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Fundamental Rate-Reliability-Complexity Limits in
Outage Limited MIMO Communications
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Abstract—The work establishes fundamental limits with re-
spect to rate, reliability and computational complexity, for a
general setting of outage-limited MIMO communications. Inthe
high-SNR regime, the limits are optimized over all encoders
all decoders, and all complexity regulating policies. The wrk
then proceeds to explicitly identify encoder-decoder deghs and
policies, that meet this optimal tradeoff. In practice, the limits
aim to meaningfully quantify different pertinent measures, such
as the optimal rate-reliability capabilities per unit complexity
and power, the optimal diversity gains per complexity costsor
the optimal number of numerical operations (i.e., flops) perbit.
Finally the tradeoff's simple nature, renders it useful for insight-
ful comparison of the rate-reliability-complexity capabilities for
different encoders-decoders.

Index Terms—Diversity-multiplexing tradeoff, lattice de-
signs, rate-reliability-complexity, multiple-input mul tiple-output
(MIMO), space-time coders-decoders, fundamental limitslattice
reduction, regularization.

I. INTRODUCTION
A. General system model

B. Motivation and general results

Error performance and encoding-decoding complexity in
telecommunications (cfl_[2]=[6]), are widely consideredbe
two limiting, and interrelated bottlenecks. Joint expositof
these two aspects becomes increasingly necessary, intorder
meaningfully quantify the ever increasing complexity sost
reliable communication, in systems that progressivelyobee
larger and more dynamic.

A natural question then relates to establishing and meeting
joint fundamental error-performance and complexity Isnit
optimized over all choices of encoders, decoders and pslici
Such limits will be here described, under a high SNR approx-
imation, in the form of an optimal rate-reliability-compley
tradeoff for MIMO communications.

The limits provide answers on the pertinent measure

(SNR, rate, reliability, complexit)/,

and do so within approximation factors which, for incregsin
p, vanish to be smaller than apy, for anye > 0. Specifically

We consider the general multiple-input multiple-outpuhese answers pertain to the following.

(MIMO) communications setting, where the x 1 vector
representation of the received signals given by

y=Hzx +w, (1)

where x is the n x 1 vector representation of the coded

transmitted signalsH the m x n channel matrix, and where

w represents additive noiséZ is considered to be random,

having an arbitrary distribution, and being parameteribgd
p which is interpreted as the SNR (cf. [1}p is taken to be

« Description of the best achievabnRr-rate-reliability-
complexity combination, optimized over all transceivers
and policies (Theorei 1).

« Description of the union of all achievableNr-rate-
reliability-complexity combinations. (Corollafy 11a).

« Description of the optimal value achieved by a large
family of utility measures which quantify thenr-rate-
reliability-complexity capabilities of transceivers, dan
which are decreasing functions of complexity and of error

1.i.d. Gaussian with fixed variance. We assume that one use probability. (CorollaryIb).

of (1) corresponds td" uses of some underlying “physical”

channel.

C. Structure of paper

The model applies to several network topologies and sce-Sectio{]) recalls the general transceiver setting, anchesfi

narios, such asliIMO, MIMO -OFDM, MIMO -MAC, MIMO -ARQ,
and cooperative communications, where each such scen

the different performance measures. Sediion Ill introdiube
AdYmptotic measures of performance, directly applying the

endowsH and z with different structures, dimensionalitiesgiversity multiplexing tradeofDMT, [2]) as the pertinent

and statistics. This work specifically considers the nagedic,
outage-limited setting, in which the above MIMO-relate

asymptotic measure of rate-error performance, and defining
¢he worst-case complexity exponeas a high-SNR asymp-

scenarios play a crucial role in improving the error and ratgtic measure of the worst-case complexity of (reasonable)
performance, though usually at the expense of much highginsceivers. Sectidn ]V presents the optimal high-SNB-rat

encoding-decoding computational complexity.
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reliability-complexity tradeoff, and the optimal transcsr
utility value in its general form, as well as in its simplerora
specific,homogeneousariant. Finally Sectioi V concludes.

