1={0,1,··· ,L−1},

{

d(M1,M2)
(

r
l1

)

+d(M2,M3)
(

r
l2

)}

, (52)

where we have used the fact thatd(Mi,Mi+1)(∞) = 0. From the definition of diversity in (4) the

DMDT in Theorem 3 follows.

APPENDIX C

PROOF OFTHEOREM 4

The decoding time of VBL ARQ is real, which differs from FBL ARQ. Since the long-term

static channel has constant state, we can write the decodingtime asti =
r log ρ
Ci(Hi)

. Hence:

Pe(ρ)
.
= P {t1 + t2 > L}

.
= P {(L− t1)C2(H2) < r log ρ < LC1(H1)}

.
= P

{

L <
r

S1(α1)
+

r

S2(α2)

}

,

(53)

andd(M1,M2,M3)
V BL (r, L) = inf{αi,j}∈O h({αi,j}), whereO is defined in (12).

To prove that the DMDT of VBL ARQ is the optimal DMDT in anN-node network, we first

provide an upper bound on the DMDT, and show that the DMDT of the VBL ARQ protocol

achieves this upper bound. Our proof is for the short-term static channel in a three-node network,
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as stated in Theorem 6. A similar (and simpler) proof can be written for the long-term static

channel in a three-node network as stated in Theorem 4. Assume that the source transmits for

kT channel uses (kT < L) and the relay transmits in the remainingL− kT channel uses. Here

k depends on the channel states and the multiplexing gainr. From the cut-set bound on the

multihop network channel capacity, the instantaneous capacity of the MIMO ARQ channel is

given by

min







max
PX1,l,l=1,··· ,⌊k⌋+1





⌊k⌋
∑

l=1

I(X1,l;Y 1,l|H1,l) + (k − ⌊k⌋)I(X1,k+1;Y 1,k+1|H1,k+1)



 ,

max
PX2,l,l=1,··· ,L−⌊k⌋−1





L−⌊k⌋−1
∑

l=1

I(X2,l;Y 2,l|H2,l) + (1− k + ⌊k⌋)I(X2,L−k;Y 2,L−k|H2,L−k)











.

Since the capacity is maximized with Gaussian inputs, and linear scaling of the power constraint

does not affect the high SNR analysis, the capacityC is upper bounded by

C ≤ min







⌊k⌋
∑

l=1

C1(H1,l) + (k − ⌊k⌋)C1(H1,k+1),

L−⌊k⌋−1
∑

l=1

C2(H2,l) + (1− k + ⌊k⌋)C2(H1,L−k)







.(54)

For any ARQ we can find ak∗ < L such that
∑k∗

l=1C1(H1,l)+(k∗−⌊k∗⌋)C1(H1,k∗+1) = r log ρ.

This meansk∗ .
= t1. With this k∗, the probability of message error is lower bounded by

Pe(ρ) ≥ P







r log ρ >

L−⌊k∗⌋−1
∑

l=1

C2(H2,l) + (1− k∗ + ⌊k∗⌋)C2(H1,L−⌊k∗⌋)







.
= P













r >

L−⌊t1⌋−1
∑

l=1

S2(α
l
2) + (1− t1 + ⌊t1⌋)S2(α

L−⌊t1⌋
2 )







∩ G̃







= P
{

{t2 > L− t1} ∩ G̃
}

= P
{

{t1 + t2 > L} ∩ G̃
}

,

(55)

whereG̃ =
{

(α1, · · · ,αN−1) ∈ R
M∗

1×L × · · · × R
M∗

N−1×L : αl
i,1 ≥ · · · ≥ αl

i,M∗
i
≥ 0, ∀i, l

}

. Hence,

the diversity gain of any ARQd(M1,M2,M3)(r, L) of a three-node network is upper bounded by

d(M1,M2,M3)(r, L)≤̇ inf
αl
i,j∈G2

h̃(αl
i,j), (56)
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with G2 , {t1 + t2 > L} ∩ G̃, which is the same as the setG in (17), the DMDT expression for

VBL ARQ in the short-term static channel. This shows that theDMDT upper bound is achieved

by the VBL ARQ in the short-term static channel. This completes our proof.