Il. TRANSCEIVER DESIGN AND DECODING POLICY
SNR, RATE, RELIABILITY AND COMPLEXITY
A. Transceiver design and decoding policy

Consider a sequence of transceiver desiipsD,,, parame-
terized byp, whereX), C R™ denotes the codebook that maps
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information into transmitted signals, and whé?g denotes the and the associated error performance delivered by the
decoder(s) that extract information from the received &ligin transceiver and policy, is described by the limiting bebavi
Let the transmitted codewords be picked, with uniform of logfj%, i.e., by thediversity gain[2]

probability, from the codebook),. Transmission has duration

log P.
T, SNR p, rate ) dxpp(r) == _ph—{go %_ (6)
R==log, |X,], &p
T
and an enforced power constraint such that B. Regulating and quantifying complexity performance:
1 ) worst-case complexity exponent
EA Z); J]|” =T @) We now consider the one-to-one mapping
xEX,
For simplicity we writeX',D, and we let the parameterization Cxpp + bglf%

be implied.
Consider a policyP (short for P, xp), which generally whereL is a properly chosen scaling factor, being for example

trades-off error performance with complexity, by forcirget a function of|X|. Seeking for patterns and insight, we move to

decoder to limit the number of numerical operations (i.easymptotics where a general asymptotic worst-case coiitylex

flops), up to a maximum designated number of flops. Onceeasure then takes the form

this limiting number of flops is reached, the decoder quits an . logCrxpp

declares an error. This limiting number of flops may or may lim ————"

—oo  log L
not be chosen as a function of the instantanefliyy, and . p, , g- .
will generally depend om. Similar to the DMT in [2] which measures the high-SNR

Pxpp as a polynomial power op, the currently chosen
measure of complexity will also be an exponent oYet p,

B. Rate, reliability and complexity taking the form

The error probabilityPypp introduced by the specific log.C
X,D,P, is simply cxpp(r) = lim —2-XDP @)

R p—00 log p
Pxpp:=PH zw : Zxpp#2), 3) We note that the chosen worst-case complexity exponent
where zxpp denotes the vector decoded By, under the cxpp(r) keeps in line with the relevant behavior of most
restrictions ofP. For a givenX’,D,P and a given realization known transceivers, uniformly covering the full complgxit
of problem inputdd , z, w, thenNx p »(H , z, w) will denote range
the overall instantaneous introduced complexity, in fldpgeen 0<cxpp(r)<rT

worst-case complexity is simply given by ) )
of all reasonable transceivers, with »»(r) = 0 correspond-

Cxpp:= sup Napp(H, z,w). 4) ing to the fastest possible transceiver (requiring a snedidfi
H,x,w .
_ number of flops per codeword), and wity pp(r) = T
A pertinent measure of performance for ayD,P then _corre?onding to the slowest, full-search uninterruptedod-
becomes the corresponding set of achievable combinggerd in the presence of a canonical code with multiplexing
tions (p, R, Pxpp,Cxpp), OF its equivalent one-to-one re-gain r, j.e., with | X'| = p"Z. In the above, the= notation is

mapping used when = % iff (cf. [D]

( R lOgPX"D,p 1OgCX,D,'P) f(p) P ( [ _)

P, 1, log 7 ’ log L ’ lim log f(p) — (8)
where Z, L regulate the refinements of the representation. p—oc logp

and the symbols> and < are defined similarly.
We also note that botldxp»(r) and cx pp(r) quantify
A. Quantifying error performance: DMT worst-case (non-ergodic) behavior, and they are both set by
As a measure of rate-reliability performance, we adopt tfige structural properties of the designD,P as well as the
refinement of the diversity-multiplexing tradeoff, iddied by Statistical properties off, z, w.
Zheng and Tse il [2], as a fundamental performance limit in We proceed to find the optimal
outage-limited MIMO communications. opty pp(dvpp(r),cxpp(r)) which is equivalent to
In this setting, both the error probabili#jy p»» introduced finding the optimal opt 5 (p, R, Pxpp, Cxpp) Up to a
by the specificX,D,P, as well as the cardinality of’, are factor that vanishes to a number smaller than anyfor any
parameterized by = p. Specifically the code cardinality € > 0, in the limit of high-SNR.

IIl. ERROR AND COMPLEXITY EXPONENTS

|X | = 2RT, 1We here note that strictly speaking;,D,P may potentially introduce a
. . . . . complexity exponent larger tharil". In such a case thought’,D,P may be
is described by thenultiplexing gain substituted by a lookup table implementation dfand an unrestricted ML

decoder. This encoder-decoder will jointly introduce a st@ase complexity
(5) that is a constant multiple dft'| = p"”'. It is noted that the number of flops
, . S
per visited codeword is independent @f

1 log | X|
= lim =
p—oologyp  p—=oo T logp




IV. PERFORMANCECOMPLEXITY TRADEOFF where dy, (r) £ dx py, p,.. (r) describes the DMT achieved
We proceed to establish the fundamental limits, optimizdty the uninterrupted ML decoder. By showing that

over all achievable§NF%rate-religbility—compIexity combing- P (n(M) S p%(dNIL(r)+1)+e) & pdn(r)
tions of any transceiver and policy, up to a factor that Viagss - - ’
in the limit of high p. i.e., that the event of halting is less common than the event o

Towards this we describe the decoder and encoder stregror under full ML decoding, it was proven inl[1] that, over
tures, that together with a specific policy, meet a naturpeup any range of multiplexing gains, the combination ofD gg
bound to this tradeoff, for all values of We start with the and?P_r achieves DMT optimal decoding of any lattice design
decoder, but for now disregard the policy. X, and does so with worst-case complexity@flog p). This

1) The candidate decoder — the DMT optimal LLL basehplies a worst-case complexity that is at most linear in the
LR-aided, regularized linear decodeiVe focus on the ef- ratdd, at high SNR. It also constitutes substantial improvement
ficient and DMT optimal, LLL-based lattice-reduction (LR)-over sphere decoding implementations where the worst-case
aided regularized linear decoder, presented in its gef@mal complexity reported (see for example [14] for fast decodabl
in [1], 7], [8] for different settings, drawing from worksush  codes[[15]-4[17]) is also exponential ity albeit with a smaller
as [9], [10]. We clarify that the decoder applies to latticeles, exponent than full search.
and for completeness recall the decoder’s three main steps. 3) The overall worst-case complexity exponent jointly in-
the first step, the decoder performegularizationvia MMSE-  troduced by lattice encoding) rx and P.z: With the above
GDFE like preprocessing, thus inducing a regularized metih mind, we proceed to establish the overall computational
(cf. [10) complexity jointly introduced by lattice encoding and byeth
9) different components dDxg, in the presence dP .

a) Decoder and policy:We first quickly note that the
In the above, is the scaled lattice corresponding to the codéggularization and linear-decoding steps, introduce dexity
andT is a positive definite matrix. The above metric penalizdbat is essentially independent @fH, and bounded above by
far away elements of, that are generally non codewords. Th€(n?), thus inducing a zero complexity exponent.
second step includéattice-reductiorusing the LLL algorithm  Regarding the lattice reduction step, we recall the hard
[11], and the last step is an efficiditear detectiorusing, for bound
example, theounding off algorithm. K <

Under standard assumptions on continuity, and in the pres- -

i, = arg mip 1y — Hal> + ]
i

2
n log%fﬁ(M)—i—n

ence of a policyP,r that lets the decoder run its course < nllog o pzldvn(mtbte 4 o5 Q)

irrespective of the complexity, the above decoder was shown V3 )

in [1] to be DMT optimal, i.e., that on the number of LLL flops enforced by . This bound
implies that

dX-,DLRR-,PrT (T) = sup dX.,D.,PTT,
D 3z e RT:P(N(H,z,w) > zlogp) =0,

irrespective of the lattice desig#’, and irrespective of the
fading statistics.
It is the case though that the decoder’s LLL step introduces P(N(H,z,w) > p°) = p~ >, Ve > 0. (12)

worst-case complexity that is infinité_[12]. This problem is | unci ith th valent tati drawi
successfully addressed by the policy discussed below. n conjunction wi € equivalent representation (dravin

2) The LR-based policPz: To limit the above infinite from [18], which presents sometr) of different¥',D,P)
complexity, the work in[[ll] proposed a policy that capitakz o g log P(N(H, x,w) > p°) <
on the fact that to achieve DMT optimality, it is not required ofr) = supie: — pingo log p <dr)}
to LLL reduce every conceivable channel._ Ins_tead, in the - worst-case complexity exponeit) that allows ford(r),
event that too many flops occur, the policy instructs ﬂw

) . ) e conclude that the LLL algorithm und®Xx, also introduces
implementation of the LLL algorithm to halt, and the decodegn effective complexity exponent equal to zero. Consedyient
to declare an error. Special emphasis is given to guaramge

She entireD gr, Pr introduces a minimal complexity expo-

that the event of halting is not more common than the event equal to zero

of error, thus avoidi_ng degradatipn of t_he asymptotic error b) Lattice encoding:Moving on to encoding, it is again
performance. Specifically the halting policy, to be denaisd easy to see that any lattice codd comes with encoding

P.r, was defined on the basis of the bound on the numb&fmplexity that is bounded a8(n?), thus minimally adding

K of LLL cycles that are necessary for reduction of matn)[(O the overall complexity exponent of any transceivertgoli

M which generates the composite code-channel lattice. Th's\/\/e are now able to combine the complexities from the
bound is given byl[12],[[13] to be

encoder and the decoder, and to provide the following.
K <n’%log_2 k(M) + n, (10) Lemma 1:A lattice code X, in conjunction with the
V3 decoder-policyD, g, Pk, jointly accept a minimum, over all

which in turn means that

where k(M) denotes the 2-norm condition number Bf.