APPENDIX D

PROOF OFTHEOREM 5

In the short-term static channel, for the FBL ARQ protocol with two hops (50) becomes

P {t1 = k} = P

{

k−1
∑

l=1

C1(H1,l) < r log ρ

}

− P

{

k
∑

l=1

C1(H1,l) < r log ρ

}

.
=

(

P

{

S1(α
1
1) <

r log ρ

k − 1

})k−1

−

(

P

{

S1(α
1
1) <

r log ρ

k

})k
.
= ρ−(k−1)d(M1,M2)( r

k−1).

Hence, the probability of message error can be written as

Pe(ρ)
.
= P {C1(H1,1) ≥ r log ρ}P

{

L
∑

l=2

C2(H2,l) ≤ r log ρ

}

+

L−k
∑

k=2

P

{

L
∑

l=k+1

C2(H2,l) < r log ρ

}

P (t1 = k) + P

{

L
∑

l=1

C1(H1,l) ≥ r log ρ

}

.
= ρ−mink=2,··· ,L−1{(L−1)d(M1,M2)( r

L−1),(k−1)d(M1,M2)( r
k−1)+(L−k)d(M2,M3)( r

L−k),(L−1)d(M2,M3)( r
L−1)}.

By the definition of diversity, the DMDT in Theorem 5 follows.

APPENDIX E

PROOF OFTHEOREM 6

For a three-node network, we can break down the information outage event as a disjoint union

of events that outage happens at theith hop:

Pe(ρ)
.
= ρ

− inf
{αl

i,j}∈∪2
k=1

Gk
h̃({αl

i,j})
, (57)

whereGk ,

{

∑k
i=1 ti > L

}

. Due to nonnegativity ofti, G1 ⊂ G2. Hence, the minimization

should be overG2. Adding the ordering requirement on elements of
{

αl
i,j

}

, we have Theorem

6.
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APPENDIX F

PROOF OFTHEOREM 7

A. Upper bound

We will first prove an upper bound for any ARQ protocol in anN-hop network by considering

a genie-aided scheme. For eachi = 1, · · · , N − 2, consider the two consecutive hops from node

i to node(i + 1) and then from node(i + 1) to node(i + 2). Assume a genie aided scheme

where the messages are provided to nodei, and the output of node(i+ 2) is forwarded to the

terminal nodeN . The maximum number of ARQ rounds that can be spent on this two-hop

is L. The DMDT of this genie aided setup for anyi, is an upper bound on the DMDT of the

(M1, · · · ,MN) system. The optimal DMDT of the(Mi,Mi+1,Mi+2) system withL ARQ rounds

is characterized in Theorem 4. Hence, we have

d(M1,··· ,MN )(r, L) ≤ mini=1,··· ,N−2 d
(Mi,Mi+1,Mi+2)
V BL (r, L), (58)

whered(M1,··· ,MN )(r, L) is the DMDT of any ARQ protocol for anN-hop network.

B. The DMDT of VBL ARQ

To be able to exploit the multi-hop diversity in the network,we use the following rate and

ARQ round allocation scheme. First we split the original message of rater log ρ into N/2 lower

rate messages each having a rate of(r log ρ)/(N/2) whenN is even (we split into(N − 1)/2

lower rate messages whenN is odd). We pump these pieces of the original message into the

network sequentially, and in equilibrium, they are transmitted simultaneously by adjacent pairs

of nodes.

Moreover, we require the number of blocks allowed for any two-hop transmission, from node

i to node(i+1) and then to node(i+2), for all i = 1, · · · , N −2, to beL̄ = L/(N/2) whenN

is even (orL̄ = L/[(N −1)/2] whenN is odd). This is equivalent to requiring the total number

of blocks that each nodei, i = 2, · · · , N , spends for listening and transmitting each piece of

a message to bēL. Note that with this constraint, the end-to-end total number of ARQ rounds

used for transmitting each piece of the original message is upper bounded bȳL × N/2 = L
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whenN is even (or equals̄L × (N − 1)/2 = L whenN is odd). Hence, this scheme satisfies

the constraint on the end-to-end total number of ARQ rounds.

It is easy to see that the number of simultaneous transmission pairs we can have in anN

node network isN/2 whenN is even, and(N − 1)/2 or (N + 1)/2 whenN is odd.

At the destination, all pieces of a message are combined to decode the original message.

From the above analysis, the last piece of these low rate messages is received after at most

L blocks, and the rate of the combined data isr log ρ/(N/2) × (N/2) = r log ρ when N is

even (similarly for oddN), which equals the original data rate. Hence this low rate message

simultaneous transmission scheme meets both the data rate and end-to-end ARQ window size

constraints.

Now we study the outage probabilityPout(r) of this scheme. Define an outage event for any

three-node sub-network consisting of nodesi, (i+ 1), and(i+ 2), for N even, as:

P i
out(r, L) , P

{

r/(N/2) log ρ

Ci(H i)
+

r/(N/2) log ρ

Ci+1(H i+1)
>

L

(N/2)

}

= P

{

r log ρ

Ci(H i)
+

r log ρ

Ci+1(H i+1)
> L

}

,

(59)

and forN odd, similarly, as

P i
out(r, L) , P

{

r/[(N − 1)/2] log ρ

Ci(H i)
+

r/[(N − 1)/2] log ρ

Ci+1(H i+1)
>

L

[(N − 1)/2]

}

= P

{

r log ρ

Ci(H i)
+

r log ρ

Ci+1(H i+1)
> L

}

.

(60)

Note that (59) and (60) say that by using this scheme, regardless of whetherN is even or odd,

the outage probability is as if we transmit the original message with data rater log ρ over two

hops with a total ARQ round constraint ofL. From our earlier analysis for the VBL ARQ of a

two-hop network, we have that asρ → ∞,

P i
out(r, L)

.
= ρ−d

(Mi,Mi+1,Mi+2)

V BL (r,L). (61)

The system is in outage if there is an outage over any of the consecutive two-hop links from
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the source to the destination. Using a union bound, we have

Pout(r, L) ≤
N−2
∑

i=1

P i
out(r, L). (62)

As SNR goes to infinity, the right hand sum will be dominated by the slowest decaying term,

which is the term with minimumd(Mi,Mi+1,Mi+2)
V BL (r, L). Hence, the DMDT of this scheme is lower

bounded by

d(M1,··· ,MN )(r, L) ≥ min
i=1,··· ,N−2

d
(Mi,Mi+1,Mi+2)
V BL (r, L). (63)

Together with the upper bound in (58), this shows that the presented scheme with the VBL

ARQ achieves the optimal DMDT of anN-hop network, and its DMDT is given by Theorem

7.

APPENDIX G

PROOF OFTHEOREM 8

The proof for the upper bound is identical to the one in Appendix F-A. For the achievable

DMDT of the fixed ARQ, we consider the following scheme with deterministic number of ARQ

rounds: a node has to wait for at leastLi rounds over hopi for each piece of message, and

we allow simultaneous transmissions to employ multihop diversity. Using this scheme, in steady

state, the destination will receive one piece of the messageeveryLmax rounds (rather thanL, if

we do not employ multihop diversity). Now we divide the message into pieces with lower rates

Lmax

L
r log ρ. Using this scheme, overall we will still achieve a rate ofr log ρ in the steady state

by transmitting these lower rate pieces. The outage probability of this scheme provides an upper

bound on that of the fixed ARQ protocol:

Pout(r, L1, · · · , LN−1) ≤
N−1
∑

i=1

P

{⌈

Lmax

L
r log ρ

Ci(H i)

⌉

> Li

}

, (64)

where⌈x⌉ is the smallest integer larger thanx. As SNR goes to infinity, the right hand sum will be

dominated by the slowest decaying term, which is the term with minimumd(Mi,Mi+1)
(

Lmax

L
· r
Li

)

,
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and, hence,

d
(M1,··· ,MN )
F (r, L1, · · · , LN−1) ≥ min

i=1,··· ,N−1
d(Mi,Mi+1)

(

Lmax

L
·
r

Li

)

= min
i=1,··· ,N−2

d
(Mi,Mi+1,Mi+2)
F

(

Lmax

L
r, Li, Li+1

∣

∣

∣

∣

Li + Li+1 ≤ Lmax

)

,

(65)

which completes our proof.