Based on this bound? r deploys the LLL algorithm only if  2The result is extended in][8] to the MIMO-MAC case, to showt ttiés

1y 1 optimality holds with worst-case complexity that is at misear in the users’
k(M) < pzldur(m+hte o 5 (11) sum-rate.



encoders, decoders and policies, effective complexityoexpodes (cf.[[21],[[2P]), and have been shown, under basic con-
nent, i.e., tinuity conditions, to provide DMT optimality for all chaeh

. dimensions, and most often for all fading statistics. Suartes
X{%f:p cxpp=0. (13)  can, for example, be found i [20]. [23]=[29], and they DMT-
optimally apply to several MIMO scenarios, includingvo,
MIMO-OFDM, MIMO-MAC (Rayleigh fading),MIMO-ARQ, as
well as to most existing cooperative communication prot®co

For all the above MIMO scenarios, we have now the final

result, which holds under basic continuity conditions.

CXA 7DLRR77)LR =

4) The overall error performanceWith respect to the
error performance oD gg, Pz, We utilize the result in[]1]
which proves that the DMT optimality oD g, P.r, holds
irrespective of the lattice code that it is applied to, ithat
for anyfixed lattice codeXy, then

dxy Die, P (1) = sup dx, p.p (7). (14)
D, P

)

A. The optimal tradeoff

Disregarding for now issues on code design, we proceed+o for Theorem 1:The high-SNR optimal, over all encoders, de-
malize the performance-complexity optimality Bfgg, P.<. coders and policies, rate-reliability-complexity belwaviis

5) The overall effective complexity/error exponent jgintigiven by
induced by lattice encoding), rx and P.r: Combining [I3B)
and [12) gives the following. opty pp(dxpp(r), cxpp(r))

Lemma 2:The high-SNR ratg-reliabiIity-complexity 'Frade- = (dXCDA,DLRR77)LR (T), CXeon, Dire, Pin (r)) = (dopt(T),O) (16)
off achieved by theD.gr, Pz, iS better or asymptotically
equal to the tradeoff achieved by any other decoder-poli@pd is achieved for all multiplexing gains, all channel di-

irrespective of the lattice cod&, applied, i.e., mensions and (in most known cases) all fading statistics, by
the CDA-based design¥.., the LR-aided regularized linear
(dDx, Dimrie () CDxy igre (7)) decoderD e, and the LR-based policx.

Equivalently the result shows that the achievable rate-

= (supdx,,p,p(r), inf cx, pp(r)). —H : T
(D,P e Dp " ") reliability-complexity combination

Here it is st_regse_d _that this achie_vat_;l_e tradeof_f_r_nay be sub- (p, R =rlogp, P = pdon(™) 0 = ) (17)

optimal, as it is limited by the reliability capabilities tfie

specific codet),. is optimal, up to a factor that asymptotically becomes
What remains now is to combine the optimal componengsnaller than any¢, for any ¢ > 0.. We quickly note that

Dirr, Pir, With suitable code designs. Xcpa, Dirr, PLr is currently the only known tradeoff-optimal
6) Employing DMT optimal codes, to meet the ratedesign.

reliability-complexity tradeoff:We have just seen in Lemri& 2 Directly from the above, we have the following.

that, given any lattice desighy, the combinatiorDgrg, PLr Corollary 1a: In the high SNR regime, the union of all

achieves the highest allowable tradeoff over any transceivachievablesnr-rate-reliability-complexity combinations, con-

policy that includesX,. Consequently what remains is tosidering all reasonabl& D, P, is given by

identify lattice code designs that optimize both, p »(r)

and dx, p.p(r), in the presence ofDirr, Pir. Optimiz-  {(p,R=rlogp, P = p~ ") C = p°")},

ing of cx, p,p(r) has alrgady bgen agh|eved in Lemida 1 0 < d(r) < dopi(r),0 < c(r) < rT.