APPENDIX H

PROOF OFTHEOREM 9

The proof for the upper bound is identical to Appendix F-A. For the achievable DMDT of

the fixed ARQ, again consider the same rate-splitting scheme in Appendix F-B. The difference

here is that the number of ARQ rounds used is rounded up to be integer. ForN even, the outage

probability can be written as

P i
out(r, L̄) = P

{⌈

r/(N/2) log(ρ)

Ci(H i)

⌉

+

⌈

r/(N/2) log(ρ)

Ci+1(H i+1)

⌉

> L̄

}

< P

{

r/(N/2) log(ρ)

Ci(H i)
+ 1 +

r/(N/2) log(ρ)

Ci+1(H i+1)
+ 1 > L̄

}

= P

{

r log(ρ)

Ci(H i)
+

r log(ρ)

Ci+1(H i+1)
+N > L

}

.
= ρ−d

(Mi,Mi+1,Mi+2)

V BL (r,L−N).

(66)

Note thatL > N since we need at leastN hops. The system is in outage if any three-node

sub-network in outage. Using the union bound, again we have

Pout(r, L) ≤
N−2
∑

i=1

P i
out(r, L̄) ≤

N−2
∑

i=1

ρ−d
(Mi,Mi+1,Mi+2)

V BL (r,L−N), (67)

and

d
(M1,··· ,MN )
FBL (r, L) ≥ min

i=1,··· ,N−2
d
(Mi,Mi+1,Mi+2)
V BL (r, L−N). (68)
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APPENDIX I

PROOF OFTHEOREM 10

Theorem I can be proved using Theorem 7.4.1 of [24]. The theorem views the random queueing

delay of thenth message as a reflected random walk. The deadline missing probability can be

interpreted as a boundary hitting probability of the randomwalk, which can be obtained via a

standard martingale argument which will not be repeated here. Note that the service time in a

half-duplex two-hop network has a mean service time ofµ(L1)+µ(L2) blocks (approximate the

service time as exponentially distributed) when conditioned on the event∩N−1
i=1 {tin ≤ Li}. The

mean message inter-arrival time isλ blocks. Using the mean service time, the mean inter-arrival

time, and the delay deadline constraintk in Theorem 7.4.1 of [24], we obtain the statement in

Theorem 10.

APPENDIX J

PROOF OFTHEOREM 11

The following proof is adapted from the proof in [22], where aconventional queue tandem

is considered. The conventional queue tandem is equivalentto a full-duplex multihop network,

where the transmission (service) of nodei for a message has to wait for the transmission of the

previous message from nodei to node(i+1). However, in our problem, we have a half-duplex

scenario, in particular, the transmission (service) of node i for a message has to wait for the

transmission of the previous message over node(i+1) to node(i+2). The half-duplex scenario

leads to a different and more complex queueing dynamic that we will study more precisely in

the following.

For nodei, i = 1 · · ·N − 1, N ≥ 3, let the random variableSi
n denote the service time of the

nth message at nodei, andAi
n be the inter-arrival time of thenth message at nodei. Due to

the half-duplex constraint, there areN − 2 queues at the source and nodei, i = 2, · · · , N − 2.

After the completion of transmission of the previous message, the message will be transmitted

from nodei to node(i+1) and to node(i+2), for i = 1, · · · , N − 2. Because of this queueing

dynamic, the waiting time of thenth message at nodei, W i
n, satisfies the following form of



37

Lindley’s recursion (see [22]):

W i
n = (W i

n−1 + Si
n−1 + Si+1

n−1 − Ai
n)

+, i = 1, · · · , N − 2, (69)

where(x)+ = max(x, 0). The total time a message spent for transmission from nodei to node

i+ 2 is given by the waiting time plus its own transmission time

Di
n = W i

n + Si
n + Si+1

n , i = 1, · · · , N − 2. (70)

Note there are overlaps in these transmission timesDi
n’s we defined above, so their sum provides

an upper bound on the end-to-end delay of thenth message:

Dn ≤
N−2
∑

i=1

Di
n. (71)

Next we will writeDi
n’s in (71) explicitly using a non-recursive expression. Thearrival process

at nodei is the departure process from node(i− 1), which satisfies the recursion [22]:

Ai
n = Ai−1

n +Di−1
n −Di

n−1, i = 1, · · · , N − 2, (72)

whereAi
n is a Poisson process with mean interarrival timeλ. A well-known result from queueing

theory [22] states the following: if the arrival and serviceprocesses satisfy the stability condition,

that is, the mean inter-arrival timeλ is greater than the mean service timeµ(Li) + µ(Li+1) at

each of the queuesi = 1, · · · , N − 2, then Lindley’s recursion (69) has the solution:

W i
n = max

ji≤n
(σi

ji,n−1 + σi+1
ji,n−1 − τ iji+1,n), i = 1, · · ·N − 2, (73)

where the partial sums are defined asσi
l,p =

∑p
k=l S

i
k andτ il,p =

∑p
k=l A

i
k. Hence, from (70) and

(73), we have

Di
n = max

ji≤n
(σi

ji,n
+ σi+1

ji,n
− τ iji+1,n), i = 1, · · ·N − 2. (74)
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One the other hand, from (72) we have

τ il,p =







τ i−1
l,p +Di−1

p −Di−1
l−1 , l ≤ p+ 1,

0, otherwise.
(75)

Plugging (75) into (74), we have

Di
n = max

ji≤n
(σi

ji,n
+ σi+1

ji,n
− τ i−1

ji+1,n −Di−1
n +Di−1

ji
), i = 2, · · · , N − 2. (76)

Moving Di−1
n to the left-hand-side, we obtain the recursion relation

Di
n +Di−1

n = max
ji≤n

(σi
ji,n

+ σi+1
ji,n

− τ i−1
ji+1,n +Di−1

ji
), i = 2, · · · , N − 2. (77)

Now from (74) we haveDi−1
ji

= maxji−1≤ji(σ
i−1
j(i−1),ji

+ σi
j(i−1),ji

− τ i−1
j(i−1)+1,ji

). Plugging this into

(77) we have

Di
n +Di−1

n = max
j(i−1)≤ji≤n

(σi
ji,n

+ σi+1
ji,n

+ σi−1
j(i−1),ji

+ σi
j(i−1),ji

− τ i−1
j(i−1)+1,n), i = 2, · · · , N − 2.(78)

Repeating this operation inductively by expandingτ i−1
j(i−1)+1,n, we obtain

N−2
∑

i=1

Di
n = max

j1≤···≤jN−1=n

[

N−2
∑

i=1

(σi
ji,j(i+1)

+ σi+1
ji,j(i+1)

)− τ 1j1+1,n

]

. (79)

Note that in the non-recursive expression (79), we split theinterval [1, n] by increasingly

ordered integersj1, · · · , j(N−1) = n, and the summations of random variables over these different

intervals are mutually independent. This decomposition enables us to adopt a similar large

deviation argument as in [22], to estimate the exponentθ∗ in the form ofP (
∑N−2

i=1 Di
n ≥ k) ≈

exp(−θ∗k) for large k. Following a similar argument as in [22] by finding a condition under

which the log-moment generating function is bounded for each independent sum-of-random-

variables whenn → ∞, we can show that

lim
k→∞

1

k
P

(

N−2
∑

i=1

Di
n ≥ k

)

= − min
i=1,··· ,N−2

θi, (80)

where θi = sup{θ > 0 : ΛT (−θ) + Λ(Si+Si+1)(θ) < 0}, i = 1, · · · , N − 2, and the log-
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moment-generating functions for the inter-arrival timeΛT (θ) = log(1 − θλ)−1, for the service

time Λ(Si+Si+1)(θ) = log(1 − θ[µ(Li) + µ(Li+1)]) (if we approximate the sum service time

to be exponentially distributed). We can further solve thatθi = (µ(Li) + µ(Li+1))
−1 − λ−1,

i = 2, · · · , N − 2. Because of (71),P (Dn ≥ k) ≤ P (
∑N−2

i=1 Di
n ≥ k), and hence the exponent

for the deadline missing probability is bounded by−θ∗ ≤ −mini=1,··· ,N−2 θi.

Now we prove the lower bound. Note that the end-to-end delayDn is greater than the delay

in any three-node sub-network:Dn ≥ Di
n, i = 1, · · · , N − 2. Using a similar argument, we can

show that the exponent for the probability that the delay in athree-node sub-network exceedsk

is given by−θi. Hence, we have

− θ∗ = lim
k→∞

1

k
logP (Dn ≥ k) ≥ lim

k→∞

1

k
logP (Di

n ≥ k) = −θi. (81)

Inequality (81) still holds if we take the maximum over alli on the right-hand-side:

− θ∗ ≥ max
i=1,··· ,N−1

−θi = − min
i=1,··· ,N−1

θi. (82)

This completes our proof.
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