which proved that any lattice desigtiy givescy, D P =

Xi%fPCX7D77) = 0. Hence what remains is to find a lattice de- ~ Proof: For a given R, any of the above reliability-

sigh that optimizesly, p.»(r), in the presence D rg, PLr. complexny.palrs can be achieved by emp!oylng &D,P

This in turn is further simplified in the presence BFi(14), antilat is optimal with respect to (IL7), modifying though

the task is now limited to simply finding DMT optimal lattice!© introduce the appropriate amount of extra complexity and

codes, i.e., codes that asymptotically meet the outagemegi€"ors. u
Finally, using the fact that the complexity of the optimal
O={H: ilogdet(IjLﬁHHT) < R}, some fixeds, transceiver isO(log p), it is easy to show that for several
T MIMO settings, optimal DMT performance is achieved with
of the equivalent MIMO channel to achieve asymptoticallyt mostO(n?) flops per bit.

optimal performance (cf[[2]) a) Optimal limits on general reliability-complexity func-
,7 _ tions: Another measure of the rate-reliability-complexity ca-
d = sup d =P(H € 0). . . )
on(7) b%%) xop(r) ( ) (15) pabilities of different transceivers can take the form afigral

The existence of such lattice codes has been proven_ in [1lét]IIIty -fu.n.ct|ons. Towards th'S. we-defme the foIIovymg.
Definition 1: LetT" be a weighting function that is increas-

for the quasi-static Rayleigh fading channel, and a unified . d d o d which ref
family of such codes was explicitly constructed in][20] ggin'™9 " xpp(r), decreasing inx pp(r), and which reflects

cyclic division algebragCDA). Further such codes have, over , , L

he last f b d ibed f leth f MIM Constructing such modification is trivial. We note that therst case
the last tew years, been describe Qr aple ora 0 Q,d(r) = 0,¢(r) = rT) corresponds to a full-search transceiver that
models. These codes are based on different variants of Cpvides subexponential decay of the probability of erfiarjncreasing SNR.



the different costs assigned separately to erroneoustibetec
and complexity. Then we use

(18) H
to denote thd'-general rate-reliability-complexity limitfor a
given X D, P.

Towards motivating meaningful use of the limit, we identify
the following simple manifestation as one of many speciag)
cases of the general limit.

Definition 2: The homogeneous rate-reliability-complexity 4!
limit for a givenX’ D, P, and a given weighting factey > 0,
takes the form

Dxpp(r) :==T(dxpp(r),cxpp(r)),

(2]

[5]
(19)

and describes the diversity gain minus the normalized com(?
plexity cost.

It is interesting to interpret the rate-reliability-coregity
limit Dxpp(r), as a limit that describes the high-SNR error
capabilities of¥, D, P, per unit power and complexity. Equiv- [8]
alently, the limit may be described as a measure of diversity
gain per complexity order.

The following result, which holds under basic continuity[9]
conditions, for the same scenarios as Thedrem 1, deschibes t
optimizing value achieved by a large family of measures [10

Corollary 1b: The optimal, over all encoders, decoders and
policies, I'-general rate-reliability-complexity limitD(r), is
given by

D(r) = F(;%pp dxpp(r), O) = F(dopt(r), O)

Dxpp(r) :=dxpp(r) —yexpp(r),

(7]

[11]
(20)

[12]
and is achieved for all multiplexing gains, and all channel
dimensions by the CDA-based desigA%,,, the LR-aided
regularized linear decod@, r, and the LR-based policf, .

Proof: The proof is direct by noting that

(23]

D(T) = ;%ppr(dxpyp(T),Cxpyp(T)) (21) [14]
< F(f};}?de’D’P(T)’Xi%f,PCX’D’P(T))’ (22) [15]

and then by applying Theore 1. ]
The following holds for the more intuitive, cost-symmetrid16l
version of the limit.

Corollary 1c: The optimal, over all encoders, decoders
and policies, homogeneous rate-reliability-complexityit, is  [17]
given by

D(r) = sup dxpp(r) —vcxpp(r) = dopt(r). (23) (18]

D, [19]
V. CONCLUSIONS

The tradeoff and its achievability, provide worst-casergud20]
antees on the complexity required for provably optimal perf
mance in outage-limited MIMO communications. The guaran-
tees hold over a surprisingly broad setting, and they contte wi21]
reduced transmission energy and delay, as well as reduced
algorithmic power consumption and hardware. The tradeg$f
concisely quantifies these guarantees and the capabiities
different transceivers, as well as quantifies the role ofcpes
ST . ) o 23]
in simplifying algorithms which would otherwise mtroducé
unbounded complexity.
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